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An oriented coloring
of graphs with maximum average degree less than10

3

Alexandre Pinlou1

LIRMM - Univ. Montpellier 2, CNRS
161 rue Ada, 34392 Montpellier Cedex 5, France

Abstract

An orientedk-coloring of an oriented graphG is a homomorphism fromG to an oriented
graphH of orderk. We prove that every oriented graph with maximum average degree less
than 10

3 has an oriented chromatic number at most 16. This implies that every oriented pla-
nar graph with girth at least five has an oriented chromatic number at most 16, that improves
the previous known bound of 19 due to Borodin et al. [Borodin,O. V. and Kostochka, A.
V. and Nešetřil, J. and Raspaud, A. and Sopena,É., On the maximum average degree and
the oriented chromatic number of a graph, Discrete Math., 77–89, 206, 1999].

Key words: Oriented coloring; Planar graph; Girth; Discharging procedure; Maximum
average degree.

1 Introduction

Oriented graphs are directed graphs without loops nor opposite arcs. For an oriented
graphG, we denote byV(G) its set of vertices and byA(G) its set of arcs. For two
adjacent verticesu andv, we denote by−→uv the arc fromu to v or simplyuvwhenever
its orientation is not relevant (therefore,uv=−→uvoruv=−→vu). The number of vertices
of G is theorder of G.

An oriented k-coloringof an oriented graphG is a mappingϕ from V(G) to a
set of k colors such that(1) ϕ(u) 6= ϕ(v) whenever−→uv is an arc inG, and (2)
ϕ(u) 6= ϕ(x) whenever−→uv and−→wx are two arcs inG with ϕ(v) = ϕ(w). In other
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words, an orientedk-coloring ofG is a partition of the vertices ofG into k stable
setsS1,S2, . . . ,Sk such that all the arcs between any pair of stable setsSi andSj have
the same direction (either fromSi to Sj , or from Sj to Si). Theoriented chromatic
numberof an oriented graph, denoted byχo(G), is defined as the smallestk such
thatG admits an orientedk-coloring.

Let G andH be two oriented graphs. Ahomomorphismfrom G to H is a mapping

ϕ : V(G) →V(H) that preserves the arcs:
−−−−−→
ϕ(x)ϕ(y) ∈ A(H) whenever−→xy∈ A(G).

An orientedk-coloring ofG can be equivalently defined as a homomorphism from
G to H, whereH is an oriented graph of orderk. The existence of such a homo-
morphism fromG to H is denoted byG→ H. The vertices ofH are calledcolors,
and we say thatG is H-colorable. The oriented chromatic number ofG can then
be defined as the smallest order of an oriented graphH such thatG → H. Links
between colorings and homomorphisms are presented in more details in the recent
monograph [6] by Hell and Nešetřil.

The notion of oriented coloring introduced by Courcelle [5]has been studied by
several authors in the last decade and the problem of bounding the oriented chro-
matic number has been investigated for various graph classes: planar graphs (with
given girth) [1–4,10,11], graphs with bounded maximum average degree [3,4],
graphs with bounded degree [7], graphs with bounded treewidth [12,13], and graph
subdivisions [15].

Theaverage degreeof a graphG, denoted by ad(G), is defined as twice the number

of edges over the number of vertices (ad(G) =
2|E(G)|
|V(G)| ). The maximum average

degreeof G, denoted by mad(G), is then defined as the maximum of the average
degrees taken over all subgraphs ofG:

mad(G) = max
H⊆G

{ad(H)}.

Thegirth of a graphG is the length of a shortest cycle ofG.

Borodin et al. [3,4] gave bounds of the oriented chromatic number of graphs with
bounded maximum average degree:

Theorem 1 [3,4] Let G be a graph.

(1) If mad(G) < 12
5 and G has girth at least 5, thenχo(G) ≤ 5 [3].

(2) If mad(G) < 11
4 and G has girth at least 5, thenχo(G) ≤ 7 [4].

(3) If mad(G) < 3, thenχo(G) ≤ 11 [4].
(4) If mad(G) < 10

3 , thenχo(G) ≤ 19 [4].

When considering planar graphs, the maximum average degreeand the girth are
linked by the following well-known relation:
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Claim 2 [4] Let G be a planar graph with girth g. Then,mad(G) < 2+ 4
g−2.

Corollary 3 follows from Theorem 1 and the previous claim.

Corollary 3 [3,4] Let G be a planar graph.

(1) If G has girth at least 12, thenχo(G) ≤ 5 [3].
(2) If G has girth at least 8, thenχo(G) ≤ 7 [4].
(3) If G has girth at least 6, thenχo(G) ≤ 11 [4].
(4) If G has girth at least 5, thenχo(G) ≤ 19 [4].

In this paper, we consider the class of graphs with maximum average degree less
than 10

3 . Our main result improves Theorem 1(4):

Theorem 4 Let G be a graph withmad(G) < 10
3 . Thenχo(G) ≤ 16.

Actually, we prove a stronger result: we show that every oriented graphG with
mad(G) < 10

3 admits a homomorphism toT16, whereT16 is the Tromp graph of
order 16 whose construction is described in Section 2.

We thus get:

Corollary 5 Let G be a planar graph with girth at least 5. Thenχo(G) ≤ 16.

In the remainder, we use the following notions. For a vertexv of a graphG, we
denote byd−

G(v) its indegree, by d+
G(v) its outdegree, and bydG(v) its degree (sub-

scripts are omitted when the considered graph is clearly identified from the con-
text). We denote byN+

G (v) the set of outgoing neighbors ofv, by N−
G (v) the set of

incoming neighbors ofv and byNG(v) = N+
G (v)∪N−

G (v) the set of neighbors ofv.
A vertex of degreek (resp. at leastk, at mostk) is called ak-vertex(resp.≥k-vertex,
≤k-vertex). If a vertexu is adjacent to ak-vertex (resp.≥k-vertex,≤k-vertex)v,
thenv is a k-neighbor(resp.≥k-neighbor, ≤k-neighbor) of u. A path of lengthk
(i.e. formed byk edges) is called ak-path. If two graphsG andH are isomorphic,
we denote it byG∼= H.

The paper is organised as follows. The next section is devoted to the target graph
T16 and some of its properties. We prove Theorem 4 in Section 3. Wefinally give
some concluding remarks in the last section.

2 The Tromp graph T16

In this section, we describe the construction of the target graphT16 used to prove
Theorem 4 and give some useful properties.
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Fig. 1. The Tromp graphTr(G).
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Fig. 2. The graphQR7.

