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An oriented coloring
of graphs with maximum average degree less thaﬂ-gQ

Alexandre Pinlod

LIRMM - Univ. Montpellier 2, CNRS
161 rue Ada, 34392 Montpellier Cedex 5, France

Abstract

An orientedk-coloring of an oriented grap® is a homomorphism fron® to an oriented
graphH of orderk. We prove that every oriented graph with maximum averagecgdgss
than1—30 has an oriented chromatic number at most 16. This implidstiery oriented pla-
nar graph with girth at least five has an oriented chromaticher at most 16, that improves
the previous known bound of 19 due to Borodin et al. [Boro@ny. and Kostochka, A.
V. and Ne3etfil, J. and Raspaud, A. and Sopéna@n the maximum average degree and
the oriented chromatic number of a gradbiscrete Math., 77-89, 206, 1999].

Key words: Oriented coloring; Planar graph; Girth; Discharging paae; Maximum
average degree.

1 Introduction

Oriented graphs are directed graphs without loops nor ofgoarss. For an oriented
graphG, we denote by (G) its set of vertices and b&(G) its set of arcs. For two
adjacent vertices andv, we denote byivthe arc fromuto v or simplyuvwhenever
its orientation is not relevant (therefore,= Gvor uv= vti). The number of vertices
of G is theorder of G.

An oriented k-coloringof an oriented grapl® is a mappingp from V(G) to a
set ofk colors such thatl) ¢(u) # ¢(v) whenevertv is an arc inG, and (2)
d(u) # ¢(x) wheneveriv andwx are two arcs inG with ¢(v) = ¢(w). In other
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words, an oriente#-coloring of G is a partition of the vertices d& into k stable
setsS;, S, ..., Scsuch that all the arcs between any pair of stableSetsdS; have
the same direction (either fro to Sj, or from §j to §). Theoriented chromatic
numberof an oriented graph, denoted Ry(G), is defined as the smallestsuch
thatG admits an orientefd-coloring.

Let G andH be two oriented graphs. Aomomorphisnfrom G to H is a mapping
¢ :V(G) — V(H) that preserves the aras{x)d(y) € A(H) wheneveixy € A(G).

An orientedk-coloring of G can be equivalently defined as a homomorphism from
G to H, whereH is an oriented graph of ordér The existence of such a homo-
morphism fromG to H is denoted byG — H. The vertices oH are calledcolors,

and we say thaG is H-colorable. The oriented chromatic number®ftan then

be defined as the smallest order of an oriented gtduch thatG — H. Links
between colorings and homomorphisms are presented in netagsdin the recent
monograph [6] by Hell and NeSetfil.

The notion of oriented coloring introduced by Courcelle fals been studied by
several authors in the last decade and the problem of bogitidenoriented chro-
matic number has been investigated for various graph daptanar graphs (with
given girth) [1-4,10,11], graphs with bounded maximum ager degree [3,4],
graphs with bounded degree [7], graphs with bounded treébyi@,13], and graph
subdivisions [15].

Theaverage degreef a graphG, denoted by a@5), is defined as twice the number

of edges over the number of vertices (@ = Z‘bE(g)“). The maximum average

degreeof G, denoted by madb), is then defined as the maximum of the average
degrees taken over all subgraphsof

madG) = ngé({ad(H)}.
Thegirth of a graphG is the length of a shortest cycle Gt

Borodin et al. [3,4] gave bounds of the oriented chromatimber of graphs with
bounded maximum average degree:

Theorem 1 [3,4] Let G be a graph.

(1) IfmadG
(2) IfmadG
(3) IfmadG
(4) IfmadG

< 12 and G has girth at least 5, theg,(G) < 5[3].
< L and G has girth at least 5, theg,(G) < 7 [4].
< 3, thenyo(G) < 11[4].

< 10 thenyo(G) < 19[4].

~— — — —

When considering planar graphs, the maximum average demek¢he girth are
linked by the following well-known relation:



Claim 2 [4] Let G be a planar graph with girth g. Themad G) < 2+ 9%42.
Corollary 3 follows from Theorem 1 and the previous claim.
Corollary 3 [3,4] Let G be a planar graph.

(1) If G has girth at least 12, thex,(G) < 5 [3].
(2) If G has girth at least 8, theyo(G) < 7 [4].

(3) If G has girth at least 6, theg,(G) < 11[4].
(4) If G has girth at least 5, thegy(G) < 19[4].

In this paper, we consider the class of graphs with maximuename degree less
than1—30. Our main result improves Theorem 1(4):

Theorem 4 Let G be a graph wittmad G) < 1—3?. Thenyo(G) < 16.

Actually, we prove a stronger result: we show that everyried graphG with
madG) < 1—30 admits a homomorphism t®;6, whereTsg is the Tromp graph of
order 16 whose construction is described in Section 2.

We thus get:
Corollary 5 Let G be a planar graph with girth at least 5. Thgp(G) < 16.

In the remainder, we use the following notions. For a vekte{ a graphG, we
denote byds (v) its indegree by d (v) its outdegreeand bydg(V) its degree (sub-
scripts are omitted when the considered graph is clearlytifiled from the con-
text). We denote bNZ (v) the set of outgoing neighbors of by Ng (v) the set of
incoming neighbors of and byNg(v) = NZ (V) UNg (v) the set of neighbors of
A vertex of degred (resp. at leask, at mosk) is called a&k-vertex(resp.Zk-vertex
<k-vertey. If a vertexu is adjacent to &-vertex (resp=k-vertex, <k-vertex)v,
thenv is ak-neighbor(resp.=k-neighbor =k-neighbo) of u. A path of lengthk
(i.e. formed byk edges) is called k-path If two graphsG andH are isomorphic,
we denote it byG = H.

The paper is organised as follows. The next section is dduotéhe target graph

T16 and some of its properties. We prove Theorem 4 in Section 3fivaly give
some concluding remarks in the last section.

2 The Tromp graph Tig

In this section, we describe the construction of the targaplyT,¢ used to prove
Theorem 4 and give some useful properties.



4 3

Fig. 1. The Tromp grapfir(G). Fig. 2. The graplQRy.

