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Abstract

A homomorphism from an oriented graphG to an ori-
ented graphH is an arc-preserving mappingf from
V (G) to V (H), that is f (x) f (y) is an arc inH when-
everxy is an arc in G. The oriented chromatic number
of G is the minimum order of an oriented graphH such
thatG has a homomorphism toH. In this paper, we de-
termine the oriented chromatic number of the class of
partial 2-trees for every girthg ≥ 3.

Keywords: Partial 2-tree;K4 minor-free graph; Series-
parallel graph; Girth; Oriented chromatic number

1 Introduction

We consider finite simpleoriented graphs, that is
digraphs without opposite arcs nor loops. For an
oriented graphG, we denote byV (G) its set of
vertices and byA(G) its set of arcs. The number
of vertices ofG is theorder of G. Thegirth of a
graphG is the size of a smallest cycle inG. We
denote byOg, Tg, andPg, the class of outerplanar
graphs with girth at leastg, the class of partial 2-
trees with girth at leastg, and the class of planar
graphs with girth at leastg, respectively.

The notion of oriented coloring was introduced
by Courcelle [5] as follows: anoriented k-coloring
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of an oriented graphG is a mappingf from V (G)
to a set ofk colors such that(i) f (u) 6= f (v) when-
ever uv ∈ A(G) and (ii) f (v) 6= f (x) whenever
uv,xy ∈ A(G) and f (u) = f (y). In other words, an
orientedk-coloring of G is a partition of the ver-
tices ofG into k stable setsS1,S2, . . . ,Sk such that
all the arcs between any pair of stable setsSi and
S j have the same direction (either fromSi to S j,
or from S j to Si). Theoriented chromatic number
of G, denoted byχo(G), is defined as the small-
est k such thatG admits an orientedk-coloring.
The oriented chromatic numberχo(F) of a class
of oriented graphsF is defined as the maximum of
χo(G) taken over all graphsG in F.

Let G andH be two oriented graphs. Ahomo-
morphism from G to H is a mappingf from V (G)
to V (H) that preserves the arcs:f (u) f (v) ∈ A(H)
wheneveruv ∈ A(G). An orientedk-coloring of
an oriented graphG can be equivalently defined as
a homomorphismf from G to H, whereH is an
oriented graph of orderk; such a homomorphism
is called aH-coloring of G or simply anoriented
coloring of G.

The existence of such a homomorphism fromG
to H is denoted byG → H. The vertices ofH are
called colors, and we say thatG is H-colorable.
The oriented chromatic number ofG can then be
equivalently defined as the smallest order of an ori-
ented graphH such thatG → H. Links between
colorings and homomorphisms are presented in
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more details in the monograph [6] by Hell and
Nešeťril.

Oriented colorings have been studied by sev-
eral authors in the last decade and the problem
of bounding the oriented chromatic number has
been investigated for various graph classes (seee.g.
[3, 4, 12, 13, 14]).

A very challenging question is to determine the
oriented chromatic number of planar graphs. Ras-
paud and Sopena [13] proved in 1994 that their ori-
ented chromatic number is at most 80. Recently,
Marshall [8] proved that there exist planar graphs
with an oriented chromatic number at least 17. The
gap between the lower and the upper bound is very
large, but it seems very hard to reduce.

Some authors then studied the oriented chro-
matic number of planar graphs with given girth to
get some hints on the behaviour of this invariant.
The following bounds have been obtained:

Theorem 1 [1, 2, 3, 4, 9, 10, 11]

(1) 11≤ χo(P4) ≤ 47 [2, 10].

(2) 5≤ χo(P5) ≤ 16 [9, 11],

(3) 5≤ χo(P6) ≤ 11 [4, 9],

(4) 5≤ χo(Pg) ≤ 7 for every girth 7≤ g ≤ 11 [1,
9],

(5) χo(Pg) = 5 for every girth g ≥ 12 [3, 9],

We can remark that the oriented chromatic num-
ber of planar graphs with girth at least 12 have been
characterized. However, for girths 4 to 11, only es-
timates are known.

Sopena [14], and Pinlou and Sopena [12] con-
sidered the oriented chromatic number of the class
of outerplanar graphs (which is a graph class
strictly included in the class of planar graphs).
They obtained exact bounds for every girth:

Theorem 2 [12, 14]

(1) χo(O3) = 7 [14],

(2) χo(O4) = 6 [12],

(3) χo(Og) = 5 for every g ≥ 5 [12].