Tromp’s constructionwas proposed by Tromp [14]. LetG be an oriented graph and
G′ be an isomorphic copy ofG. The Tromp graphTr(G) has 2|V(G)|+2 vertices
and is defined as follows:

• V(Tr(G)) = V(G)∪V(G′)∪{∞,∞′}

• ∀u∈V(G) : −→u∞,
−→
∞u′,

−−→
u′∞′,

−→
∞′u∈ A(Tr(G))

• ∀u,v∈V(G),−→uv∈ A(G) : −→uv,
−→
u′v′,

−→
vu′,

−→
v′u∈ A(Tr(G))

Figure 1 illustrates the construction ofTr(G). We can observe that, for everyu∈
V(G)∪{∞}, there is no arc betweenu andu′. Such pairs of vertices will be called
twin vertices, and we denote byt(u) the twin vertex ofu. Remark thatt(t(u)) = u.
This notion can be extended to sets in a standard way: for a given W ⊆ V(G),
W = {v1,v2, . . . ,vk}, thent(W) = {t(v1), t(v2), . . . , t(vk)}.

By construction, the graphTr(G) satisfies the following property:

∀u∈ Tr(G) : N+(u) = N−(t(u)) andN−(u) = N+(t(u))

In the remainder, we focus on the specific graph family obtained via the Tromp’s
construction applied to Paley tournaments. For a prime power p≡ 3 (mod 4), the
Paley tournament QRp is defined as the oriented graph whose vertices are the inte-
gers modulop and such that−→uv is an arc if and only ifv−u is a non-zero quadratic
residue ofp. For instance, the Paley tournamentQR7 has vertex setV(QR7) =
{0,1, . . . ,6} and−→uv∈ A(QR7) wheneverv−u ≡ r (mod 7) for r ∈ {1,2,4}; see
Figure 2. Note that the bounds of Theorems 1(2), 1(3), and 1(4) have been obtained
by proving that all the graphs of the considered classes admit a homomorphism to
the Paley tournamentsQR7, QR11, andQR19, respectively.

Let T16 = Tr(QR7) be the Tromp graph on sixteen vertices obtained fromQR7. In
the remainder of this paper, the vertex set ofT16 is {0,1, . . . ,6, ∞,0′,1′, . . . ,6′,∞′}
where{0,1, . . . ,6} is the vertex set of the first copy ofQR7 and{0′,1′, . . . ,6′} is the
vertex set of the second copy ofQR7; thus, for everyu∈ {0,1, . . . ,6,∞}, we have
t(u) = u′. In addition, for everyu ∈ V(T16), we have by construction|N+

T16(u)| =
|N−

T16
(u)| = 7. The graphT16 has remarkable symmetry and some useful properties
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given below.

Proposition 6 [8] For any QRp, the graph Tr(QRp) is such that:

∀u∈V(Tr(QRp)) : N+(u) ∼= QRp and N−(u) ∼= QRp

Proposition 7 [8] For any QRp, if {a1,a2,a3} and {b1,b2,b3} span triangles t1
and t2 respectively in Tr(QRp) and the mapψ taking ai to bi (1 ≤ i ≤ 3) is an
isomorphism t1 → t2, thenψ can be extended to an automorphism of Tr(QRp).

It is then clear thatTr(QRp) is vertex-transitive and arc-transitive.

Proposition 8 Let G be an oriented graph such that G→ T16. Then, for any vertex
v of G, the graph G′ obtained from G by reversing the orientation of every arc
incident to v admits a homomorphism to T16.

Proof. Let ϕ be aT16-coloring of G. For everyw ∈ V(T16), we haveN+
T16

(w) =

N−
T16

(t(w)) andN−
T16

(w) = N+
T16

(t(w)). Therefore, the mappingϕ′ : V(G′) →V(T16)

defined byϕ′(u) = ϕ(u) for all u ∈ V(G′) \ {v} andϕ′(v) = t(ϕ(v)) is clearly a
T16-coloring ofG′. 2

An orientation n-vectoris a sequenceα = (α1,α2, . . . ,αn) ∈ {0,1}n of n elements.
Let S= (v1,v2, . . . ,vn) be a sequence ofn (not necessarily distinct) vertices ofT16; a
vertexu is said to be anα-successor of Sif for any i, 1≤ i ≤ n, we have−→uvi ∈A(T16)
wheneverαi = 1 and−→viu∈ A(T16) otherwise. For instance, the vertex 3′ of T16 is a

(1,1,0,1,0,0)-successor of(1,2,6′,1,∞,2′) since the arcs
−→
3′1,

−→
3′2,

−→
6′3′,

−→
∞3′, and

−→
2′3′ belong toA(T16).

If, for a sequenceS= (v1,v2, . . . ,vn) of n vertices ofT16 and an orientationn-
vectorα = (α1,α2, . . . ,αn), there existi 6= j such thatvi = v j andαi 6= α j , then
there does not exist anyα-successor ofS; indeed,T16 does not contain opposite
arcs. In addition, if there existi 6= j such thatvi = t(v j) andαi = α j , then there
does not exist anyα-successor ofS; indeed, for any pair of verticesx andy of T16
with x= t(y), we haveN+

T16
(x)∩N+

T16
(y) = /0 andN−

T16
(x)∩N−

T16
(y) = /0. A sequence

S= (v1,v2, . . . ,vn) of n vertices ofT16 is said to becompatiblewith an orientation
n-vectorα = (α1,α2, . . . ,αn) if and only if for anyi 6= j, we haveαi 6= α j whenever
vi = t(v j), andαi = α j whenevervi = v j . Note that if then vertices ofSinduce ann-
clique subgraph ofT16 (i.e.v1,v2, . . . ,vn are pairwise distinct and induce a complete
graph), thenS is compatible with any orientationn-vector since a vertexu and its
twin t(u) cannot belong together to the same clique.

In the remainder, we say thatT16 hasProperty Pn,k if, for every sequenceS of n
distinct vertices ofT16 and any orientationn-vectorα which is compatible withS,
there existk α-successors ofS. This set ofk α-successors is denoted by Succα(S).
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Proposition 9 The graph T16 has Properties P1,7, P2,3, and P3,1.

Proof.

(1) PropertyP1,7 is trivial since every vertex ofT16 has seven successors and seven
predecessors.

(2) To prove thatT16 has PropertyP2,3, we have to show that, for every sequence
S= (u,v) and any compatible orientation 2-vectorα, there exist at least three
α-successors ofS. We have two cases to consider: the caseuv∈A(T16) and the
caseu = t(v). SinceT16 is arc-transitive, we will consider w.l.o.g.S= (0,1)
andS= (∞,∞′).

A case study shows that the threeα-successors ofS= (0,1) are 2,6′, and∞
(resp. 2′,6, and∞′ ; 3′,4, and 5′ ; 3,4′, and 5) ifα = (0,0) (resp.(1,1) ; (0,1)
; (1,0)).

Consider now the caseS= (∞,∞′). By definition, the only two compatible
orientation 2-vectors withSare(0,1) and(1,0). It is then clear by construction
of T16 that we have sevenα-successors ofS in each case.

(3) PropertyP3,1 was proved by Marshall [8].