Tromp’s constructionvas proposed by Tromp [14]. L& be an oriented graph and
G’ be an isomorphic copy dB. The Tromp grapfir(G) has 2V(G)| + 2 vertices
and is defined as follows:

 V(TH(G)) =V(G) UV () U fen, o)
e YucV(G): u_o>o,oou’,u’oo’,oo’ueA(Tr(E)))

o YU, VEV(G), Ve AG) : U, UV, vd, VU € A(TH(G))

Figure 1 illustrates the construction ©f(G). We can observe that, for eveayc
V(G)U{e}, there is no arc betweanandu’. Such pairs of vertices will be called
twin vertices and we denote bi(u) the twin vertex ofu. Remark that(t(u)) = u.
This notion can be extended to sets in a standard way: forendv C V(G),
W = {v1,Vo,..., W}, thent(W) = {t(v1),t(v2),...,t(w)}.

By construction, the graphr(G) satisfies the following property:

Yu e Tr(G):NT(u) =N (t(u)) andN~ (u) = N (t(u))

In the remainder, we focus on the specific graph family oletéivia the Tromp’s
construction applied to Paley tournaments. For a prime p@xe 3 (mod 4), the
Paley tournament Qfis defined as the oriented graph whose vertices are the inte-
gers modulg and such thaiivis an arc if and only i/ — u is a non-zero quadratic
residue ofp. For instance, the Paley tournamépR; has vertex seV (QR;) =
{0,1,...,6} anduv € A(QRy) wheneven —u=r (mod 7) for r € {1,2,4}; see
Figure 2. Note that the bounds of Theorems 1(2), 1(3), anghEve been obtained

by proving that all the graphs of the considered classestaalhbmomorphism to

the Paley tournamen@R;, QRy1, andQRyg, respectively.

Let Tis = Tr(QRy) be the Tromp graph on sixteen vertices obtained f@Ra. In

the remainder of this paper, the vertex sefTqfis {0,1,...,6, 0,01 ... 6 o'}
where{0,1,...,6} is the vertex set of the first copy @R; and{0/,1/,...,6'} is the
vertex set of the second copy QRy; thus, for everyu € {0,1,...,6,o}, we have

t(u) = u'. In addition, for everyu € V(T16), we have by constructiofN;; 4(u)| =
INg,(U)| = 7. The grapHT;6 has remarkable symmetry and some useful properties



given below.
Proposition 6 [8] For any QR,, the graph T(QR;) is such that:
VU e V(Tr(QRy)) : N*(u) 2 QRy and N (U) = QR,

Proposition 7 [8] For any QR,, if {a1,ap,az} and {by,by,b3} span triangles t
and b respectively in T{QR,) and the map) taking a to by (1 <i <3)is an
isomorphismg — t», theny can be extended to an automorphism ofQR;).

It is then clear thal r(QRy) is vertex-transitive and arc-transitive.

Proposition 8 Let G be an oriented graph such that-&G T16. Then, for any vertex
v of G, the graph Gobtained from G by reversing the orientation of every arc
incident to v admits a homomorphism tgs.T

Proof. Let ¢ be aTjg-coloring of G. For everyw € V(Tig), we haveN{-Z s(W) =
N, (t(w)) andNy_ (W) = Nﬁe(t(w)). Therefore, the mappinyy : V(G') — V(T1e)
defined byd’(u) = ¢(u) for all u e V(G') \ {v} andd’(v) =t(d(v)) is clearly a
Tie-coloring of G'. O

An orientation n-vectois a sequence = (a1,02,...,0n) € {0,1}" of n elements.
LetS= (v1,Vv2,...,Vy) be a sequence af(not necessarily distinct) vertices offs; a
vertexu is said to be aa-successor of Bfor anyi, 1 <i <n, we havelV; € A(Tg)
whenevem; = 1 andvit € A(Te) otherwise. For instance, the vertexad Tyg is a

—_— — — —
(1,1,0,1,0,0)-successor of1,2,6',1,,2') since the arc§'1, 32, 63, »3, and

—

2'3 belong toA(Tys).

If, for a sequenceS = (v1,Va,...,Vn) Of n vertices of T;g and an orientatiom-
vectora = (0g,0>, ...,0n), there exisi # j such that; = vj anda; # aj, then
there does not exist ary-successor 0§, indeed,T;g does not contain opposite
arcs. In addition, if there exist# j such thatv, = t(vj) anda; = aj, then there
does not exist ang-successor 0§, indeed, for any pair of verticesandy of Tig
with x =t(y), we haveN{ (x) "1N; (y) = @ andNy_(x) NNy, (y) = 0. A sequence
S=(v1,V2,...,Vn) Of nvertices ofT¢ is said to becompatiblewith an orientation
n-vectora = (ay,0p,...,ap) if and only if for anyi # j, we haven; # o whenever
Vi =t(vj), anda;j = aj whenevew; = vj. Note that if then vertices ofSinduce am-
clique subgraph ofy¢ (i.e.v1, Vo, ..., Vv, are pairwise distinct and induce a complete
graph), therSis compatible with any orientatiom-vector since a vertey and its
twin t(u) cannot belong together to the same clique.

In the remainder, we say th@i{g hasProperty R if, for every sequencé of n
distinct vertices ofl;g and any orientation-vectora which is compatible witls,
there exisk a-successors db. This set ok a-successors is denoted by Sg(S$).



Proposition 9 The graph Tg has Properties P7, P> 3, and B ;.

Proof.

(1) PropertyPy 7 is trivial since every vertex of; ¢ has seven successors and seven
predecessors.

(2) To prove thafl1 has Property, 3, we have to show that, for every sequence
S= (u,v) and any compatible orientation 2-vectorthere exist at least three
a-successors @ We have two cases to consider: the aase A(Ti6) and the
caseu = t(v). SinceTyg is arc-transitive, we will consider w.l.o.&= (0,1)
andS= (o0, 0).

A case study shows that the theesuccessors &= (0,1) are 26/, andoo
(resp. 2,6, and~’ ; 3',4,and 8 ; 3,4, and 5) ifa = (0,0) (resp.(1,1) ; (0,1)

; (1,0)).

