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Abstract of an oriented grapl® is a mappingf from V(G)
to a set ok colors such thati) f(u) # f(v) when-

A homomorphism from an oriented gra@to an ori- ayer yv A(G) and (ii) f(v) # f(X) whenever

ented graptH is an arc-preserving mappinfy from v, xy € A(G) and f(u) = f(y). In other words, an

V(G) to V(H), that is f(x)f(y) is an arc inH when- " . . o
everxy is an arc in G. The oriented chromatic numbé)rrlentedk—colorlng of G is a partition of the ver-

of G is the minimum order of an oriented graphsuch fices ofG into k stable set$;, S, ..., S such that
thatG has a homomorphism td. In this paper, we de- all the arcs between any pair of stable sgtand
termine the oriented chromatic number of the class §f have the same direction (either frofnto S,
partial 2-trees for every girth > 3. or from Sj to ). Theoriented chromatic number
of G, denoted byx,(G), is defined as the small-
Keywords: Partial 2-treeK4 minor-free graph; Series-estk such thatG admits an oriented-coloring.
parallel graph; Girth; Oriented chromatic number ~ The oriented chromatic numbegg(F) of a class
of oriented graph§ is defined as the maximum of

; G) taken over all graph& in &F.
1 Introduction Xo(G) grap

Let G andH be two oriented graphs. Aomo-

We consider finite simpleriented graphs, that is morphismfrom G to H is a mappingf fromV (G)
digraphs without opposite arcs nor loops. For 48V (H) that preserves the arcé(u) f(v) € A(H)
oriented graphG, we denote by (G) its set of wheneveruv € A(G). An orientedk-coloring of
vertices and byA(G) its set of arcs. The number@n oriented grapls can be equivalently defined as
of vertices ofG is theorder of G. Thegirth of a @ homomorphisnt from G to H, whereH is an
graphG is the size of a smallest cycle @. We oriented graph of ordek; such a homomorphism
denote by9y, T4, andPy, the class of outerplanars called aH-coloring of G or simply anoriented
graphs with girth at leasy, the class of partial 2- coloring of G.
trees with girth at leasg, and the class of planar The existence of such a homomorphism frém
graphs with girth at leag, respectively. to H is denoted byG — H. The vertices oH are

The notion of oriented coloring was introducegy)ied colors, and we say tha6 is H-colorable.
by Courcelle [5] as follows: aariented k-coloring  The oriented chromatic number 6f can then be

*Département Mathématiques et Informatique Appliqué(g,quwalently defined as the smallest order of an ori-

Université Paul-Valéry, Montpellier 3, Route de Mendé‘,z‘mec_j graptH such thatG—f H. Links between _
34199 Montpellier Cedex 5, France colorings and homomorphisms are presented in




more details in the monograph [6] by Hell an@) xo(04) =6[12],
Nesefil.

Oriented colorings have been studied by se(?’) Xo(Og)
eral authors in the last decade and the problemy js then natural to study the behaviour of the
of bounding the oriented chromatic number hagiented chromatic number of the class of partial
been investigated for various graph classes¢gee 5 _rees (also known as series-parallel graphéer
[3, 4,12, 13, 14]). minor free graphs) sinc@y C Ty C Pg.

A very challenging question is to determine the 5opena [14] proved thato(T3) = 7, and Pin-
oriented chromatic number of planar graphs. Ragy and Sopena [12] showed thg$(T4) = 7. In
paud and Sopena [13] proved in 1994 that their Ofis paper, we complete the characterization of the

ented chromatic number is at most 80. Recentlyiented chromatic numbers of partial 2-trees with
Marshall [8] proved that there exist planar graprg?,ven girth:

with an oriented chromatic number at least 17. The

gap between the lower and the upper bound is verjeorem 3

large, but it seems very hard_ to reduce_. (1) Xo(Ty) =6 for every girthg, 5 < g < 6;
Some authors then studied the oriented chro-

matic number of planar graphs with given girth t62) Xo(7g) =5 for every girthg > 7.

get some hints on the behaviour of this invariant.

The following bounds have been obtained:

=5for everyg>5[12].

This paper is organized as follows. We give in
the next section some preliminary results which are

Theorem 1 [1, 2, 3,4, 9, 10, 11] used in Section 3 to prove Theorem 3. In Section 4,
we show that the proof techniques we use in this
(1) 11<xo(Pa) <47[2,10]. paper allow us to improve the upper bound of the

oriented chromatic number of planar graphs with

(2) 5<Xo(P5) <16[9,11], girth at least 11.

(3) 5<Xo(Ps) <11[4, 9],

_ 2 Notation and preliminary results
(4) 5< Xo(Pg) <7 for every girth7 < g <11[1,

9, In the remainder, we will use the following nota-
tion. For a graphG and a vertexv, we denote
by ds(v) the degree ofr. A vertex of degreek

We can remark that the oriented chromatic nurg-eSp' at leask) will be called ak-vertex (resp.
. —k-vertex). We denote by(G) (resp. A(G)) the

ber of planar graphs with girth at least 12 have been . :
minimum (resp. maximum) degree of the graph

characterized. However, for girths 4 to 11, only eﬁ- uv is an arc,u is a predecessor of v andv is a

timates are known. . .