2

Proposition 10 Let u, v1, and v2 be three distinct vertices of T16, and Si = (u,vi)
for every1 ≤ i ≤ 2. Let α be an orientation2-vector compatible with S1 and S2.
ThenSuccα(S1) 6= Succα(S2).

Proof. Suppose to the contrary that there exist suchS1 and S2 with
Succα(S1) = Succα(S2).

By Proposition 8, we may assume w.l.o.g. thatα2 = 0. If v1 = t(v2), we clearly
have Succα(S1) 6= Succα(S2) sinceN+

T16
(v1)∩N+

T16
(v2) = /0. Thus, we may assume

w.l.o.g. thatv1v2 ∈ A(T16), and sinceT16 is arc-transitive, we assume w.l.o.g. that
v1 = 0 andv2 = 1.

Therefore, the vertices of Succα(S1) = Succα(S2) must be the common successors
of 0 and 1. We haveN+

T16
(0)∩N+

T16
(1) = {2,6′,∞}. If α1 = 0, then a case study

allows us to check thatT16 has no vertexu distinct from 0 and 1 having 2, 6′,
and ∞ as successors. Therefore, we should haveα1 = 1 and then we can check
that u should necessarily be either 0′ or 1′. However, in each case, we will have
|Succα(Si)| = 7 and|Succα(S3−i)| = 3 for somei ∈ [1,2]. 2

Proposition 11 Let u, v1, v2, and v3 be four distinct vertices of T16, and Si = (u,vi)
for every1 ≤ i ≤ 3. Let α be an orientation2-vector compatible with S1, S2, and
S3. Then, for any pair of vertices W= {x,y} of T16, there exists j∈ [1,3] such that
|Succα(Sj)\W| ≥ 2.
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Proof. Remark first that if there existsj ∈ [1,3] such thatuvj /∈ A(T16), then we
necessarily haveu = t(v j) and thusα1 6= α2 sinceα is compatible withSj . In this
case, we have|Succα(Sj)| = 7 and it is clear that|Succα(Sj) \W| ≥ 2. Therefore,
uv1,uv2,uv3 ∈ A(T16), and thus, for everyi ∈ [1,3], |Succα(Si)| = 3.

Suppose that the proposition is false, that is there existu,v1,v2,v3 and a pair of
verticesW = {x,y} such thatW ⊂

T3
i=1Succα(Si).

Remark that, for any sequenceS of sizen and any orientationn-vectorβ, the set
Succβ(S) cannot contain a vertex together with its twin. Therefore,x 6= t(y) and
sinceT16 is arc-transitive, we may assume w.l.o.g. thatW = {0,1}.

Therefore,u (resp.v1, v2, andv3) should belong toN+
T16

(0)∩N+
T16

(1) = {2,6′,∞} if
α1 = 0 (resp.α2 = 0) or toN−

T16
(0)∩N−

T16
(1) = {2′,6,∞′} if α1 = 1 (resp.α2 = 1).

This implies that, ifα1 = α2 (resp.α1 6= α2), we would haveu= v j (resp.u= t(v j))
for somej ∈ [1,3], that contradicts the fact thatuv1,uv2,uv3 ∈ A(T16). 2

3 Proof of Theorem 4

In this section, we prove Theorem 4, that is that every graphG with mad(G) < 10
3

admits a homomorphism toT16.

Let us define the partial order�. Let n3(G) be the number of≥3-vertices inG.
For any two graphsG1 andG2, we haveG1 ≺ G2 if and only if at least one of the
following conditions hold:

• G1 is a proper subgraph ofG2;
• n3(G1) < n3(G2).

Note that this partial order is well-defined, since ifG1 is a proper subgraph ofG2,
thenn3(G1) ≤ n3(G2). So� is a partial linear extension of the subgraph poset.

Let H be a hypothetical minimal counterexample to Theorem 4 according to≺.
We first prove thatH does not contain a set of fifteen configurations. Then, using
a discharging procedure, we show that every graph which contains none of these
fifteen configurations has a maximum average degree greater than 10

3 ; this implies
thatH has mad(H) ≥ 10

3 , a contradiction.

3.1 Structural properties of H

A weak5-vertex is a 5-vertex adjacent to three 2-vertices. Aweak4-vertex is a
4-vertex adjacent to one 2-vertex.
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Lemma 12 The graph H does not contain the following configurations:

(C1) a≤1-vertex;
(C2) a k-vertex adjacent to(k−2) 2-vertices for3≤ k≤ 4;
(C3) a k-vertex adjacent to(k−1) 2-vertices for2≤ k≤ 7;
(C4) a k-vertex adjacent to k2-vertices for1≤ k≤ 15;
(C5) a3-vertex;
(C6) a triangle incident to a2-vertex;
(C7) two vertices sharing three neighbors whose two of them are 2-vertices;
(C8) a k-vertex adjacent to(k−2) 2-vertices and one weak5-vertex for5≤ k≤ 6;
(C9) a4-vertex adjacent to three weak5-vertices;

(C10) a weak5-vertex adjacent to two weak4-vertices;
(C11) a5-vertex adjacent to two2-vertices and two weak5-vertices;
(C12) a5-vertex adjacent to one2-vertex and four weak5-vertices;
(C13) a6-vertex adjacent to three2-vertices and three weak5-vertices;
(C14) a7-vertex adjacent to five2-vertices and two weak5-vertices;
(C15) an8-vertex adjacent to seven2-vertices and one weak5-vertex.

The drawing conventions for aconfiguration Ccontained in a graphG are the fol-
lowing. If u andv are two vertices ofC, then they are adjacent inG if and only if
they are adjacent inC. Moreover, the neighbors of awhitevertex inG are exactly
its neighbors inC, whereas ablackvertex may have neighbors outside ofC. Two or
more black vertices inC may coincide in a single vertex inG, provided they do not
share a white neighbor. Finally, an edge will represent an arc with any of its two
possible orientations.

Let G be an oriented graph,v be ak-vertex withN(v) = {v1,v2, . . . ,vk} andα be
an orientationk-vector such thatαi = 0 whenever−→viv∈ A(G) andαi = 1 otherwise.
Let ϕ be aT16-coloring ofG\ {v} andS= (ϕ(v1),ϕ(v2), . . . ,ϕ(vk)). Recall that a
necessary condition to haveα-successors ofS is thatα must be compatible with
S, that is for any pair of verticesvi andv j , ϕ(vi) 6= ϕ(v j) wheneverαi 6= α j and
ϕ(vi) 6= t(ϕ(v j)) wheneverαi = α j . Hence, every vertexv j forbids one color for
each vertexvi , i ∈ [1,k], i 6= j. We definef ϕ

vi (v j) to be the forbidden color forvi

by ϕ(v j) (i.e. f ϕ
vi (v j) = ϕ(v j) wheneverαi 6= α j and f ϕ

vi (v j) = t(ϕ(v j)) whenever
αi = α j ). Therefore,α is compatible withS if and only if we haveϕ(vi) 6= f ϕ

vi (v j)
for every pairi, j, 1≤ i < j ≤ k. Note that ifϕ(vi) 6= f ϕ

vi (v j), then we necessarily
haveϕ(v j) 6= f ϕ

v j (vi).