It is then natural to study the behaviour of the
oriented chromatic number of the class of partial
2-trees (also known as series-parallel graphs orK4-
minor free graphs) sinceOg ⊂ Tg ⊂ Pg.

Sopena [14] proved thatχo(T3) = 7, and Pin-
lou and Sopena [12] showed thatχo(T4) = 7. In
this paper, we complete the characterization of the
oriented chromatic numbers of partial 2-trees with
given girth:

Theorem 3

(1) χo(Tg) = 6 for every girth g, 5≤ g ≤ 6;

(2) χo(Tg) = 5 for every girth g ≥ 7.

This paper is organized as follows. We give in
the next section some preliminary results which are
used in Section 3 to prove Theorem 3. In Section 4,
we show that the proof techniques we use in this
paper allow us to improve the upper bound of the
oriented chromatic number of planar graphs with
girth at least 11.

2 Notation and preliminary results

In the remainder, we will use the following nota-
tion. For a graphG and a vertexv, we denote
by dG(v) the degree ofv. A vertex of degreek
(resp. at leastk) will be called ak-vertex (resp.
≥k-vertex). We denote byδ(G) (resp. ∆(G)) the
minimum (resp. maximum) degree of the graphG.
If uv is an arc,u is a predecessor of v andv is a
successor of u. A vertex will be called asource if
it has no predecessors and asink if it has no suc-
cessors.

A k-path in a graph G is a path P =
[u,v1,v2, . . . ,vk−1,w] of length k (i.e. a path with
k arcs). The verticesu andw are theendpoints of
P. Note that a 1-path is an arc. A(k,d)-path is a
k-path such that all internal verticesvi have degree
d.
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Figure 1: The two target tournaments.

The upper bounds of Theorem 3 will be obtained
by proving that the considered partial 2-trees admit
a T -coloring, for some tournamentT . We will use
the tournamentsT5 and T6 depicted on Figure 1,
whose properties, given below, have already been
used in the literature to bound oriented chromatic
number and oriented chromatic index of graphs.

The tournamentT5 is a circular tournament and
thus is vertex-transitive.

Proposition 4 [4] For every pair of (not neces-
sarily distinct) vertices u,v ∈ V (T5), there exists
an oriented 4-path connecting u with v for any of
the 16 possible orientations of such an oriented 4-
path.

Proposition 5 [12] For every pair of (not neces-
sarily distinct) vertices u,v ∈V (T6), there exists an
oriented 3-path connecting u with v for any of the
8 possible orientations of such an oriented 3-path.

Our proof techniques to get upper bounds for the
oriented chromatic number are based on the well-
known method of reducible configurations. We
suppose that there exists a hypothetical minimal
counterexampleH to the considered theorem and
we prove thatH does not contain some configura-
tions. Then, thanks to structural properties of par-
tial 2-trees with given girth, we show thatH neces-
sarily contains one of the forbidden configurations,
otherwiseH would not be a partial 2-tree. This
contradiction allow us to conclude.

In the remainder of this section, we state a struc-
tural property of partial 2-trees due to Lihet al. [7]
and generalize it to partial 2-trees with given girth.

For a given undirected graphG and a vertex
v ∈V (G), we denote:

DG(v) = |{u ∈V (G), d(u) ≥ 3, such that
either uv ∈ A(G)

or ∃w ∈V (G),dG(w) = 2,uw,wv ∈ A(G)}|.

Lih, Wang and Zhu [7] proved the following
structural lemma for partial 2-trees:

Lemma 6 [7] Let G be a partial 2-tree such that
δ(G) ≥ 2. Then, one the following holds:

1. there exists a (3,2)-path (i.e. two adjacent 2-
vertices);

2. there exists a ≥3-vertex v such that DG(v)≤ 2.

We generalize the previous lemma to partial
2-trees with given girth. For a given undirected
graphG with girth at leastg and a vertexv ∈V (G),
we denote:

SG
g (v) = {u ∈V (G),d(u) ≥ 3, such that
either ∃ a unique(k,2)-path linkingu andv, k ≥ 1,

or ∃ at least one(
⌈ g

2

⌉

,2)-path linkingu andv}.

We then denoteDG
g (v) = |SG

g (v)|. Note that
DG

3 (v) = DG(v) for everyv ∈V (G).

