
HAL Id: lirmm-00187164
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00187164v1

Submitted on 4 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Policies Generalization in Reinforcement Learning using
Galois Partitions Lattices
Marc Ricordeau, Michel Liquière

To cite this version:
Marc Ricordeau, Michel Liquière. Policies Generalization in Reinforcement Learning using Galois
Partitions Lattices. CLA: Concept Lattices and their Applications, Oct 2007, Montpellier, France.
pp.286-297. �lirmm-00187164�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00187164v1
https://hal.archives-ouvertes.fr

Policies Generalization in Reinforcement
Learning using Galois Partitions Lattices

Marc Ricordeau and Michel Liquière

mricorde@wanadoo.fr, liquiere@lirmm.fr
Laboratoire d’Informatique, de Robotique et de Micro-électronique de Montpellier

161 rue Ada 34392 Montpellier Cedex 5 France

Abstract. The generalization of policies in reinforcement learning is a
main issue, both from the theoretical model point of view and for their
applicability. However, generalizing from a set of examples or searching
for regularities is a problem which has already been intensively studied
in machine learning. Our work uses techniques in which generalizations
are constrained by a language bias, in order to regroup similar states.
Such generalizations are principally based on the properties of concept
lattices. To guide the possible groupings of similar environment’s states,
we propose a general algebraic framework, considering the generalization
of policies through a set partition of the states and using a language bias
as an a priori knowledge. We give an application as an example of our
approach by proposing and experimenting a bottom-up algorithm.

1 Introduction

The reinforcement learning domain gives the promising theoretical framework
of an agent learning a behavior by interactions with an environment with the
following properties: (1) The agent doesn’t have any a priori knowledge, on the
environment. (2) There is no separation between a learning phase and a phase of
use of the learning. (3) The agent has to manage the temporal difference learning
problem, that is to say considering that the effect of an action can be delayed or
that an effect can be the consequence of several successive actions.
With the formalism used to realize and demonstrate the properties of most of
the algorithms as well as in practice, the approach is severely more restrictive:
environments are designed with a Markovian Decision Process (MDP), the suc-
cession of interactions and perceptions are discretized and the agent is supposed
to perceive its environment completely.
The constant progress of reinforcement learning since the emergence of its most
famous algorithm, Q-Learning [1], aims at adapting the algorithms to a wider
class of problems than those that can be formalized with a MDP: extension of
the formalism [2] or more recently [3], environment’s states or continuous actions
[4], non markovian environments, partially observable environments [5].
Presently, the question of generalization of policies for reinforcement learning
and their corollaries: the use of a priori knowledge and the search for important
description features to learn the task, has become an important research fields.

Several ways are intensively studied in this frame: generalization by function
approximation, algebraical model generalization [6], [7], temporal abstraction
generalization [8], link with planning and ILP methods [9] or search for relevant
descriptions of the environment [3].
In our work, we consider the generalization of policies and task description prob-
lem from a double point of view: the learning of a behavior by reinforcement and
the problem of grouping elements which are considered similar agreeing with a
description language. We propose to apply to reinforcement learning, learning
methods, based on the Galois lattice algebraical structure, used in classification
and more recently in data mining.
In [10], methods in the same framework have been presented but in a different
way. Notably, we present here an original search space: the descriptions parti-
tions Galois lattice instead of the classical powerset Galois lattices. Moreover, we
characterize algebraically the space search, instead of building the whole lattices
structures in our algorithms.
Section 2 recapitulates briefly the basis of reinforcement learning, essentially to
present formalisms used in this paper. In particular, we remind the reader how
to formalize the generalization of policies as a partitioning of the environment’s
states. Then, section 3 shows how to use Galois lattices as a generalization space
for a set constrained with a description language (possibly structural). More-
over, we present the descriptions partitions Galois lattice, which is an extension
of this method to partitioning a set of objects. In section 4, we see how to use
this algebraical structure for policies generalization in reinforcement learning.
We study the existence of solutions for the learning problem as a function of
the description language. Then, in section 5, we present an algorithm based on
these methods and we apply it to an academic problem. We show notably the
possibility to extract relevant description elements for the task to be learned by
the agent.