For each configuration, we suppose thatH contains it and we consider a reduction
H ′ such thatH ′ ≺ H and mad(H ′) < 10

3 ; therefore, by minimality ofH, H ′ admits a
T16-coloringϕ. We will then show that we can chooseϕ so that it can be extended
to H by Proposition 9, contradicting the fact thatH is counterexample.

In the remainder, ifH contains a configuration, thenH∗ will denote the graph ob-
tained fromH be removing all the white vertices of this configuration.
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Fig. 3. ConfigurationsC2-C7.

v

u1
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(a) The graphG.

v1v3

v2

u2
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u3

(b) The graphR(G).

Fig. 4. Configurations of Lemma 13.

Proof of Configuration (C1). Trivial. 2

Proof of Configuration (C2). Suppose thatH contains the configuration depicted
in Figure 3(a) and letϕ be aT16-coloring ofH ′ = H \{v1, . . . ,vn}. Then, we clearly
haveϕ(u′1) 6= f ϕ

u′1
(u′2) sincev is colored inH ′. Therefore, by PropertyP2,3, we can

chooseϕ so thatϕ(v) /∈ { f ϕ
v (v′1), . . . , f ϕ

v (v′n)}. 2

Proof of Configuration (C3). Suppose thatH contains the configuration depicted
in Figure 3(b) and letϕ be aT16-coloring ofH∗. By PropertyP1,7, we can choose
ϕ so thatϕ(v) /∈ { f ϕ

v (v′1), . . . , f ϕ
v (v′n)}. 2

Proof of Configuration (C4). Suppose thatH contains the configuration depicted
in Figure 3(c) and letϕ be aT16-coloring ofH∗. We can clearly chooseϕ so that
ϕ(v) /∈ { f ϕ

v (v′1), . . . , f ϕ
v (v′n)}. 2

Up to now, the reductionsH ′ have been obtained fromH by removing some vertices
and/or arcs; therefore, we clearly had mad(H ′) ≤ mad(H). To prove that Config-
uration(C5) is forbidden inH, we considered a reductionH ′ obtained fromH by
removing one 3-vertex and by adding new vertices and arcs. The following lemma
shows that this reductionH ′ has nevertheless a maximum average degree strictly
less that10

3 .
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Let G be a graph containing a 3-vertexv adjacent to three verticesu1, u2, andu3;
see Figure 4(a). We denote byR(G) the graph obtained fromG\ {v} by adding
2-paths joining respectivelyu1 andu2, u2 andu3, u3 andu1; see Figure 4(b).

Lemma 13 If mad(G) < 10
3 , thenmad(R(G)) < 10

3 .

Proof. Let G′ be a counterexample, i.e. mad(G′) < 10
3 and mad(R(G′)) ≥ 10

3 .

Let D ⊆ R(G′) be a minimal subgraph ofR(G′) (in term of |V(D)|+ |E(D)|) such
that ad(D) = mad(R(G′)) (by definition of the maximum average degree,D exists).
LetW = V(D)\{u1,u2,u3,v1,v2,v3} andF = E(D)\{u1v1,v1u2, u2v2,v2u3,u3v3,
v3u1}. Hence,W (resp.F) is the set of vertices (resp. edges) ofD belonging toG′

andR(G′) which are not drawn on Figure 4(b).

It is obvious thatD is not a subgraph ofG′ since otherwise we would have
mad(G′) ≥ 10

3 . Moreover, suppose thatD contains a≤1-vertexx and let D′ =
D \ {x}; we then have ad(D′) > ad(D) since ad(D) > 2, that contradicts the mini-
mality of D.

Therefore, sinceD 6⊆ G′ and the minimum degree ofD is 2, we have to consider
w.l.o.g. two different cases:

(1) V(D) = W ∪ {u1,v1,u2,v2,u3,v3} and E(D) = F ∪ {u1v1,v1u2,u2v2, v2u3,
u3v3,v3u1}. In this case, letD′ ⊆ G′ such thatV(D′) = W∪{u1,u2,u3,v} and
E(D′) = F ∪{u1v,u2v,u3v}. Therefore,|V(D′)| = |V(D)| −2 and|E(D′)| =
|E(D)| − 3. Since ad(D) ≥ 10

3 , we have 6|E(D)| ≥ 10|V(D)| and thus
6(|E(D)|−3)≥ 10(|V(D)|−2). Hence 6|E(D′)| ≥ 10|V(D′)|, that proves that
ad(D′) ≥ 10

3 and thus mad(G′) ≥ 10
3 , a contradiction.

(2) V(D) = W∪{u1,v1,u2,v2,u3} andE(D) = F ∪{u1v1,v1u2,u2v2, v2u3}. The
same kind of arguments lead us to a similar contradiction.

Therefore, the graphG′ does not exist. 2

Proof of Configuration (C5). Suppose thatH contains the configuration depicted
in Figure 3(d). Since Configurations(C1) and(C2) are forbidden,u1, u2, andu3

are≥3-vertices. LetH ′ be the graph obtained fromH∗ by adding, for every 1≤
i < j ≤ 3, a 2-path joiningui to u j is such a way that its orientation is the same
orientation of the path[ui ,v,u j ] in H. We haveH ′ ≺ H sincen3(H ′) = n3(H)−1
and mad(H ′) < 10

3 by Lemma 13. AnyT16-coloringϕ of H ′ induces a coloring of
H∗ such thatϕ(ui) 6= f ϕ

ui (u j) for any i, j, 1≤ i < j ≤ 3. 2
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Proof of Configuration (C6). Suppose thatH contains the configuration depicted
in Figure 3(e). AnyT16-coloringϕ of H∗ is such thatϕ(u) 6= f ϕ

u (v) sinceuv∈A(H).
2

Proof of Configuration (C7). Suppose thatH contains the configuration depicted
in Figure 3(f). LetH ′ be the graph obtained fromH∗ by adding an alternating (resp.
directed) 2-path joiningu andw if the 2-path[u,v,w] is directed (resp. alternating).
We haveH ′ ≺ H and at least two 2-paths joinu andw in H ′: the first one is alter-
nating and the other one is directed. Therefore, anyT16-coloringϕ of H ′ induces a
coloring ofH∗ such thatϕ(u) 6= ϕ(w) andϕ(u) 6= t(ϕ(w)). 2

Some sub-configurations appear several times in Configurations(C8) to (C15). To
shorten the proofs, we will often use the five following lemmas.

Lemma 14 Let G be an oriented graph containing a weak5-vertex u (see Figure 5)
and letϕ be a T16-coloring of G∗. Then, for a fixed coloring of u′1, u′2, u′3, and v1, at
most two colors are forbidden for v2.