Consider now the casg@= (0, ’). By definition, the only two compatible
orientation 2-vectors witBare(0, 1) and(1,0). Itis then clear by construction
of T, that we have sevem-successors dbin each case.

(3) PropertyPs ;1 was proved by Marshall [8].

O

Proposition 10 Let u, v, and v be three distinct vertices ofid, and $= (u,V;)
for everyl <i < 2. Leta be an orientatior2-vector compatible with Sand $.

ThenSucg (S1) # Suce (S).

Proof. Suppose to the contrary that there exist sugh and S with
SucG(S) = Suce ().

By Proposition 8, we may assume w.l.0.g. tbat= 0. If v; = t(v2), we clearly
have Sucg(S1) # Suc (S) sinceNy (v1) NN{ (v2) = 0. Thus, we may assume
w.l.0.g. thatvivo € A(Ti6), and sincely is arc-transitive, we assume w.l.0.g. that
vi =0 andv, = 1.

Therefore, the vertices of SugS;) = Sucg (S) must be the common successors
of 0 and 1. We havé¥ _(0)NN{ (1) = {2,6,0}. If oz =0, then a case study
allows us to check thaf;g has no vertexu distinct from 0 and 1 having 2,/6
and o as successors. Therefore, we should have- 1 and then we can check
that u should necessarily be either @& 1'. However, in each case, we will have
|Sucg(S)| =7 and|Sucg(Ss—i)| =3 forsome € [1,2]. O

Proposition 11 Let u, \, V2, and  be four distinct vertices ofi§, and $= (u,V;)

for everyl <i < 3. Leta be an orientatior2-vector compatible with $ $, and
Ss. Then, for any pair of vertices \A: {x,y} of Ty, there exists g [1, 3] such that
| Suce(S)) \W| > 2.



Proof. Remark first that if there existse [1, 3] such thatuv; ¢ A(Tys), then we
necessarily have = t(vj) and thusay # a» sincea is compatible withS;. In this
case, we haveSucg (Sj)| = 7 and it is clear thatSucg (Sj) \W| > 2. Therefore,
uvy, uve, uvs € A(Tyg), and thus, for everye [1,3], | Sucg(S)| = 3.

Suppose that the proposition is false, that is there exist vo,v3 and a pair of
verticesW = {x,y} such thaw c N3_; Sucg(S).

Remark that, for any sequen&ef sizen and any orientatiom-vector 3, the set
Sucg(S) cannot contain a vertex together with its twin. Therefores t(y) and
sinceTyg is arc-transitive, we may assume w.l.o.g. that {0, 1}.

Thereforeu (resp.vi, vz, andvs) should belong tdN{ _(0) NN (1) = {2,6, 0} if
o1 =0 (resp.oz = 0) or toNg (0) NNy (1) = {2/,6,0'} if o1 =1 (resp.az = 1).
This implies that, ity = a» (resp.ay # a2), we would haver = v; (resp.u=t(v;))
for somej € [1,3], that contradicts the fact thaty, uvo,uvs € A(Ti). O

3 Proof of Theorem 4

In this section, we prove Theorem 4, that is that every g@ptith madG) < 1—30
admits a homomorphism Q.

Let us define the partial ordet. Let n3(G) be the number of 3-vertices inG.
For any two graph&; andG,, we haveG; < G if and only if at least one of the
following conditions hold:

e Gy is a proper subgraph @,;
° ng(Gl) < n3(Gz).

Note that this partial order is well-defined, sinc&i is a proper subgraph @3,
thennz(G1) < n3(Gp). So= is a partial linear extension of the subgraph poset.

Let H be a hypothetical minimal counterexample to Theorem 4 aacgrto <.

We first prove thatH does not contain a set of fifteen configurations. Then, using
a discharging procedure, we show that every graph whichagmthone of these
fifteen configurations has a maximum average degree grdme%% this implies
thatH has madH) > 1—30, a contradiction.

3.1 Structural properties of H

A weak5-vertexis a 5-vertex adjacent to three 2-verticesw&ak4-vertexis a
4-vertex adjacent to one 2-vertex.



Lemma 12 The graph H does not contain the following configurations:

(C1) a=1-vertex;
(C2) ak-vertex adjacent ttk— 2) 2-vertices for3 < k < 4;
(C3) ak-vertex adjacent ttk — 1) 2-vertices for2 <k <7,
(C4) ak-vertex adjacent toZvertices forl < k < 15,
(C5) a3-vertex;
(C6) atriangle incident to -vertex;
(C7) two vertices sharing three neighbors whose two of ther2-aertices;
(C8) ak-vertex adjacent tik— 2) 2-vertices and one wedkvertex for5 < k < 6;
(C9) a4-vertex adjacent to three we&kvertices;
(C10) a wealb-vertex adjacent to two weakvertices;
(C11) ab-vertex adjacent to twa-vertices and two weadk-vertices;
(C12) ab-vertex adjacent to on2-vertex and four weak-vertices;
(C13) a6-vertex adjacent to thre2-vertices and three wedkvertices;
(C14) a7-vertex adjacent to fiva-vertices and two weak-vertices;
(C15) an8-vertex adjacent to sevehvertices and one wedkvertex.

The drawing conventions for@nfiguration Ccontained in a graps are the fol-
lowing. If u andv are two vertices o€, then they are adjacent @ if and only if
they are adjacent i6. Moreover, the neighbors ofwahite vertex inG are exactly
its neighbors irC, whereas dlackvertex may have neighbors outside®fTwo or
more black vertices i€ may coincide in a single vertex @, provided they do not
share a white neighbor. Finally, an edge will represent annath any of its two
possible orientations.