2 Basis of Reinforcement Learning, policies generalization

2.1 Reinforcement Learning Problem

We only give here the basis and main formalisms of reinforcement learning. A
complete introduction can be found in [11]. The reinforcement learning pro-
poses a framework where an agent learns a task in a given environment, only
by receiving rewards when the task is accomplished. A reinforcement learning is
classically formalized as a succession of interactions. The agent receives at the
step t a state st from the environment and a numerical value of reinforcement
rt ∈ R, called reward, indicating the quality of the state in which the agent is.
Then, the agent acts on its environment, selecting one of the eligible actions
at for the state st, which modifies the environment’s state st+1. This process
continues indefinitely or until a terminal state is reached.
The goal of the agent is to learn to select the actions which maximize the flow of
the rewards ri, i ≥ t to come and not only the following reward rt+1. However,

the closest rewards (in term of number of interactions) are considered as more im-
portant then the far ones. Thus, the goal of the agent is to maximize the following
value called cumulated delayed reward: Rt =

∑∞
k=0 γ

krt+k, 0 < γ ≤ 1.
The environment is formalized with a MDP. That is to say that the state

st+1 depends only on the state st, on the selected action at and on a probability
transition P (st, at, st+1). In particular, the probability doesn’t depend on the
previous states-actions sequence s0, a0, . . . , st−1, at−1.
Formally, an environment is defined with a tuple 〈S,A, ψ, P,R〉; S = {s1, s2,
. . . , sn} is a set of states; A = {a1, a2, . . . , an} is a set of actions; ψ ⊆ S×A is a
set of eligible couples (state, action). We note A(s) the set of eligible actions for
the state s ((s, ai) ∈ ψ); P : ψ × S → [0, 1] is the set of transition probabilities
from the state s to the state s′ selecting the action a; R : ψ → R is the reward
function giving a numerical value for each eligible couple (s, a).
The function π : ψ → [0, 1] gives the probability for the agent to select the action
a being in the state s. The function π is called the policy of the agent.
The function Qπ : ψ → R, called quality function, defines the expected cu-
mulated delayed reward (expected because the process is stochastic and not
deterministic) the agent would obtain following the policy π from the state s
and taking the action a.
The set of all policies can have a partial order relation, based the cumulated
delayed reward. A policy π1 is greater than a π2 if ∀(s, a) ∈ ψ, Qπ1(s, a) ≥
Qπ2(s, a). The policies allowing the agent to collect the maximum possible re-
wards (Rt) are called optimal policies. All the optimal policies share the same
values for the function Q(s, a) which is noted Q∗(s, a). Thus, we note π∗ to refer
to an optimal policy.
The knowledge of Q∗(s, a) allows to find greedily an optimal policy π∗ by se-
lecting in each state s, one of the actions a with a maximal expected cumulated
delayed reward. We note A∗(s) the set of the optimal actions for the state s.
The reinforcement learning algorithms are based on the approximation of the
Q∗(s, a) function, during the interactions of the agent with the environment. The
hypothesis on the Q(s, a) function is modified with an update rule. For example,
this is the update rule for the Q-learning algorithm [1]:

Q(s, a)← (1−α)Q(s, a)+α
(
rt +γ Max

a∈A(st+1)
Q(st+1, a)

)
, 0 < α ≤, 0 ≤ γ ≤ 1 (1)

Some main issues characterize the reinforcement learning. Firstly, the tempo-
ral difference learning problem, that is to say the repartition of an acquired expe-
rience (a value rt) over the previously selected actions. Secondly, the exploration-
exploitation problem, that is to say the balance between using the actual knowl-
edge of Q(s, a) function to maximize the flow of rewards (exploitation) and
increasing its precision by selecting assumed non-optimal actions (exploration).
One of the corollaries is the balance between keeping the actual theory and in-
corporating the newly acquired knowledge (managed with the γ parameter).
Finally, the question we propose to give elements on: the question of the general-
izing of policies. It can be viewed as: “How a behavior learned in an environment

can be used in a similar environment”, or “How a learned knowledge on a set of
states can be generalized on a greater set of states”. This problem is related to
a main question of machine learning: “How to find a relevant description for a
given task ?”