Proof. The colorϕ(v1) together with each of the fifteen colors forv2 distinct from
f1 = f ϕ

v2(v1) give three possible colors foru by PropertyP2,3. Proposition 10 insures
that at most one of these fifteen colors, sayf2, gives the three colorsf ϕ

u (u′1), f ϕ
u (u′2),

and f ϕ
u (u′3) for u. Thus, for anyϕ(v2) /∈ { f1, f2}, we have three available colors for

u whose one of them is distinct fromf ϕ
u (u′1), f ϕ

u (u′2), and f ϕ
u (u′3). 2

Lemma 15 Let G be an oriented graph containing a weak5-vertex (see Figure 6)
and letϕ be a T16-coloring of G∗. Then, for any V1 ⊂V(T16) and V2 ⊂V(T16) such
that |V1| = |V2| = 2, ϕ can be extended to G so that the colors of u′

1, u′2, and u′3 are
fixed andϕ(vi) ∈Vi.

Proof. Let W = { f ϕ
u (u′1), f ϕ

u (u′2), f ϕ
u (u′3)}. Remark first that we must haveϕ(u) /∈

W.

Let V1 = {c1,c2} andV2 = {d1,d2} and letα = (α1,α2) be an orientation 2-vector
such that, for everyi ∈ [1,2], αi = 0 whenever−→viu∈ A(G), andαi = 1 otherwise.

Suppose first thatV1 = V2 (more precisely,ci = di for everyi ∈ [1,2]). If α1 = α2,
then we setϕ(v1) = ϕ(v2), and we get|Succα(ϕ(v1),ϕ(v2))| = 7. Thus,ϕ can be

11



z

u1

w

w
′

w1

w′

1

u v

v
′

1

v
′

2

x

y
u
′

v2

v1

v
′

u
′

1

u
′

2

u2

Fig. 7. Configuration of Lemma 16.

u
′

2

v

x

v
′

1

v
′

2

u2

v1

u
′

v
′

u1

v2

u
′

1

w

u

Fig. 8. Configuration of Lemma 17.

extended toG. If α1 6= α2, then letS1 = (c1,d2) andS2 = (c2,d1). The sequences
S1 andS2 are compatible withα, and by PropertyP2,3 we have|Succα(Si)| ≥ 3
for every i ∈ [1,2]. Moreover, a case study shows that Succα(S1) = t(Succα(S2)).
Therefore, there existsi ∈ [1,2] such that Succα(Si) 6=W, and soϕ can be extended
to G.

Suppose now thatV1 6= V2. If there existsi ∈ [1,2] such that the arcscid1 andcid2

exist in T16, say i = 1, thenc1 6= d1 6= d2 6= c1 and therefore the sequencesS1 =
(c1,d1) andS2 = (c1,d2) are compatible withα and Proposition 10 insures that
there existi ∈ [1,2] such that Succα(Si) 6= W. If there existsi ∈ [1,2] such that
the arcscid1 andcid2 do not exist inT16, sayi = 1, then it means thatc1 = d1 and
c1 = t(d2). This leads us to the previous case, that is the two arcsc2d1 andc2d2 exist
in T16 andc2 6= d1 6= d2 6= c2. The last case to consider is the one wherec1d1 and
c2d2 exist inT16, andc1d2 andc2d1 do not exist inT16. We can check that we then
have either(1) c1 = d2 andc2 = t(d1), or (2) c1 = t(d2) andc2 = t(d1). If α1 6= α2,
then for both Cases(1) and (2), the sequenceS= (c2,d1) is compatible withα
and we clearly have Succα(S) 6= W since|Succα(S)| = 7. Finally, if α1 = α2, then
for Case(1), the sequenceS= (c1,d2) is compatible withα and we clearly have
Succα(S) 6= W since|Succα(S)|= 7; for Case(2), the sequencesS1 = (c1,d1) and
S2 = (c2,d2) are compatible withα, and sinceN+

T16
(c1)∩N+

T16
(d2) = /0, we clearly

have Succα(S1) 6= Succα(S2) and thus there existsi ∈ [1,2] such that Succα(Si) 6=
W. 2

Lemma 16 Let G be an oriented graph containing a≥3-vertex x adjacent to three
weak5-vertices u, v, and w such that u and w (resp. v and w) share a2-neighbor
(see Figure 7). Letϕ be a T16-coloring of G∗. Then, for a fixed coloring of u′, u′1,
u′2, v′, v′1, v′2, w′ and w′1, at most five colors are forbidden for x.

Proof. To prove this lemma, we will show that for anyW⊂V(T16) such that|W|=
6, ϕ can be extended toG so that the colors ofu′, u′1, u′2, v′, v′1, v′2 andw′

1 are fixed
andϕ(x) ∈W.

Let W′ = { f ϕ
x (u′), f ϕ

x (v′), f ϕ
x (w′)}. Remark first that we must haveϕ(x) /∈W′. Let

W′′ = W\W′ and consider the worst case|W′′|= 3. By Proposition 11, there exists
a colorc ∈ W′′ such thatϕ(x) = c andϕ(u′) allow three colors foru by Property
P2,3 whose two of them are distinct fromf ϕ

u (u′1) and f ϕ
u (u′2). We then setϕ(x) = c.
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By PropertyP2,3, ϕ(v′) andϕ(x) allow three colors forv: we can then setϕ(v) /∈
{ f ϕ

v (v′1), f ϕ
v (v′2)}. Then, by PropertyP2,3, ϕ(w′) andϕ(x) allow three colors forw:

we can then setϕ(w) /∈ { f ϕ
w(w′

1), f ϕ
w(v)}. Finally, recall thatϕ(u′) andϕ(x) allow

three colors forv whose two of them are distinct fromf ϕ
u (u′1) and f ϕ

u (u′2): therefore,
we can then setϕ(u) /∈ { f ϕ

u (u′1), f ϕ
u (u′2), f ϕ

u (w)}. 2

Lemma 17 Let G be an oriented graph containing a≥3-vertex adjacent to two
weak5-vertices u and v sharing a2-neighbor (see Figure 8) and letϕ be a T16-
coloring of G∗. Then, for a fixed coloring of u′1, u′2, v′1, v′2, u′ and v′, at most four
colors are forbidden for x.

The proof of this lemma is omitted.

Lemma 18 Let G be an oriented graph containing a≥3-vertex x adjacent to three
weak5-vertices u, v, and w such that u and w (resp. v and w; u and w) share
a 2-neighbor (see Figure 9). Letϕ be a T16-coloring of G∗ and let W⊂ V(T16)
containing the seven successors of any vertex of T16. Then, for a fixed coloring of
u′, u′1, v′, v′1, w′, and w′1, ϕ can be extended to G such thatϕ(x) ∈W.