Let G be an oriented graplv,be ak-vertex withN(v) = {vq,Vva,...,w} anda be
an orientatiork-vector such that;; = 0 wheneve¥;v € A(G) anda; = 1 otherwise.
Let ¢ be aTie-coloring of G\ {v} andS= (¢(v1),d(v2),...,d(w)). Recall that a
necessary condition to hawesuccessors of is thata must be compatible with
S that is for any pair of verticeg; andvj, ¢(vi) # ¢(vj) whenevern; # a; and
d(vi) #t(d(vj)) whenever; = a;. Hence, every vertey; forbids one color for
each vertew;, i € [L K], i # j. We definef\éi’(vj) to be the forbidden color fov;
by ¢(vj) (i.e. f\ﬂi’ (vj) = ¢(vj) whenever; # aj and f\‘,'i’(vj) =t(¢(vj)) whenever
a; = aj). Thereforea is compatible withSif and only if we haved(vi) # fv; (vj)
for every pairi, j, 1 <i < j <k. Note that if¢(v;) # f\‘,?(vj), then we necessarily
haved(vj) # f\‘,ﬁ (Vi).

For each configuration, we suppose tHatontains it and we consider a reduction
H’ such thaH’ < H and madH’) < 12; therefore, by minimality oH, H’ admits a
Tig-coloringd. We will then show that we can choogeso that it can be extended
to H by Proposition 9, contradicting the fact thatis counterexample.

In the remainder, iH contains a configuration, theth* will denote the graph ob-
tained fromH be removing all the white vertices of this configuration.
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Fig. 4. Configurations of Lemma 13.

Proof of Configuration (C1). Trivial. O

Proof of Configuration (C2). Suppose that contains the configuration depicted
in Figure 3(a) and lep be aTig-coloring ofH' = H\ {va,...,vn}. Then, we clearly
haved(uy) # fjf (uy) sincev is colored inH’. Therefore, by Properti, 3, we can

1

choosep so thath(v) ¢ {0 (v)),..., f ()}, O

Proof of Configuration (C3). Suppose that contains the configuration depicted
in Figure 3(b) and le$ be aT;g-coloring of H*. By PropertyPy 7, we can choose

¢ sothatd(v) ¢ {f(V)),..., R(V))}. O

Proof of Configuration (C4). Suppose that contains the configuration depicted
in Figure 3(c) and le$ be aTyg-coloring of H*. We can clearly choosg so that

o) ¢ (R (v),... W)} O

Up to now, the reductiond’ have been obtained frokh by removing some vertices
and/or arcs; therefore, we clearly had rftd§ < madH). To prove that Config-
uration(C5) is forbidden inH, we considered a reductidi’ obtained fromH by
removing one 3-vertex and by adding new vertices and arasfdllowing lemma
shows that this reductiod’ has nevertheless a maximum average degree strictly
less that.



Let G be a graph containing a 3-vert@adjacent to three vertices, up, andus;
see Figure 4(a). We denote B(G) the graph obtained fror® \ {v} by adding
2-paths joining respectivelyy anduy, u, andus, usz andus; see Figure 4(b).

Lemma 13 If madG) < ¥, thenmadR(G)) < .

Proof. LetG' be a counterexample, i.e. m&@) < 3 and madR(G')) > .

Let D C R(G') be a minimal subgraph &¥(G') (in term of [V (D)| + |E(D)|) such
that adD) = mad R(G')) (by definition of the maximum average degrBegxists).
LetW =V(D) \ {u1,Uz,us3,Vv1,Vv2,v3} andF = E(D) \ {ujv1, ViU, UpVo, VoUs, U3Vs,
vaup }. HenceW (resp.F) is the set of vertices (resp. edges)bbelonging toG’
andR(G') which are not drawn on Figure 4(b).

It is obvious thatD is not a subgraph o5’ since otherwise we would have
madG’) > 1—30. Moreover, suppose th@ contains a>1-vertexx and letD’ =
D\ {x}; we then have ad’) > ad(D) since adD) > 2, that contradicts the mini-
mality of D.

Therefore, sinc® ¢ G’ and the minimum degree @ is 2, we have to consider
w.l.o.g. two different cases:

(1) V(D) = WU {ug,v1,U2,V2,u3,v3} and E(D) = F U {u1vy, iUz, UaVa, Vousz,
UsVs,Vv3usp }. In this case, leD’ C G’ such thav/ (D") =W U {uz,up, us, v} and
E(D') = F U{u1v,upv,uzv}. Therefore|V(D')| = V(D)| -2 and|E(D’)| =
|[E(D)| — 3. Since a@D) > 1—30, we have @E(D)| > 10V(D)| and thus
6(|E(D)|—3)>10(|V(D)|—2). Hence 6E(D’)| > 10|V (D')|, that proves that
adD’) > ¥ and thus ma@') > %2, a contradiction.

(2) V(D) =W U{ug,v1,up,v2,uz} andE(D) = F U {ugvy, ViUz, UpVa, Vouz}. The
same kind of arguments lead us to a similar contradiction.

Therefore, the grap@’ does not exist. O

Proof of Configuration (C5). Suppose that contains the configuration depicted
in Figure 3(d). Since Configuratiorf€1) and (C2) are forbiddenus, up, andus
are =3-vertices. LetH’ be the graph obtained froi* by adding, for every K

I < J <3, a2-path joiningy; to u; is such a way that its orientation is the same
orientation of the patffu;,v,uj] in H. We haveH’ < H sincenz(H’) = nz(H) —1
and madH’) < 1—30 by Lemma 13. AnyTe-coloring ¢ of H’ induces a coloring of
H* such thatp(u;) # fﬂ?(uj) foranyi,j,1<i<j<3. O

10
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Fig. 5. Configuration of Lemma 14. Fig. 6. Configuration of Lemma 15.