2.2 Generalization by partitioning the environment’s states

In [7], [6], the generalization for MDPs and consequently for reinforcement learn-
ing is presented as the search for an equivalence relation between the environ-
ment’s states. Two similar states can be merged if they are equivalent, i.e. if
the merging doesn’t change the dynamic of the environment. It’s actually a gen-
eralization, because a learning on a state s is applied to the set of the states
equivalent with s. However, in these articles, the equivalence relation between
the states is computed directly from the MDP, that is to say from the model of
the environment. In our work, we want to apply generalization methods without
this information, preserving the agent point of view.
The equivalence relation on S, the set of the environment’s states, we propose
is not based on the compliance with the environment’s dynamic, but on the
equivalence of their optimal actions.

Definition 1. Let s1, s2 ∈ S, be two environment’s states. s1 and s2 are equiv-
alent, which is noted s1 ≡∗ s2 if and only if A∗(s1) = A∗(s2). The equivalence
relation ≡∗ implies a partitioning of the set S, noted P∗.

This means that all the optimal actions of s1 are the sames (considering their
label) as the optimal actions of s2. It’s important to note that we have introduced
a first a priori knowledge since this definition implies that two actions can be
equivalent according to their description.
The partition P∗ allows to express rules such as “in the set of states S1, we
must select an action among A∗(S1) in order to act optimally”. The knowledge
of this set of rules, gives the optimal policies and enables us to present them in a
more intelligible and general way than an classical probabilities function. Thus,
the search for P∗ becomes in our framework, the goal of the learning. The space
search becomes the set partitions of S.
However, grouping the states according to their optimal actions doesn’t give a
direct generalization method. To do it, we need to be able to compare the states.
In the next section, we show how the Galois Lattice algebraical structure can be
used to generalize a set of objects with a generalization language.

3 Galois lattice as generalization space

The definitions and theorems used here about Galois lattices can be found in
[12]. First, we show how this structure is used in machine learning to allow a
generalization over a set of elements biased with a language. Secondly, we give
an extend of Galois lattice by presenting the partitions Galois lattice.

3.1 Galois lattice and generalization languages

The Galois lattice, or more generally the lattice structure is commonly used in
machine learning, directly or in an underlying way. The first well known use of
such mathematical objects is certainly the Version Space [13]. More recently,
the formal concept analysis theory [12] uses directly Galois lattices as structure
used for generalization over a set of objects. We give here a general algebraical
approach that can be found in [14].
A Galois lattice can be classically summed up as a structure defined by a double
closure relation between two join semi-lattices. We note it GL(A,≤A,⊗A, B,≤B

,⊗B , f, g), (A,≤A,⊗A) and (B,≤B ,⊗B) being the two join semi-lattices defined
respectively by a set, a partial order relation and a product operator producing
the supremum of two elements and f and g being the two closure operators. In
the frame of machine learning, the Galois Lattice produced from the powerset of
objects and a generalization langage (L,≤L,⊗L) defines the set of all the subsets
authorized by a given description language and their associated description.
More formally, to use a Galois lattice as a generalization space for a set of objects
E constrained with a generalization language L, we need to identify the elements
of the Galois lattice definition: (1) The set A with P(E), the powerset of the
elements to classify. (2) The partial order relation ≤A with the set inclusion ⊆.
(3) The product operator ⊗A with the set intersection ∩. (4) The set B, ≤B

and ⊗B can be identified with any description language L with a partial order
relation ≤L and a product operator ⊗L such that exists a description function
d and an instantiation function i described below and agreeing with the Galois
connection conditions. Such languages are called generalization languages.
The relation ≤L defines the relation more general than or more specific than
and ⊗L is called generalization operator. (5) The function f with the following
description function d : P(E) → L, d(P) =