Proof. Let G′ = G\ {t,y,z}. We first show that if we can extendϕ to G′ so that
we have three choices of colors for one of the verticesu, v, or w, sayu, and two
choices of colors for one the verticesv or w, sayv, then there exists aT16-coloring
of G. LetSu andSv be any two sets of vertices ofT16 such that|Su|= 3 and|Sv|= 2.
If, for any colorscu ∈ Su andcv ∈ Sv, there exists aT16-coloringϕ′ of G′ such that

ϕ′(u) = cu andϕ′(v) = cv, then we can chooseϕ(v) ∈ Sv \ { f ϕ′

v (w)} andϕ(u) ∈

Su\{ f ϕ′

u (v), f ϕ′

u (w)}; this coloring can clearly be extended toG by Proposition 9.

We may suppose w.l.o.g. that the seven vertices ofW are the seven successors of
∞. Let W′ = { f ϕ

x (u′), f ϕ
x (v′), f ϕ

x (u′)}. Remark first that we must haveϕ(x) /∈ W′.
Let W′′ = W \W′ and consider the worst case|W′′| = 4. By PropertyP2,3, for each
ϕ(x) ∈W′′, we have at least two colors distinct fromf ϕ

u (u′1) (resp. f ϕ
v (v′1), f ϕ

w(w′
1))

for u (respv, w) in G′.

Actually, we can show that at least one colorϕ(x) ∈ W′′ allows three colors for
eitheru, v, or w, that is either three colors foru distinct from f ϕ

u (u′1), three colors

13
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Fig. 10. Configuration(C8): ak-vertex adjacent to(k−2) 2-vertices and one weak 5-vertex
for 5≤ k≤ 6.

for v distinct from f ϕ
v (v′1), or three colors forw distinct from f ϕ

w(w′
1). A case study

shows that if one of the following condition holds:

(1) ϕ(u′) = ∞,
(2) ϕ(u′) = ∞′,
(3) ϕ(u′) is a predecessor of∞ and the 2-path[u′,u,x] is alternating,
(4) ϕ(u′) is a successor of∞ and the 2-path[u′,u,x] is directed,

then, for any f ϕ
u (u′1), there exists a colorϕ(x) ∈ W′′ such that the three colors

for u given by PropertyP2,3 are distinct from f ϕ
u (u′1). The coloringϕ can then

be extended toG by the above remark. By symmetry, these arguments apply forv′

andw′.

Otherwise, suppose thatϕ(u′) = s is a successor of∞ and the 2-path[u′,u,x] is
alternating. Ifs∈ W′′, then we can setϕ(x) = s and we have seven available col-
ors for u, that completes the proof. Ifs /∈ W′′, then this implies thats∈ W′ =
{ f ϕ

x (u′), f ϕ
x (v′), f ϕ

x (w′)} sinces∈W by definition ofW. Therefore, we necessarily
have w.l.o.g. eitherϕ(v′) = s and[v′,v,x] is directed, orϕ(v′) = t(s) and[v′,v,x] is
alternating, the only two cases which forbid the colors for x. However, we have
already shown that for these two cases,ϕ can be extended to aT16-coloring of G
(see above conditions (3) and (4)).2

Proof of Configuration (C8). Suppose thatH contains the configuration depicted
in Figure 10 and letϕ be aT16-coloring ofH∗. By Lemma 14, the weak 5-vertexu
forbids two colors forv, say f1 and f2. By PropertyP1,7, we can chooseϕ such that
ϕ(v) /∈ { f1, f2, f ϕ

v (v′1), . . . , f ϕ
v (v′n)}. 2

Recall that the case where two black vertices coincide in a configuration (provided
they do not share a white neighbor) is already taken into account in the proofs.
However, since we have no restriction on the girth of the considered graphs, the
cases where black vertices coincide with white vertices have to be considered. To
prove that Configurations(C8) to (C15) are forbidden, we first begin by the fol-
lowing remarks:
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Fig. 11. Configuration(C9): a 4-vertex adjacent to three weak 5-vertices.

Remark 19

(1) A black vertex cannot coincide with a white vertex at distance at most two
since otherwise it would imply either loops or multiple edges.

(2) A black vertex adjacent to a2-vertex cannot coincide with a white vertex at
distance three, since otherwise it would imply Configuration (C6).

(3) A black vertex adjacent to a2-vertex cannot coincide with a white2-vertex
since otherwise it would imply Configuration(C3).

(4) Let u and v be two white weak5-vertices sharing a≥3-neighbor and let
u1,u2,u3 be three black≥3-vertices, each of them sharing a2-neighbor with
u. Then, two ui ’s cannot coincide together with v, since otherwise it would
imply Configuration(C7).

(5) A black vertex adjacent to a weak5-vertex cannot coincide with a white weak
5-vertex since otherwise it would imply Configuration(C8).

Proof of Configuration (C9). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 11 are forbidden inH to show thatH does not contain
a 4-vertex adjacent to three weak 5-vertices.

(a) Suppose thatH contains the configuration depicted in Figure 11(a) and letϕ
be aT16-coloring ofH∗. By Lemma 14, each of the weak 5-verticesu, v, and
w forbids two colors forx, say f1, f2, . . . , f6. By PropertyP1,7, we can choose
ϕ such thatϕ(x) /∈ { f1, f2, . . . , f6}.

(b) Suppose thatH contains the configuration depicted in Figure 11(b) and letϕ be
aT16-coloring ofH∗. By Lemma 14, the weak 5-vertexv forbids two colors for
x, say f1, f2, and by Lemma 17, the verticesuandw forbid four colors forx, say
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Fig. 12. Configuration(C10): a weak 5-vertex adjacent to two weak 4-vertices.

f3, . . . , f6. By PropertyP1,7, we can chooseϕ such thatϕ(x) /∈ { f1, f2, . . . , f6}.
(c) Suppose thatH contains the configuration depicted in Figure 11(c) and letϕ

be aT16-coloring of H∗. By Lemma 16, the verticesu, v and w forbid five
colors forx, say f1, f2, . . . , f5. By PropertyP1,7, we can chooseϕ such that
ϕ(x) /∈ { f1, f2, . . . , f5}.

(d) Suppose thatH contains the configuration depicted in Figure 11(d) and let
ϕ be aT16-coloring of H∗. By Proposition 8, we may assume w.l.o.g. that
−→
x′x∈ H. By PropertyP1,7, the seven color ofN+

T16
(ϕ(x′)) are allowed forx is

H \{u,u1,v,v1,w,w1, t,y,z}. Lemma 18 allows us to conclude.

2

Proof of Configuration (C10). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 12 are forbidden inH to show thatH does not contain
a weak 5-vertex adjacent to two weak 4-vertices.

(a) Suppose thatH contains the configuration depicted in Figure 12(a) and let
H ′ = H \{u,u1,u2,u3,v1,w1}. Let ϕ be aT16-coloring ofH ′. We clearly have
ϕ(v′) 6= f ϕ

v′ (v
′′) (resp.ϕ(w′) 6= f ϕ

w′(w′′)) sincev (resp.w) is colored inH ′. Prop-
ertyP2,3 insures that we have two available colors forv (resp.w) distinct from
f ϕ
v (v′1) (resp. f ϕ

w(w′
1)). Lemma 15 allows us to conclude.