Lemma 7 Let G be a partial 2-tree with girth g
such that δ(G)≥ 2. Then, one the following holds:

1. there exists a (
⌈ g

2

⌉

+1,2)-path;

2. there exists a ≥3-vertex v such that DG
g (v)≤ 2.

Proof. Let H ∈ Tg with δ(H) ≥ 2 such that it con-
tains no(

⌈ g
2

⌉

+1,2)-path. Note that in this caseH
is not a cycle and thus contains≥3-vertices. Then,
consider the graphH ′ obtained fromH by remov-
ing all the 2-vertices and adding an arc between
every pair of the remaining vertices which were
linked by at least one(k,2)-path in H, for some
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k. SinceH contains≥3-vertices,H ′ is not reduced
to a unique vertex.

Let v be any vertex ofH ′ and letNH′(v) be the
set ofv’s neighbors inH ′. By construction, there
exists, for everyw ∈ NH′(v), at least one(k,2)-path
linking v andw in H for somek ≥ 1. In addition,
if there exists more than one(k,2)-path linkingv
and w in H, then at most one of these paths is
a (

⌊ g
2

⌋

,2)-path and the others are(
⌈ g

2

⌉

,2)-paths
since H has girthg. This shows that for every
v ∈ H ′, we havedH′(v) = DH

g (v).
Since the class of partial 2-trees is closed

under edge-contraction,H ′ is clearly a partial
2-tree. Since partial 2-trees are 2-degenerate,
H ′ contains a vertexv of degree at most 2, and
thereforeDH

g (v)≤ 2 (note thatdH(v)≥ 3 since this
vertex remains inH ′). That completes the proof.2

Corollary 8 Every partial 2-tree with girth g ≥ 3
contains either a 1-vertex or a (

⌈ g
2

⌉

,2)-path.

Proof. Let H ∈ Tg with δ(H) ≥ 2 having no
(
⌈ g

2

⌉

+ 1,2)-path. By Lemma 7,H contains a
≥3-vertexv such thatDH

g (v) ≤ 2. Therefore, by
definition of DH

g , this means thatv has degree at
least 3 inH, but degree at most 2 inH ′ (H ′ is
the graph obtained fromH by removing all the
2-vertices and adding an arc between every pair
of the remaining vertices which were linked by
at least one(k,2)-path in H, for somek). That
implies thatH contains a vertexw such thatv and
w are the endpoints of at least two(k,2)-paths,
and at least one of them must be a(

⌈ g
2

⌉

,2)-path.2

3 The oriented chromatic number
of partial 2-trees

In this section, we prove Theorem 3.
Proof of Theorem 3(1). We first prove that
χo(Tg)≤ 6 for every girthg, 5≤ g≤ 6. Note that it
is sufficient to consider the caseg = 5; we therefore
prove that every partial 2-tree with girth at least 5
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(b) The graphG6

Figure 2: Construction of an oriented partial 2-tree
with girth 6 and oriented chromatic number 6.
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admits a homomorphism to the tournamentT6 de-
picted in Figure 1(b). LetH be a minimal (w.r.t.
the number of vertices) partial 2-tree with girth at
least 5 having no homomorphism toT6. We show
thatH contains neither a 1-vertex nor a(3,2)-path.

1. Suppose thatH contains a 1-vertexu. Then,
due to the minimality ofH, the partial 2-tree
H ′ = H \ u has girth at least 5, and thus ad-
mits a T6-coloring f . Since every vertex of
T6 has at least two successors and at least two
predecessors,f can be easily extended toH.

2. Suppose now thatH contains a(3,2)-path
[u,v1,v2,w]. Then, due to the minimality of
H, the partial 2-treeH ′ = H \{v1,v2} admits
a T6-coloring f . By Proposition 5,f can be
extended toH.

By Corollary 8,H contains either a 1-vertex, or
a (3,2)-path. This leads us to a contradiction:H
does not exist.

To complete this proof, we have to construct
a partial 2-tree with girth 6 and oriented chro-
matic number 6. Let us consider the graphQ de-
picted in Figure 2(a) obtained from two vertices
x and y linked by the eight possible oriented 3-
path. Then, considerG6 obtained from a circuit
[v1,v2,v3,v4,v5,v6,v7,v1] of length seven and four-
teen copies of the graphQ arranged as depicted on
Figure 2(b). We can easily see thatG6 is a partial
2-tree with girth 6.