⊗
L{d(e), e ∈ E}. The description

d(P) of a subset P ⊆ E is the least general generalization of the descriptions of
the elements e ∈ P . Note that only the description d(e), e ∈ E must be known in
order to compute the description of all subset P ⊆ E. (6) The function g with the
following instantiation function i : L→ P(E): ∀l ∈ L, i(l) = {e ∈ E | d(e) ≤L l}.
The instantiation of an element of the language l ∈ L is the set of all the elements
e ∈ E which description is more specific than l.
Finally, the set C of the couples (ca, cb) ∈ Ci◦d(P(E)) × Cd◦i(L) is called the
set of concepts of GL(P,⊆,∩, L,≤L,⊗L, d, i). Let a concept c = (P, l), P ∈
Ci◦d(P(E)), l ∈ Cd◦i(L), P is the extension of c and l the intention of c.
We have three main properties about this structure. First, the set Ci◦d(P(E)) is
the powerset of E that can be expressed with the language L. Thus, L implies a
selection between all the possible generalizations of the elements of E. Roughly
speaking, we can also say that the language L implies rules like ”if we decide
to put together the elements e1 and e2, then we must also regroup them with
e3”. Secondly, the set Cd◦i(L) is the set of the descriptions of the elements of
Ci◦d(P(E)). If a new, unknown element en occurs, we can use its description
d(en) to compare and eventually classify it in a previously found group. Finally,
the set C of concepts has a lattice structure, which can be used to compare and

merge generalizations of elements of E.
This framework is very large, every generalization language L provided with
≤L and ⊗L is usable. For example, the formal concept analysis theory studies
particularly the attributes-values description case with: L is the powerset P(A)
of a set of attributes A, ≤L is the set inclusion ⊆, ⊗L is the set intersection ∩.
Notably, we can also use structural languages (see [14] for examples). Thus, the
descriptions of the generalizations keep their structural properties.

3.2 Descriptions Partitions Galois lattice

We present a special case of Galois lattice: the descriptions partitions Galois
lattice as generalization space for the set partitions. It is built in a similar way
than the powerset Galois lattice. It will be used to constrain the possible set
partitions with a generalization language describing the elements of E, with the
same properties. Figure 1 presents the general scheme.

Fig. 1. Scheme of partitions Galois lattice constrained with a generalization language

The main principle of the Galois lattices for partitions is to use the partitions
lattice of E instead of powerset lattice and to use the powerset lattice of the
generalization language L instead of L. We also have to redefine the description
and instantiation functions to fit the definition. Finally, we show that the extents
of the generated concepts are the partitions of E for which each element is a
concept of the classical Galois lattice.
Let’s define the partial order relation ⊆P for partitions, the product ⊗P and the
sum ⊕P of two partitions.

Definition 2 (⊆P,⊗P,⊕P). Let E be a set and P(E) be set partitions of E.
Let P1, P2 ∈ P(E) be two partitions of E. P1 ⊆P P2 ⇔ ∀P1 ∈ P1, ∃P2 ∈
P2 such that P1 ⊆ P2.
Let R⊗ and R⊕ be two binary relations such that ∀ei, ej ∈ E, eiR⊗ej ⇔ ei and
ej are in the same part in P1 or in P2; eiR⊕ej ⇔ ei and ej are in the same
part in P1 and in P2. The transitive closure of R⊗ defines a partition which is
P1 ⊗P P2 and R⊕ defines a partition which is P1 ⊕P P2.

For example, E = {a, b, c, d, e, f, g}, P1 = {a, b}, {c}, {d, e}, {f, g} and P2 =
{a}, {b}, {c}, {d, }{e, f}, {g}. P1 ⊗P P2 = {a, b}, {c}, {d, e, f, g}.
Remind that a partition defines an equivalence relation. Thus ⊗P can be viewed
as the merging of the equivalence classes defined by P1 and P2.
Let’s identify the generalization language (L,≤L,⊗L) to describe the partitions
of E, which is based on the generalization language (L,≤L,⊗L) for E.
A partition of E is composed of subsets of E. Each of these subsets can be
described with an element l ∈ L with the description function d. Consequently,
the description of a partition of E is described with a set L of elements of
L. Thus, the description language for the partitions set is the powerset of L.
Nevertheless, we only consider a subset of P(L). Indeed, we only need the set,
noted P(L)P(E) of the subsets of L such that their instantiations are partitions
of E. In the general case, the instantiation is only a coverset of E.