(b) Suppose thatH contains the configuration depicted in Figure 12(b) and letϕ
be aT16-coloring of H∗. Let W = { f ϕ

u (u′1), f ϕ
u (u′2), f ϕ

u (u′3), f ϕ
u (v′), f ϕ

u (w′)}.
Remark that we must setϕ(u) /∈W. Therefore, the eleven colors ofV(T16)\W
are available foru in H \{v1,w1,vw}. W.l.o.g. we may assume that−→uw∈ H by
Proposition 8. We choose a colorcu ∈V(T16)\W which is not a predecessor of
f ϕ
w(w′

1) and we setϕ(u) = cu. By PropertyP2,3, ϕ(u) together withϕ(v′) allow
at least one colorcv for v distinct from f ϕ

v (v′1) and f ϕ
v (w′); we setϕ(v) = cv. By

PropertyP3,1, we have one colorcw for w and sinceϕ(u) is not a predecessor
of f ϕ

w(w′
1), we necessarily havecw 6= f ϕ

w(w′
1). We thus setϕ(w) = cw.

2
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Fig. 13. Configuration(C11): a 5-vertex adjacent to two 2-vertices and two weak 5-vertices.
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Fig. 14. Configuration(C12): a 5-vertex adjacent to one 2-vertex and four weak 5-vertices.

Proof of Configuration (C11). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 13 are forbidden inH to show thatH does not contain
a 5-vertex adjacent two 2-vertices and two weak 5-vertices.

Suppose thatH contains the configuration depicted in Figure 13(a) (resp. Fig-
ure 13(b)) and letϕ be aT16-coloring of H∗. The weak 5-verticesu andv forbid
four colors forx, say f1, f2, f3, f4, by Proposition 14 (resp. Lemma 17). By Property
P1,7, we can chooseϕ such thatϕ(x) /∈ { f1, f2, f3, f4, f ϕ

x (x′1), f ϕ
x (x′2)}. 2

Proof of Configuration (C12). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 14 are forbidden inH to show thatH does not contain
a 5-vertex adjacent to one 2-vertices and four weak 5-vertices.
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Fig. 15. Configuration(C13): a 6-vertex adjacent to three 2-vertices and three weak
5-vertices.

(a) Suppose thatH contains the configuration depicted in Figure 14(a) and letϕ
be aT16-coloring ofH∗. By Lemma 16, the weak 5-verticesu, v, andw forbid
five colors forx, say f1, . . . , f5. By PropertyP1,7, we can chooseϕ such that
ϕ(x) /∈ { f1, . . . , f5, f ϕ

x (x′1)}.
(b)(c)(d) Suppose thatH contains one of the configurations depicted in

Figures 14(b), 14(c), and 14(d) and letϕ be aT16-coloring of H∗. By Lem-
mas 14 and 17, the weak 5-verticesu, v, w, andx forbid eight colors fory, say
f1, . . . , f8. We clearly can chooseϕ such thatϕ(y) /∈ { f1, . . . , f8, f ϕ

y (y′1)}.

2

Proof of Configuration (C13). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 15 are forbidden inH to show thatH does not contain
a 6-vertex adjacent to three 2-vertices and three weak 5-vertices.

(a)(b) Suppose thatH contains one of the configurations depicted in Figures 15(a)
and 15(b) and letϕ be aT16-coloring ofH∗. The weak 5-verticesv, w, andx
forbid six colors foru, say f1, . . . , f6, by Lemmas 14 and 17. We clearly can
chooseϕ such thatϕ(u) /∈ { f1, . . . , f6, f ϕ

u (u′1), f ϕ
u (u′2), f ϕ

u (u′3)}.
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Fig. 16. Configuration(C14): a 7-vertices adjacent to five 2-vertices and two weak
5-vertices.
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Fig. 17. Configuration(C15): an 8-vertex adjacent to seven 2-vertices and one weak
5-vertex.

(c) Suppose thatH contains the configuration depicted in Figure 15(c) and letϕ
be aT16-coloring ofH∗. The weak 5-verticesv, w, andx forbid five colors for
u, say f1, . . . , f5. We clearly can chooseϕ such thatϕ(u) /∈ { f1, . . . , f5, f ϕ

u (u′1),
f ϕ
u (u′2), f ϕ

u (u′3)}.
(d) Suppose thatH contains the configuration depicted in Figure 15(d) and letϕ

be aT16-coloring ofH∗. LetW = { f ϕ
u (u′1), f ϕ

u (u′2), f ϕ
u (u′3)}. Remark first that

we must setϕ(u) /∈ W. Among the thirteen vertices ofV(T16) \W, we can
check that there exist seven vertices which are the seven successors of some
vertexv of T16. Lemma 18 allows us to conclude.

2

Proof of Configuration (C14). By Remark 19, we just have to prove that the con-
figurations depicted in Figure 16 are forbidden inH to show thatH does not contain
a 7-vertex adjacent to five 2-vertices and two weak 5-vertices.

Suppose thatH contains one of the configurations depicted in Figures 16(a)
and 16(b) and letϕ be aT16-coloring of H∗. The weak 5-verticesv and w for-
bid four colors foru, say f1, . . . , f4, by Lemmas 14 and 17. We clearly can choose
ϕ such thatϕ(u) /∈ { f1, . . . , f4, f ϕ

u (u′1), f ϕ
u (u′2), . . . , f ϕ

u (u′5)}. 2
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Proof of Configuration (C15). Suppose thatH contains the configurations de-
picted in Figure 17 and letϕ be aT16-coloring of H∗. The weak 5-vertexu for-
bids two colors forv, say f1, f2, by Lemma 14. We clearly can chooseϕ such that
ϕ(v) /∈ { f1, f2, f ϕ

v (v′1), f ϕ
v (v′2), . . . , f ϕ

v (v′7)}. 2

3.2 Discharging procedure

To complete the proof of Theorem 4, we use a discharging procedure. We define the
weight functionω by ω(v) = 3d(v)−10 for everyv∈V(H). Since mad(H) < 10

3 ,
we have:

∑
v∈V(H)

ω(v) = ∑
v∈V(H)

(3d(v)−10) < 0.

In what follows, we will define discharging rules (R1), (R2) and (R3) and redis-
tribute weights accordingly. Once the discharging is finished, a new weight func-
tion ω∗ is produced. However, the total sum of weights is fixed by the discharging
rules. Nevertheless, we can show thatω∗(v) ≥ 0 for everyv∈V(H). This leads to
the following obvious contradiction:

0≤ ∑
v∈V(H)

ω∗(v) = ∑
v∈V(H)

ω(v) < 0.

Therefore, no such counterexampleH exists.