Proof of Configuration (C6). Suppose thatl contains the conflguratlon depicted
in Figure 3(e). AnyTig-coloringd of H* is such that (u) # £ (v (v) sinceuve A(H).
O

Proof of Configuration (C7). Suppose that contains the configuration depicted
in Figure 3(f). LetH’ be the graph obtained frok* by adding an alternating (resp.
directed) 2-path joining andw if the 2-path[u, v,w] is directed (resp. alternating).
We haveH’ < H and at least two 2-paths joinandw in H’: the first one is alter-
nating and the other one is directed. Therefore, Bigycoloring$ of H’ induces a

coloring of H* such thath(u) # ¢(w) andd(u) At(dp(w)). O

Some sub-configurations appear several times in Configass((€8) to (C15). To
shorten the proofs, we will often use the five following lensma

Lemma 14 Let G be an oriented graph containing a weakertex u (see Figure 5)
and let¢ be a e-coloring of G". Then, for a fixed coloring ofjuw,, u;, and v, at
most two colors are forbidden fopv

Proof. The colord(v1) together with each of the fifteen colors fardistinct from
f1= f\,z(vl) give three possible colors forby PropertyP 3. PropOSItlon 10i msures
that at most one of these fifteen colors, $aygives the three color (uy), ¢ (U5),
and ¢ (uz) for u. Thus, for anyp(v2) ¢ {fl, f2 we have three available colors for
uwhose one of them is distinct frorﬁﬂ’ (up), fa(u), and ¢ (Ug). O

Lemma 15 Let G be an oriented graph containing a weakertex (see Figure 6)
and letd be a hg-coloring of G'. Then, for any YC V(Tyg) and \b C V(Ty) such
that V1| = |V2| = 2, ¢ can be extended to G so that the colors ‘ofw, and 4, are
fixed andp(vi) € V,.

Proof. LetW = {fﬂ’(u’l), fﬂ’(u’z), fﬂ’(ug)}. Remark first that we must hadgu) ¢
W.

LetVy = {c1,c2} andV, = {d;,d>} and leta = (a4, 02) be an orientation 2-vector
such that, for every< [1,2], a; = 0 whenevewu € A(G), anda; = 1 otherwise.

Suppose first that; =V, (more preciselye; = d; for everyi € [1,2]). If a1 = ay,
then we seth(v1) = §(v2), and we getSucg (¢ (v1),d(v2))| = 7. Thus,p can be

11



Fig. 7. Configuration of Lemma 16. Fig. 8. Configuration of Lemma 17.

extended tdG. If a1 # 0y, then letS; = (c1,d2) andS; = (cp,d1). The sequences
S, and S, are compatible witto, and by Property 3 we have|Sucg(S)| > 3
for everyi € [1,2]. Moreover, a case study shows that SU&) = t(Sucg (S)).
Therefore, there existse [1, 2] such that SugqS) # W, and sap can be extended
to G.

Suppose now that; # V». If there exists € [1,2] such that the arogd; andcidy
exist in Tyg, sayi = 1, thency # di # do # ¢1 and therefore the sequences=
(c1,d1) and S, = (c1,d2) are compatible witha and Proposition 10 insures that
there existi € [1,2] such that SugdS) # W. If there exists € [1,2] such that
the arcscid; andcid, do not exist inTy6, sayi = 1, then it means tha; = d; and
c1 =t(dp). This leads us to the previous case, that is the two@sandc,d, exist
in Ty andcy # di # do # Co. The last case to consider is the one whaey and
cody exist inTyg, andcydo andcpd; do not exist inTg. We can check that we then
have eithef1) c; = d; andc; =t(dj), or (2) c; =t(dp) andcy =t(dy). If a1 # ag,
then for both Case&l) and (2), the sequenc& = (cp,d;) is compatible witha
and we clearly have Sug€S) # W since| Sucg (S)| = 7. Finally, if a1 = ay, then
for Case(1), the sequenc8= (cj,dy) is compatible witha and we clearly have
Sucg(S) # W since| Sucg (S)| = 7; for Casg(2), the sequenceS, = (c¢1,d;) and
$ = (cz,d) are compatible with, and sinceN{ (c1) NN{ (d2) = 0, we clearly
have Sucg(S1) # Sucg (S) and thus there existse [1, 2] such that SuedS) #
W. O

Lemma 16 Let G be an oriented graph containing@-vertex x adjacent to three
weak5-vertices u, v, and w such that u and w (resp. v and w) sh&aaighbor
(see Figure 7). Lep be a Te-coloring of G'. Then, for a fixed coloring of puj,
u, vV, V|, V,, W and wj, at most five colors are forbidden for x.

Proof. To prove this lemma, we will show that for ay C V (T16) such thatW| =
6, ¢ can be extended 8 so that the colors af, u}, u,, vV, v;, v, andw] are fixed
and¢(x) e W.

LetW' = {fﬂ’(u’), fﬂ’(\/), f)‘(b(V\/)}. Remark first that we must haggx) ¢ W'. Let
W’ =W\ W’ and consider the worst capt’’| = 3. By Proposition 11, there exists
a colorc e W such thath(x) = c and ¢ (u’) allow three colors fou by Property
P, 3 whose two of them are distinct frorﬁﬂ’(u’l) and fj’(u’z). We then se$(x) = c.

12



Fig. 9. Configurations of Lemma 18.

By PropertyP> 3, $(V') and¢(x) allow three colors for: we can then sep(v) ¢

{f\‘,p V1), £ (V,)}. Then, by Property, 3, $(W) and¢(x) allow three colors fow:

we can then sep(w) ¢ {f\}t(V\/l), f\}t(v)}. Finally, recall thath(u') and¢(x) allow
three colors fow whose two of them are distinct frovfa’f(u’l) andfﬂ’(u’z): therefore,
we can then safi(u) ¢ { (), (W), fd(w)}. O

Lemma 17 Let G be an oriented graph containing=s8-vertex adjacent to two
weak5-vertices u and v sharing a-neighbor (see Figure 8) and lgt be a T
coloring of G'. Then, for a fixed coloring ofjuw,, v}, \,, U and v, at most four
colors are forbidden for x.

The proof of this lemma is omitted.

Lemma 18 Let G be an oriented graph containing'8-vertex x adjacent to three
weak5-vertices u, v, and w such that u and w (resp. v and w; u and wjesha
a 2-neighbor (see Figure 9). Leli be a Ts-coloring of G* and let WC V (Tyg)
containing the seven successors of any vertex©fThen, for a fixed coloring of
u, up, v, v, W, and w, ¢ can be extended to G such thigix) € W.

Proof. Let G’ = G\ {t,y,z}. We first show that if we can exterdto G’ so that
we have three choices of colors for one of the vertigeg or w, sayu, and two
choices of colors for one the verticesr w, sayv, then there exists &g-coloring
of G. Let S, andS, be any two sets of vertices ®fs such thatS,| = 3 and|S,| = 2.
If, for any colorsc, € §, andc, € S, there exists d;g-coloring¢’ of G’ such that

¢(u) = ¢, and @’ (v) = ¢, then we can choosi(v) € S,\ { ¥ (W)} andd(u) €
S\ { 0 (v), i (w)}; this coloring can clearly be extended@dby Proposition 9.