Definition 3 (≤L,⊗L). Let (L,≤L,⊗L) be a generalization language. Let L1,
L2 ∈ P(L)P(E). L1 ≤L L2 ⇔ ∀l1 ∈ L1, ∃l2 ∈ L2 such that l1 ≤ l2.
L1 ⊗L L2 is the set L⊗ such that: L⊗ =

{
l ∈ L |l = d(P1), P1 ∈ merge({i(l1) ∪

i(l2), l1 ∈ L1, l2 ∈ L2})
}

The definitions of ≤L and ⊗L are presented to keep mathematical formalism
and are not used in practice. The description function dP and the instantiation
function iP illustrate the method in a better way.

Definition 4 (description of a partition dP). We define description function
dP : P(E)→ P(L) with: ∀P ∈ P(E), dP(P) =

{
l ∈ L | l = d(P1), P1 ∈ merge({i◦

d(P), P ∈ P})}

To find the description of a partition P ∈ P(E), we first close the subsets
P of E composing the partition with the closure i ◦ d. This gives a coverset of
E. Then, we merge transitively the subsets of this coverset which have at least
one element e in common with the operator ⊗P. This gives a partition of E for
which all subsets are closed elements of i ◦ d, i.e. extents of the classical Galois
lattice. Finally, we redescribe those elements with d.

Definition 5 (instantiation of a subset of L iP). We define the instantiation
function iP(E)L → P(E) with:∀PL ∈ P(L)P(E), iP(PL) =

{
i(l), l ∈ PL

}
.

The instantiation of a subset PL ∈ P(L)P(E), is simply the set composed with
the instantiations of each element l ∈ PL. We can finally produce the partitions
Galois lattice.

Theorem 1 (descriptions partitions Galois lattice).
GLP(P(E),⊆P,⊗P,P(E)L, ⊆P,⊗L,dP,iP) is a lattice called descriptions parti-
tions Galois lattice. Let C be the set of concepts of GLP. Let C = (ext, int) ∈
C. The extension ext is a partition of E and the intention int is its description.

With all the elements described above, the proof constits in showing that
(dP ◦ iP, iP ◦ dP) defines a Galois connexion. Note that the same elements are
needed to define the partitions Galois lattice compared to the classical Galois
lattice: a set E and a generalization language (L,≤L,⊗L). The classical proper-
ties of classical Galois lattices as a generalization space constrained with a lan-
guage can be applied to the partitions Galois lattice: rules concerning regrouping
objects, the possibility to deal with unknown objects, and a comparison between
generalizations. The difference is that instead of considering the set of the re-
groupings of elements of E which can be expressed with the language L, we
consider the set partitions of E which can be expressed with L.

Proposition 1 (partition agreeing with a language).
Let E be a set and (L,≤L,⊗L) be a generalization language for E. A partition
P(E) of E agreeing with the language L is a partition whose all the subsets can
be expressed with an element l ∈ L. That is to say whose all the subsets are
closed elements of P(E) with the closure i ◦ d. The set of the extensions of the
concepts of the description partitions Galois Lattice GLP is the set partitions of
E agreeing with the language L.

Size of GLP The size of the GLP is equal to the number of partitions agreeing
with L. Consequently, the size of the GLP is lower than the |E|th Bell number.
The exact number of partitions agreeing with L is an open question. However, we
can say that it’s a function of the size of the classical GL size. In the worst case,
the size of the GL is 2|E|. Then, the size of GLP is the |E|th Bell number, but
in this case, L doesn’t give any bias concerning the possible ways of regrouping
the elements of E. This case is useless in our context. We can note that for each
subset of E which can’t be described with an element of L, the size of GLP is
falling as a function of the number of elements of this subset.

4 Using the partitions Galois lattice for reinforcement
learning

The set partition P∗ of the environment’s states induced by the quality function
of optimal policies Q∗(s, a) can be considered as observed section 2.2, as the
goal of a reinforcement learning. We have just defined the descriptions partitions
Galois lattice as space search for partitioning a set of objects, here S, the set of
the environment’s states. The space search being constrained with a language
LS , we have first to study the relationship between P∗ and the possibility to
express it with LS . Then, we propose an algorithm to build P∗.

4.1 Relationship between P∗ and a generalization language LS

Let an agent evolving in an environment formalized with a MDPM〈S,A,ψ,P ,R〉.
The set S is described with the generalization language (LS ,≤LS

,⊗LS
).