. successor of u. A vertex will be called asource if

Sopena [14], and Pinlou and Sopena [12] con- o

. . ) It has no predecessors andigk if it has no suc-
sidered the oriented chromatic number of the claggssors

of outerplanar graphs (which is a graph class i . . B
strictly included in the class of planar graphs%. A kepath in a graph G is a path P =

. e U,vi,Vo,...,-1,wW] of lengthk (i.e. a path with
They obtained exact bounds for every girth: k arcs). The vertices andw are theendpoints of

(5) Xo(Pg) =5for every girthg > 123, 9],

Theorem 2 [12, 14] P. Note that a 1-path is an arc. (,d)-path is a
k-path such that all internal verticegshave degree
(1) Xo(03) = 7[14], d.



In the remainder of this section, we state a struc-
tural property of partial 2-trees due to Léhal. [7]
and generalize it to partial 2-trees with given girth.
6 3 For a given undirected grapB& and a vertex
v e V(G), we denote:

5 4 DE(v) = [{u€V(G), d(u) > 3, such that
either uv € A(G)

or 3weV(G),dg(w) = 2,uw,wv € A(G)}|.
Figure 1: The two target tournaments. Lih, Wang and Zhu [7] proved the following
structural lemma for partial 2-trees:

@Ts (b) Ts

eldemmaG [7] Let G be a partial 2-tree such that

The upper bounds of Theorem 3 will be obtain .
> 2. Then, one the following holds:

by proving that the considered partial 2-trees adn%G)
aT-coloring, for some tournamefit. We will use
the tournamentds and Tg depicted on Figure 1,
whose properties, given below, have already been

used in the literature to bound oriented chromatic2. there exists a =3-vertex v such that DG(v) <2.
number and oriented chromatic index of graphs.

The tournamenTs is a circular tournament and We generalize the previous lemma to partial

1. there exists a (3,2)-path (i.e. two adjacent 2-
vertices);

thus is vertex-transitive. 2-trees with given girth. For a given undirected
Proposition 4 [4] For every pair of (not neces graphG Wlt.h girth at leasg and a vertex €V (G),
we denote:

sarily distinct) vertices u,v € V(Ts), there exists

an oriented 4-path connecting u with v for any of %(v) = {u€V(G),d(u) > 3, such that
the 16 possible orientations of such an oriented 4- either 3 a unique(k, 2)-path linkingu andv, k > 1,
]

path. or Jat least oné[ ] ,2)-path linkingu andv}.

Proposition 5 [12] For every pair of (not necess ~ We then denoteD(v) = [S5(v)|. Note that
sarily distinct) verticesu,v € V(Tg), thereexistsan  D§(v) = D®(v) for everyv e V(G).
oriented 3-path connecting u with v for any of the

8 possible orientations of such an oriented 3-path. Lemma7 Let G be a partial 2-tree with girth g

such that §(G) > 2. Then, one the following holds:

Our proof techniques to get upper bounds for the;  there exists a ( [g] +1,2)-path;
oriented chromatic number are based on the well- 2

known method of reducible configurations. We 2. thereexistsa=3-vertex v such that Dg(v) <2
suppose that there exists a hypothetical minimal

counterexampléd to the considered theorem an@roof. LetH € Ty with 8(H) > 2 such that it con-
we prove thaH does not contain some configuratains no([J| + 1,2)-path. Note that in this cade
tions. Then, thanks to structural properties of pas not a cycle and thus contairg-vertices. Then,
tial 2-trees with given girth, we show thitneces- consider the graphl’ obtained fromH by remov-
sarily contains one of the forbidden configurations)g all the 2-vertices and adding an arc between
otherwiseH would not be a partial 2-tree. Thisevery pair of the remaining vertices which were
contradiction allow us to conclude. linked by at least onék,2)-path inH, for some



k. SinceH contains=3-verticesH’ is not reduced
to a unique vertex.
Let v be any vertex oH’ and letNy/(v) be the
set ofV's neighbors inH’. By construction, there
exists, for everyv € Ny (v), at least onék, 2)-path
linking v andw in H for somek > 1. In addition,
if there exists more than ond, 2)-path linkingv
andw in H, then at most one of these paths is
a (|3],2)-path and the others arg3]|,2)-paths
sinceH has girthg. This shows that for every X X
v e H’, we havedy (v) = Dy (v).
Since the class of partial 2-trees is closed
under edge-contractionH’ is clearly a partial =
2-tree. Since partial 2-trees are 2-degenerate,
H’ contains a vertex of degree at most 2, and
thereforeDf (v) < 2 (note that (v) > 3 since this y y
vertex remains itd’). That completes the proof] (a) The graplQ

Corollary 8 Every partial 2-tree with girthg > 3
contains either a 1-vertex or a ([2],2)-path.