Suppose first thatχo(G6) ≤ 4. Therefore, there
exists a homomorphismf : G6 → T , whereT is
a tournament on 4 vertices. SinceG6 contains a
circuit of length 76≡ 0 (mod 3), T must contain a
circuit of length 4. There exist four non isomorphic
tournaments on four vertices, but only one contains
a circuit of length 4: the tournamentT4 depicted
in Figure 3. However, we can check thatQ 6→ T4

since there does not exist a pair of colorsu andv
in V (T4) which color the verticesx andy (i.e. such
thatu andv are the endpoints of the eight possible
oriented 3-paths inT4). Thus,G6 6→ T4.

3

1 2

4

Figure 3: The tournamentT4.

Hence,χo(G6) ≥ 5. Suppose thatχo(G6) = 5.
There exist twelve non isomorphic tournaments on
5 vertices. We will prove that none of these tour-
naments allows us to colorG6. We can first omit
those containing a source or a sink. The six re-
maining tournaments are depicted in Figure 4.

A case study shows that everyT -coloring f
of Q, where T is one of the five tournaments
in Figures 4(a), 4(b), 4(c), 4(d), 4(e), implies
that f (x) = f (y). Hence, this would mean that
f (v1) = f (u1) = f (v2) in G6, which is forbidden.
It is then clear that ifχo(G6) = 5, thenG6 → T
whereT is the tournament depicted in Figure 4(f).
A case study shows that everyT -coloring f of Q
is such thatf (x) ∈ {1,2,5} and f (y) ∈ {1,2,5}.
However, the circuit[v1,v2,v3,v4,v5,v6,v7,v1] in
G6 needs four colors, that is a contradiction. Thus,
the graphG6 has oriented chromatic number 6.2

Proof of Theorem 3(2). We first prove that
χo(Tg) ≤ 6 for every girthg ≥ 7. Note that it is
sufficient to consider the caseg = 7; we therefore
prove that every partial 2-tree with girth at least 7
admits aT5-coloring, whereT5 is the tournament
depicted in Figure 1(a). LetH be a minimal (w.r.t.
the number of vertices) partial 2-tree with girth at
least 7 having no homomorphism toT5. The proof
techniques are the same than those in the proof of
Theorem 3(1). By minimality and Proposition 4,
we prove thatH contains neither a 1-vertex nor a
(4,2)-path. We thus get a contradiction thanks to
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Figure 4: The six non isomorphic tournaments on
five vertices without source nor sink.

Corollary 8.
To complete this proof, we have to construct,

for all girths g ≥ 7, a partial 2-tree with girth
g and oriented chromatic number 5. Nešetřil et
al. [9] constructed for everyg, g ≥ 3, an oriented
outerplanar graph with girth at leastg which
has oriented chromatic number 5. The class
of outerplanar graphs is strictly included in the
class of partial 2-trees: that completes the proof.2

4 Concluding remarks

In this paper, we characterized the oriented chro-
matic number of partial 2-trees for every girth
g ≥ 3. Note that our results improve the previ-
ously known lower bounds for the oriented chro-
matic number of planar graphs with girths 5 and 6
(see Theorems 1(2) and 1(3)):χo(Pg) ≥ 6 for ev-
eryg ∈ [5,6]. Moreover, we show in the remainder
that our proof techniques can be used to improve
the upper bound of the oriented chromatic number
of planar graphs with girth at least 11.

Remind that Theorem 1 givesχo(P11) ≤ 7. It
is well-known that a planar graph with minimum
degree 2 and girth at leastg = 5k + 1 necessarily
contains a(k +1,2)-path [9]. Thus, a planar graph
with girth at least 11 contains a(3,2)-path (i.e. two
adjacent 2-vertices). This allows us to prove the
following new upper bound:

Theorem 9 χo(P11) ≤ 6.

The proof techniques are the same than those in
the proof of Theorem 3(1). Actually, we can prove
that every planar graph with girth at least 11 admits
a homomorphism to the tournamentT6 depicted in
Figure 1(b). To get this result, we consider a min-
imal (w.r.t. the number of vertices) planar graph
with girth at least 11 having no homomorphism
to T6. We can prove that this graph contains nei-
ther a 1-vertex, nor a(3,2)-path thanks to Propo-
sition 5. This contradicts the above-mentioned re-
mark: such a planar graph does not exist.
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