We may suppose w.l.o.g. that the seven verticed/adre the seven successors of
. LetW' = {f)?(u’), fﬂ’(\/), f)?(u’)}. Remark first that we must haggx) ¢ W'.
LetW” =W\ W’ and consider the worst caf¥”| = 4. By PropertyP, 3, for each
$(x) € W”, we have at least two colors distinct fro’rgﬁ(u’l) (resp.fd V1), f\)t(vx/l))

for u (respv, w) in G'.

Actually, we can show that at least one colg(ix) € W allows three colors for
eitheru, v, orw, that is either three colors fardistinct from fﬂ’(u’l), three colors

13



Fig. 10. ConfiguratioriC8): ak-vertex adjacent tk— 2) 2-vertices and one weak 5-vertex
for5<k<6.

for v distinct from f (V}), or three colors fow distinct from f\}t(vx/l). A case study
shows that if one of the following condition holds:

(1) () = o,

(2) o(U) =,

(3) ¢(U) is a predecessor of and the 2-patif/, u, x] is alternating,
(4) ¢(U) is a successor @b and the 2-pathu’, u, ¥ is directed,

then, for anyf¢(ul) there exists a colog(x) e W” such that the three colors
for u given by PropertyP, 3 are distinct fromfu (u}). The coloring¢ can then
be extended t& by the above remark. By symmetry, these arguments apphy for
andw'.

Otherwise, suppose thé{u’) = sis a successor ob and the 2-pathu’,u,x] is
alternating. Ifse W”, then we can sep(x) = s and we have seven available col-
ors for u, that completes the proof. ¢ W”, then this implies thas € W' =
{fx( M), f ¢(\/) ¢( w)} sinces € W by definition ofW. Therefore, we necessarily
have w.l.0.g. eithep (V) = sand[V,V, X is directed, o (V) =t(s) and[V,v,x] is
alternating, the only two cases which forbid the caddor x. However, we have
already shown that for these two cass;an be extended to Rg-coloring of G
(see above conditions (3) and (4)).0

Proof of Configuration (C8). Suppose that contains the configuration depicted
in Figure 10 and le$ be aT;s-coloring ofH*. By Lemma 14, the weak 5-vertex
forbids two colors fow, say f; and f,. By PropertyP; 7, we can choosé such that

O(V) ¢ {f1, f2, R0 (V)),.... F (V). O

Recall that the case where two black vertices coincide imdigaration (provided
they do not share a white neighbor) is already taken intowadcm the proofs.
However, since we have no restriction on the girth of the wwred graphs, the
cases where black vertices coincide with white verticege hawbe considered. To
prove that ConfigurationfC8) to (C15) are forbidden, we first begin by the fol-
lowing remarks:
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Fig. 11. ConfiguratiorfC9): a 4-vertex adjacent to three weak 5-vertices.

Remark 19

(1) A black vertex cannot coincide with a white vertex atatise at most two
since otherwise it would imply either loops or multiple esige

(2) A black vertex adjacent to 2vertex cannot coincide with a white vertex at
distance three, since otherwise it would imply Configuratioo).

(3) A black vertex adjacent to 2vertex cannot coincide with a whitzvertex
since otherwise it would imply Configuratid@3).

(4) Let u and v be two white wedlkvertices sharing a3-neighbor and let
Uz, Up, Uz be three black3-vertices, each of them sharing2aneighbor with
u. Then, two ps cannot coincide together with v, since otherwise it would
imply Configuration(C7).

(5) A black vertex adjacent to a weakvertex cannot coincide with a white weak
5-vertex since otherwise it would imply Configurati@s).

Proof of Configuration (C9). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 11 are forbiddertino show thaH does not contain
a 4-vertex adjacent to three weak 5-vertices.

(a) Suppose thdil contains the configuration depicted in Figure 11(a) and let
be aTig-coloring of H*. By Lemma 14, each of the weak 5-vertiags/, and
w forbids two colors foix, say fq, fo,..., fs. By PropertyP; 7, we can choose
¢ such thatp(x) ¢ {fy, fo,..., fs}.

(b) Suppose thdil contains the configuration depicted in Figure 11(b) andi ket
aTye-coloring ofH*. By Lemma 14, the weak 5-vertexorbids two colors for
X, sayfy, fo, and by Lemma 17, the verticasindw forbid four colors forx, say

15



(©)

(d)

(b)

Fig. 12. ConfiguratiorfC10): a weak 5-vertex adjacent to two weak 4-vertices.

f3,..., fe. By PropertyP; 7, we can choos¢ such thath(x) ¢ {f1, fo,..., fe}.
Suppose that contains the configuration depicted in Figure 11(c) andlet
be aTig-coloring of H*. By Lemma 16, the vertices, v andw forbid five
colors forx, say f1, fo, ..., fs. By PropertyP; 7, we can choosé such that
d)(X) Q_f {fl, f2, ceey f5}.

Suppose thaltl contains the configuration depicted in Figure 11(d) and let
¢_>be aTyg-coloring of H*. By Proposition 8, we may assume w.l.0.g. that

X'x € H. By PropertyP; 7, the seven color orfxlﬁe(cp(x’)) are allowed forx is
H\ {u,us,v,vi,W,wy,t,y,z}. Lemma 18 allows us to conclude.

Proof of Configuration (C10). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 12 are forbiddertino show thaH does not contain
a weak 5-vertex adjacent to two weak 4-vertices.

(@) Suppose thatl contains the configuration depicted in Figure 12(a) and let

(b)

H' =H\ {u,uz,up,us,v1,w1 }. Let$ be aTig-coloring ofH'. We clearly have
d(V) # fj,’ (V') (resp.op (W) #£ f\;t,(V\/')) sincev (resp.w) is colored inH’. Prop-
erty P, 3 insures that we have two available colors¥dqresp.w) distinct from
£ ) (resp.f\)t(V\/l)). Lemma 15 allows us to conclude.