The discharging rules are defined as follows:

(R1) Each weak 4-vertex gives 2 to its 2-neighbor.
(R2) Each non weak 4-vertex gives 1 to their weak 5-neighbors.
(R3) Each≥5-vertex gives 2 to their 2-neighbors and 1 to their weak 5-neighbors.

Let v be ak-vertex ofH. Note thatk > 1 by (C1) andk 6= 3 by (C5).

• If k = 2, thenω(v) = −4. Since every 2-vertices ofH has two≥4-neighbors
by (C2) and (C3), v receives 2 from each neighbor by (R1) and (R3). Hence
ω∗(v) = 0.

• If k = 4, thenω(v) = 2. By (C2), a 4-vertex has at most one 2-neighbor. Ifv has
one 2-neighbor (i.e.v is weak), then it gives 2 by (R1). Ifv has no 2-neighbor,
then it has at most two weak 5-neighbors by(C9). Therefore,v gives at most
1×2 by (R2). Henceω∗(v) ≥ 2−max{2;1×2} = 0.

• If k = 5, thenω(v) = 5. By (C3), a 5-vertex has at most three 2-neighbors. Ifv
has three 2-neighbors (i.e.v is weak), then it has no weak 5-neighbors by(C8); it
thus gives 2×3 by (R3). Moreover, by(C10), v has at most one weak 4-neighbor;
therefore,v has at least either one non weak 4-neighbor or one≥5-neighbor; thus,
v receives at least 1 by (R2) or (R3). Ifv has two 2-neighbors, then it has at most
one weak 5-neighbor by(C11), and then gives at most 2×2+1 by (R3). Ifv has
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one 2-neighbor, then it has at most three weak 5-neighbors by(C12), and then
gives at most 2+1×3 by (R3). Finally, ifv has no 2-neighbor, it gives at most
1×5 by (R3). Hence,ω∗(v)≥ 5−max{2×3−1;2×2+1;2+1×3;1×5}= 0.

• If k= 6, thenω(v) = 8. By (C3), a 6-vertex has at most four 2-neighbors. Ifv has
four 2-neighbors, then it has no weak 5-neighbor by(C8), and then gives 2×4
by (R3). If v has three 2-neighbors, then it has at most two weak 5-neighbors
by (C13), and then gives at most 2× 3+ 1× 2 by (R3). Finally, ifv has l 2-
neighbors, 0≤ l ≤ 2, thenv has at most(6− l) weak 5-neighbors and then gives
at most 2× l +1× (6− l) by (R3). Hence,ω∗(v) ≥ 8−max{2×4;2×3+1×
2;2× l +1× (6− l)} = 0 for any 0≤ l ≤ 2.

• If k = 7, thenω(v) = 11. By (C3), a 7-vertex has at most five 2-neighbors. Ifv
has five 2-neighbors, then it has at most one weak 5-neighbor by (C14) and then
gives at most 2×5+1 by (R3). Finally, ifv hasl 2-neighbors, 0≤ l ≤ 4, then it
has at most(7− l) weak 5-neighbors and then gives at most 2× l +1× (7− l)
by (R3). Hence,ω∗(v) ≥ 11−max{2×5+ 1;2× l + 1× (7− l)} = 0 for any
0≤ l ≤ 4.

• If k = 8, thenω(v) = 14. By (C4), an 8-vertex has at most seven 2-neighbors. If
v has seven 2-neighbors, then it has no weak 5-neighbor by(C15) and then gives
2×7 by (R3). Finally, ifv hasl 2-neighbors, 0≤ l ≤ 6, then it has at most(8− l)
weak 5-neighbors and then gives at most 2× l + 1× (8− l) by (R3). Hence,
ω∗(v) ≥ 14−max{2×7;2× l +1× (8− l)} = 0 for any 0≤ l ≤ 6.

• If k = 9, thenω(v) = 17. By (C4), a 9-vertex has at most eight 2-neighbors. Ifv
hasl 2-neighbors, 0≤ l ≤ 8, then it has at most(9− l) weak 5-neighbors and then
gives at most 2× l +1×(9− l) by (R3). Hence,ω∗(v)≥ 17−2× l +1×(9− l) ≥
0 for any 0≤ l ≤ 8.

• If k ≥ 10, thenω(v) = 3k−10. If v hasl 2-neighbors, 0≤ l ≤ k, thenv has at
most(k− l) weak 5-neighbors and then gives at most 2× l +1×(k− l) by (R3).
Hence,ω∗(v) ≥ 3k−10−2× l +1× (k− l) ≥ 0 for any 0≤ l ≤ k.

Thus, for everyv∈V(H), we haveω∗(v) ≥ 0 once the discharging is finished, that
completes the proof.

4 Concluding remarks

In 1999, Nešetřil and Raspaud [9] introduced the notion ofstrong oriented coloring,
which is a stronger version of the notion of oriented coloring studied in this paper.

Let M be an additive abelian group. AnM-strong-oriented coloringof an oriented
graphG is a mappingϕ from V(G) to M such thatϕ(u) 6= ϕ(v) whenever−→uv is
an arc inG andϕ(v)−ϕ(u) 6= −(ϕ(t)−ϕ(z)) whenever−→uv and−→zt are two arcs
in G. Thestrong oriented chromatic numberof an oriented graph is the minimal
order of a groupM such thatG has anM-strong-oriented coloring. It is clear that
any strong oriented coloring of an oriented graphG is an oriented coloring ofG
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and therefore the oriented chromatic number ofG is less than its strong oriented
chromatic number.

Nešetřil and Raspaud showed that a strong oriented coloring of an oriented graph
G can be equivalently defined as a homomorphismϕ from G to H, whereH is an
oriented graph withk vertices labeled by thek elements of an abelian additive group
M, such that for any pair of arcs−→uv and−→zt of A(H), v−u 6= −(t − z). For every
prime powerp≡ 3 (mod 4), the Paley graphQRp (defined in Section 2, page 4) is
clearly an oriented graph withp vertices labeled by thep elements of the fieldZ

pZ

and such that for any pair of arcs−→uv and−→zt of A(QRp), v−u 6= −(t −z).

Let G be an oriented graph with mad(G) < 10
3 . Borodin et al. [4] proved that the

oriented chromatic number of every such graphG is at most 19. In this paper, we
improved this result by showing that 16 colors are enough. However, to prove their
result, Borodin et al. showed that every such graphG admits a homomorphism to
the Paley graphQR19. Therefore, their result is stronger: every graph with maxi-
mum average degree strictly less that10

3 has astrongoriented chromatic number at
most 19. So, a natural question to ask is:

Question 20 Does there exist an abelian additive group M on16 elements such
that we can label the vertices of T16 with the elements of M in such a way that
v−u 6= −(t −z) whenever−→uv and−→zt are two arcs of T16 ?

If it is true, that would imply that 16 colors are enough for astrongoriented coloring
of an oriented graph with maximum average degree strictly less that10

3 .
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