Let’s consider three different cases concerning the agreement of P∗ with LS . (1)
The partition P∗ agrees with LS . In this case, each of the sets regrouping the
states according to their optimal actions can be expressed with an element of
the language l ∈ LS . (2) It exists at least one partition P agreeing with LS such
that P ⊆ P∗. In this case, if we add the condition which is that each state s ∈ S
has a different description (the agent has a complete vision of its environment),
it always occurs. Indeed, in the worst case, it’s the partition of size |S|. More-
over, if the description language doesn’t have any generalization properties that
is to say the product of l1, l2 ∈ LS always gives the same element l>, then we
have the classical case of reinforcement learning. Note that there can be more
than one such partitions. (3) There is no partition P agreeing with LS such that
P ⊆ P∗. The agent is unable to distinguish states which should be considered
different from the task point of view. We are in the case of Partially Observable
MDP. We need for example, to use a memory based system [5] to separate the
states.

4.2 A bottom-up Algorithm

The general framework we proposed: search for the partition P∗, using the set
partitions of S, can be implemented in several ways, depending on the chosen
space exploration (bottom-up, top-down, breadth-first,...) and on the heuristics
managing the imprecision of the current Q(s, a) function.
We propose the bottom-up algorithm 1 which partitions the set of the states at
a given step of the learning. The built partition is the most general, agreeing
with LS . The equivalence relation ≡∗ doesn’t always give a unique partition.
Thus, the algorithm regroups in priority the states with the same value for their
optimal actions.

Proof elements for the algorithm All the states are considered successively using
a FIFO structure (variable States line 1). In the worst case, each state is added
as a singleton to the resulting partition (line 7). This ensures that the final result
is a cover of S. The lines 2 and 5 ensure that the elements are added to only one
subset, ensuring that the result is a partition of S.
Line 3, the algorithm constructs a subset of S from a state and according to
the equivalence relation ≡∗, using te closure operator i ◦ d. This ensures that
the produced subset agrees with the language L. Then, we verify line 4 that the
closure has only added equivalent elements, ensuring that the resulting partition
is lower (using ⊆P) than P∗.

5 Experiment

We present an experiment of our algorithm on an academic problem to illustrate
our method and to validate our theoretical approach with an implementation.

Data
• A generalization language (LS ,≤LS ,⊗LS) for the states S the current
estimation of Q(s, a)
Result
• A partition P, based on ≡∗, agreeing with the language LS , such that P is
the most general possible, with grouping uppermost the states of S with the
same optimal actions values.

Partition← ∅;
1 States← Sort S according to the decreasing values of Q(s, a∗);

while States 6= ∅ do
s← remove(States);
Equivalents← s1 ∈ States | s1 ≡∗ s; NewSubset← {s};
while Equivalents 6= ∅ do

2 s2 ← remove(Equivalents);
3 add← i ◦ d(NewSubset ∪ {s2})− (NewSubset ∪ {s2});
4 if ∀s3 ∈ add, s3 ≡∗ s then

NewSubset← NewSubset ∪ {s2} ∪ add;
5 remove from Equivalents(add ∪ {s2}); remove from States(add ∪ {s2});
7 Partition← Partition ∪ {NewSubset};

return Partition;

Algorithme 1 : Partitioning the set S according to ≡∗ and agreeing with
a generalization language (LS ,≤LS

,⊗LS
)

The example consists in a grid-world of size (3×3) containing an agent, a reward
and a wall. All the other tiles are empty. The walls can be moved, if there is no
other behind, with the action push.
The task to be learned is to move as fast as possible to the reward tile. Each
episode lasts until the agent reaches the reward tile or until it destroys it with
a wall. The agent receives an reward of +1.0 if it reaches the reward tile. All
other actions receive -0.1. There are 504 different states with 4 actions in each.
push and move are different actions, |ψ| = 2016. The consequences of actions
are deterministic and the environment is stationary.
The actions are described with: {move west, move east, move north, move south,
push west, push east, push north, push south}. The language (LS ,≤LS

,⊗LS
) used

to describe the states is an attribute-values language. The description of a state
is composed with one attribute for each tile that the agent can see (see Figure 2).
The partial order relation ≤LS is defined by: d(s1) ≤LS d(s2)⇔ all the attributes
of d(s1) are less than or equal to the corresponding one in d(s2) according to
the join semi-lattice given Figure 2. The product ⊗LS

of two descriptions is the
generalization of each attribute. The selection of actions and learning has been
made with a classical Q-Learning algorithm.