Suppose that contains the configuration depicted in Figure 12(b) andlet
be aTyg-coloring of H*. LetW = { £ (1)), (), 18 (uy), 12 (v), (W)}
Remark that we must sé{u) ¢ W. Therefore, the eleven colors\éfTis) \ W
are available fouin H\ {vi,w, vw}. W.l.0.g. we may assume that/ € H by
Proposition 8. We choose a colgre V(Ty6) \ W which is not a predecessor of
f\}?}(V\/l) and we sed(u) = cy. By PropertyPs 3, ¢(u(g together withp (V) allow
at least one colag, for vdistinct from £ (vy) andfy (W); we seth(v) = ¢y. By
PropertyPs 1, we have one colot,, for w and sincep(u) is not a predecessor
of f\)?}(V\/l), we necessarily havgy, # f\}‘&(V\/l). We thus seb(w) = cy.
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(d)

Fig. 14. ConfiguratiorfC12): a 5-vertex adjacent to one 2-vertex and four weak 5-vestice

Proof of Configuration (C11). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 13 are forbiddertiio show thaH does not contain
a 5-vertex adjacent two 2-vertices and two weak 5-vertices.

Suppose thaH contains the configuration depicted in Figure 13(a) (resg- F
ure 13(b)) and let be aTig-coloring of H*. The weak 5-vertices andv forbid
four colors forx, sayfy, fo, f3, f4, by Proposition 14 (resp. Lemma 17). By Property
Py 7, we can choosé such thath(x) ¢ {f1, fz, 3, fa, £ (%), 12 (%)}, O

Proof of Configuration (C12). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 14 are forbiddertino show thaH does not contain
a 5-vertex adjacent to one 2-vertices and four weak 5-vestic
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Fig. 15. Configuration(C13): a 6-vertex adjacent to three 2-vertices and three weak

5-vertices.
(a) Suppose thdil contains the configuration depicted in Figure 14(a) and let
be aTig-coloring of H*. By Lemma 16, the weak 5-verticesv, andw forbid

five colors forx, sa¥ f1,..., fs. By PropertyP; 7, we can choosé such that
(I)(X) §§ {fl,..., f5, X Xl

(b)(c)(d) Suppose thatH contalns one of the configurations depicted
Figures 14(b), 14(c), and 14(d) and fetoe aTig-coloring of H*. By Lem-
mas 14 and 17, the weak 5-vertiagw, w, andx forbid eight colors fory, say

fs. We clearly can choost such thath(y) ¢ {f1,..., fs, fy (YD)}

in

T

Proof of Configuration (C13). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 15 are forbiddertino show thaH does not contain

a 6-vertex adjacent to three 2-vertices and three weakttcesr

(a)(b) Suppose thatl contains one of the configurations depicted in Figures 15(a)

and 15(b) and leb be aTig-coloring of H*. The weak 5-vertices, w, andx
fg, by Lemmas 14 and 17. We clearly can

(), 1 (), £ (U3

forbid six colors foru, say fq, ...,
choosep such thath(u) & {f1,..., fs, fu
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(b)

Fig. 16. Configuration(C14): a 7-vertices adjacent to five 2-vertices and two weak
5-vertices.

u ’
uf ! v1 Yy
v <
/ U\ N
u, ;
wl /
3 us , V7 Uy
u

Fig. 17. Configuration(C15): an 8-vertex adjacent to seven 2-vertices and one weak
5-vertex.

(c) Suppose thatl contains the configuration depicted in Figure 15(c) andlet
be aTyg-coloring of H*. The weak 5-vertices, w, andx forbid five colors for
u, sayfi,..., fs. We clearly can choosg such thatp(u) ¢ {f4,..., fs, fﬂ’(u’l),
(), £ (up)}.

(d) Suppose thatl contains the configuration depicted in Figure 15(d) analet
be aTyg-coloring of H*. LetW = {fﬂ’(u’l), fﬂ’(u’z), fﬂ’(u’s)}. Remark first that
we must seth(u) ¢ W. Among the thirteen vertices &f(Ti6) \ W, we can
check that there exist seven vertices which are the seveessmrs of some
vertexv of Tig. Lemma 18 allows us to conclude.

Proof of Configuration (C14). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 16 are forbiddertino show thaH does not contain
a 7-vertex adjacent to five 2-vertices and two weak 5-vestice

Suppose thaH contains one of the configurations depicted in Figures 16(a)
and 16(b) and lety be aTig-coloring of H*. The weak 5-vertices andw for-
bid four colors foru, sayfs,..., f4, by Lemmas 14 and 17. We clearly can choose

¢ such thath(u) ¢ {fa,..., f4, 1O (), FE(Uy),.... £2(up)}. ©
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Proof of Configuration (C15). Suppose thaH contains the configurations de-
picted in Figure 17 and lep be aTyg-coloring of H*. The weak 5-vertexi for-
bids two colors fow, say f1, fz, by Lemma 14. We clearly can choogesuch that

O(v) ¢ {f1, fa, £ (V0), FY (Vo),..., B0 (v5)}. O
3.2 Discharging procedure

To complete the proof of Theorem 4, we use a discharging proee We define the
weight functionw by w(v) = 3d(v) — 10 for everyv € V(H). Since ma@H) < 1—3?,
we have:
w(v) = Z (3d(v) —10) < 0.

veV(H) veV(H)
In what follows, we will define discharging rules (R1), (R2)da(R3) and redis-
tribute weights accordingly. Once the discharging is fiagsha new weight func-
tion w* is produced. However, the total sum of weights is fixed by tisetdarging
rules. Nevertheless, we can show ttétv) > O for everyv € V(H). This leads to
the following obvious contradiction:

0< Z w'(v) = Z w(v) < 0.
veV(H) veV(H)

Therefore, no such counterexampleexists.
The discharging rules are defined as follows:

(R1) Each weak 4-vertex gives 2 to its 2-neighbor.
(R2) Each non weak 4-vertex gives 1 to their weak 5-neighbors
(R3) Each”5-vertex gives 2 to their 2-neighbors and 1 to their weak igrisors.

Let v be ak-vertex ofH. Note thatk > 1 by (C1) andk # 3 by (C5).

e If k=2, thenw(v) = —4. Since every 2-vertices d¢f has two=4-neighbors
by (C2) and (C3), v receives 2 from each neighbor by (R1) and (R3). Hence
w*(v) =0.

o If k=4, thenw(v) = 2. By (C2), a 4-vertex has at most one 2-neighbok las
one 2-neighbor (i.ev is weak), then it gives 2 by (R1). if has no 2-neighbor,
then it has at most two weak 5-neighbors (@9). Therefore,v gives at most
1 x 2 by (R2). Hencew'(v) > 2—max{2;1x 2} = 0.

e If k=05, thenw(v) = 5. By (C3), a 5-vertex has at most three 2-neighbors. If
has three 2-neighbors (ixeis weak), then it has no weak 5-neighborgB8); it
thus gives Z 3 by (R3). Moreover, byC10), v has at most one weak 4-neighbor;
thereforey has at least either one non weak 4-neighbor or‘deeighbor; thus,
vreceives at least 1 by (R2) or (R3)Mhas two 2-neighbors, then it has at most
one weak 5-neighbor b§C11), and then gives at most22 -+ 1 by (R3). Ifv has
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one 2-neighbor, then it has at most three weak 5-neighbo(€bg), and then
gives at most 2- 1 x 3 by (R3). Finally, ifv has no 2-neighbor, it gives at most
1x 5 by (R3). Hencew*(v) >5—max{2x3—1;2x2+1;24+1x3;1x5} =0.

e If k=6, thenw(v) = 8. By (C3), a 6-vertex has at most four 2-neighbors Ifas
four 2-neighbors, then it has no weak 5-neighbor(6§), and then gives 2 4
by (R3). If v has three 2-neighbors, then it has at most two weak 5-neighbo
by (C13), and then gives at most:23+ 1 x 2 by (R3). Finally, ifv hasl 2-
neighbors, 6< |1 < 2, thenv has at most6 — | ) weak 5-neighbors and then gives
at most 2<1+1x (6—1) by (R3). Hencew*(v) > 8 —max{2x 4;2x 3+ 1x
2;2x1+1x(6—1)} =0forany 0<I| <2.

e If k=7, thenw(v) = 11. By (C3), a 7-vertex has at most five 2-neighborsv If
has five 2-neighbors, then it has at most one weak 5-neighb@b4) and then
gives at most X 5+ 1 by (R3). Finally, ifv hasl 2-neighbors, &< | <4, then it
has at mos{7 — 1) weak 5-neighbors and then gives at most|2+ 1 x (7—1)
by (R3). Hencew"(v) > 11— max{2x 5+ 1;2x1+1x (7—1)} = 0 for any
0<I <4

e If k=8, thenw(v) = 14. By (C4), an 8-vertex has at most seven 2-neighbors. If
v has seven 2-neighbors, then it has no weak 5-neighb@Cb§) and then gives
2x 7 by (R3). Finally, ifvhasl 2-neighbors, & | <6, then it has at mosB8—1)
weak 5-neighbors and then gives at most P+ 1 x (8 — 1) by (R3). Hence,
W' (V) >14—max{2x7;2x1+1x(8—1)} =0forany 0< | <6.

e If k=09, thenw(v) = 17. By (C4), a 9-vertex has at most eight 2-neighborsa If
hasl 2-neighbors, & | <8, then it has at mo$9— 1) weak 5-neighbors and then
givesatmost Z1+1x (9—1) by (R3). Hencew*(v) > 17—2x1+1x (9—1) >
0 forany 0<| <8.

e If k> 10, thenw(v) = 3k— 10. If v hasl 2-neighbors, X | <k, thenv has at
most(k—1) weak 5-neighbors and then gives at mostl2- 1 x (k—1) by (R3).
Hencew*(v) > 3k—10—2x1+4+1x (k—1)>0forany 0<I| <k.

Thus, for every € V(H), we havew*(v) > 0 once the discharging is finished, that
completes the proof.

4 Concluding remarks

In 1999, NeSetfil and Raspaud [9] introduced the notiostiming oriented coloring
which is a stronger version of the notion of oriented colgrstudied in this paper.

Let M be an additive abelian group. AM-strong-oriented coloringf an oriented
graphG is a mappingp from V(G) to M such thatd(u) # ¢(v) wheneveriv is
an arc inG and ¢ (v) — d(u) # —(d(t) — ¢(z)) wheneveriv and zt are two arcs
in G. The strong oriented chromatic numberf an oriented graph is the minimal
order of a grougM such thatG has anM-strong-oriented coloring. It is clear that
any strong oriented coloring of an oriented grapls an oriented coloring o6
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and therefore the oriented chromatic numbefGok less than its strong oriented
chromatic number.

NeSetfil and Raspaud showed that a strong oriented oglafi an oriented graph
G can be equivalently defined as a homomorphisfrom G to H, whereH is an
oriented graph witlk vertices labeled by theelements of an abelian additive group
M, such that for any pair of ardsv and zt of A(H), v—u # —(t — z). For every
prime powerp = 3 (mod 4), the Paley grapQR;, (defined in Section 2, page 4) is
clearly an oriented graph witp vertices labeled by thp elements of the fielq)zz

and such that for any pair of arts' and zt of A(QRy), v—u# —(t — 2).

Let G be an oriented graph with méd) < %). Borodin et al. [4] proved that the
oriented chromatic number of every such gr&pls at most 19. In this paper, we
improved this result by showing that 16 colors are enoughvéder, to prove their
result, Borodin et al. showed that every such gr&#admits a homomorphism to
the Paley grapl@QRyg. Therefore, their result is stronger: every graph with maxi
mum average degree strictly less t%&has astrongoriented chromatic number at
most 19. So, a natural question to ask is:

Question 20 Does there exist an abelian additive group M d& elements such
that we can label the vertices ofglwith the elements of M in such a way that
V— U+ —(t —z) wheneveiiv andzt are two arcs of g ?

Ifitis true, that would imply that 16 colors are enough fateongoriented coloring
of an oriented graph with maximum average degree stricﬂylbat%).
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