Our algorithm allows the extraction of relevant description elements accord-
ing to the task. Figure 3, shows an extract of the partition obtained after the
convergence of the learning. Quantitatively, we need only 92 description elements

Fig. 2. A graphical example of two states, their descriptions and their product

Fig. 3. Descriptions and optimal actions of 4 subsets among the 92 produced by parti-
tionning the 504 environnement’s states after convergence of the reinforcement learning

to describe the task instead of 504 initially. There are expected elements such
as being at one tile at the south of the reward implies move north (example 1),
the other tiles don’t matter. We also find non intuitive rules (example 4).
Note that there are descriptions with the same optimal actions which are not
grouped (example 1 and 2). This is because there are no language elements allow-
ing the grouping of these descriptions without regrouping others, with different
optimal actions. We could add, for example, the notion of relative position with
the reward, either directly or using a knowledge data base.

6 Conclusion

First, we reminded the reader of the general principles in the use of a Galois lat-
tice as a generalization space for a set of objects described with a generalization
language. Then, we extended these results to define an original generalization
space for the partitions instead of powerset, in particular by introducing the
notion of partition agreeing with a language. We showed that, considering gen-
eralization as a partitioning, this structure can be used to generalize learning
in reinforcement learning. Finally, we proposed a bottom-up algorithm which

through a reinforcement learning and a generalization language made it possible
to produce general rules linking description elements of the environment and
optimal actions.
This work considered principally the algebraical aspects. Consequently, we didn’t
treat two remaining important issues: “How to use the rules on unknown exam-
ples” and “How to deal with knowledge uncertainty”.
Our future work will focus on three directions. First, a more formal link between
our work and the relational reinforcement learning [9]. Secondly, an algorith-
mic improvement, studying the different ways of exploring the space search and
the classical balancing between spatial and temporal complexity. Thirdly, we
will consider the exploration-exploitation problem, i.e. using previously acquired
knowledge or acquiring new knowledge and as a corollary, managing knowledge
uncertainty. It remains a difficult problem in machine learning and in reinforce-
ment learning in particular. In our case, it’s transposed in a particular way as
the concept reliability, already presented in [10]. We think that a relevant ap-
proach can consists in the explicit management of second order elements (states
distribution, maximal reward,. . .) directly through the algorithms.

References

1. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8 (1992) 279–292
2. Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps : A framework

for temporal abstraction in reinforcement learning. Artificial Intelligence 112(1-2)
(1999) 181–211

3. James, M.R., Singh, S.: Learning and discovery of predictive state representations
in dynamical systems with reset. In: ICML 2004. (2004) 417–424

4. Munos, R.: Error bounds for approximate policy iteration. In: International Con-
ference on Machine Learning ICML 2003. (2003) 560–567

5. McCallum, A.: Reinforcement Learning with Selective Perception and Hidden
State. PhD thesis (1996)

6. Ravindran, B., Barto, A.G.: Smdp homomorphisms: An algebraic approach to
abstraction in semi markov decision processes. In: IJCAI 2003. (2003) 1011–1016

7. Givan, R., Dean, T., Greig, M.: Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence 147(1-2) (7 2003) 163–223

8. Dietterich, T.G.: State abstraction in maxq hierachical reinforcement learning.
Artificial Intelligence Research (13) (2000) 227–303

9. Dzeroski, S., Raedt, L.D., Driessens, K.: Relational reinforcement learning. Ma-
chine Learning (43) (2001) 7–52

10. Ricordeau, M.: Q-concept-learning: Generalization with concept lattice represen-
tation in reinforcement learning. In Society, I.C., ed.: ICTAI 03. (2003) 316–323

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning : An Introduction. MIT press
(1998)

12. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer (1999)

13. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
14. Liquière, M., Sallantin, J.: Structural machine learning with galois lattice and

graphs. In Ed, M.K., ed.: ICML 1998. (1998) 305–313