Proof. Let H € Ty with &(H) > 2 having no
([4] + 1,2)-path. By Lemma 7H contains a
Z3-vertexv such thatD'g'| (v) < 2. Therefore, by
definition of DgH, this means that has degree at
least 3 inH, but degree at most 2 iR’ (H' is

the graph obtained frond by removing all the
2-vertices and adding an arc between every pair
of the remaining vertices which were linked by
at least ongk,2)-path inH, for somek). That
implies thatH contains a vertew such thatv and
w are the endpoints of at least tw@, 2)-paths
and at least one of them must bg[4 |, 2)-path. O]

(b) The graphGg

' Figure 2: Construction of an oriented partial 2-tree
with girth 6 and oriented chromatic number 6.

3 Theoriented chromatic number
of partial 2-trees

In this section, we prove Theorem 3.

Proof of Theorem 3(1). We first prove that
Xo(Tg) < 6 for every girthg, 5< g < 6. Note that it

is sufficient to consider the cage- 5; we therefore
prove that every partial 2-tree with girth at least 5

4



admits a homomorphism to the tournam@&gde-

picted in Figure 1(b). LeH be a minimal (w.r.t. 1 2
the number of vertices) partial 2-tree with girth at

least 5 having no homomorphism Tg. We show

thatH contains neither a 1-vertex nok& 2)-path.

1. Suppose thdtl contains a 1-vertex. Then, 4 3
due to the minimality oH, the partial 2-tree
H’ = H \ u has girth at least 5, and thus ad-
mits a Tg-coloring f. Since every vertex of Figure 3: The tournameri.
Te has at least two successors and at least two
predecessord, can be easily extended kb.

2. Suppose now thatl contains a(3,2)-path ~ Hence,Xo(Gs) > 5. Suppose thats(Ge) = 5.
[u,v1,V2,w]. Then, due to the minimality of There exist twelve non isomorphic tournaments on

H, the partial 2-tre¢d’ = H \ {vq,Vv»} admits 5 vertices. We will prove that none of these tour-

a Tg-coloring f. By Proposition 5,f can be naments allows us to cold@s. We can first omit

extended tdH. those containing a source or a sink. The six re-
maining tournaments are depicted in Figure 4.

By Corollary 8,H contains either a 1-vertex, or A case study shows that evefly-coloring f
a (3,2)-path. This leads us to a contradictiod: of Q, where T is one of the five tournaments
does not exist. in Figures 4(a), 4(b), 4(c), 4(d), 4(e), implies

To complete this proof, we have to construdhat f(x) = f(y). Hence, this would mean that
a partial 2-tree with girth 6 and oriented chrof(v1) = f(u1) = f(v2) in Gg, which is forbidden.
matic number 6. Let us consider the graide- It is then clear that if{o(Gg) = 5, thenGe — T
picted in Figure 2(a) obtained from two verticewhereT is the tournament depicted in Figure 4(f).
x andy linked by the eight possible oriented 3A case study shows that evefycoloring f of Q
path. Then, consideGg obtained from a circuit is such thatf (x) € {1,2,5} and f(y) € {1,2,5}.
[V1,V2,V3,V4, Vs, Vg, V7, V1] Of length seven and four-However, the circuitvy, v2,V3,Va, Vs, Ve, V7, V1] in
teen copies of the grapf arranged as depicted orfse needs four colors, that is a contradiction. Thus,
Figure 2(b). We can easily see tlG§ is a partial the graphGg has oriented chromatic number &
2-tree with girth 6.

Suppose first thato(Ge) < 4. Therefore, there Proof of Theorem 3(2). We first prove that
exists a homomorphisnfi : Ge — T, whereT is Xo(7g) < 6 for every girthg > 7. Note that it is
a tournament on 4 vertices. SinGg contains a sufficient to consider the cage= 7; we therefore
circuit of length 7 0 (mod 3, T must contain a prove that every partial 2-tree with girth at least 7
circuit of length 4. There exist four non isomorphiadmits aTs-coloring, whereTs is the tournament
tournaments on four vertices, but only one contaidgpicted in Figure 1(a). Led be a minimal (w.r.t.
a circuit of length 4: the tournameil}, depicted the number of vertices) partial 2-tree with girth at
in Figure 3. However, we can check tHat/~ T, least 7 having no homomorphismTg. The proof
since there does not exist a pair of colorandv techniques are the same than those in the proof of
in V' (T4) which color the verticeg andy (i.e. such Theorem 3(1). By minimality and Proposition 4,
thatu andv are the endpoints of the eight possiblee prove thatH contains neither a 1-vertex nor a
oriented 3-paths ifl). Thus,Gg 4 Ta. (4,2)-path. We thus get a contradiction thanks to



1 1
5 2 5
4 3 4
@ (b)
1 1
5 2 5
4 3 4
(© (d)
1 1
5 2 5
4 3 4

(e) (®

Corollary 8.

To complete this proof, we have to construct,
for all girths g > 7, a partial 2-tree with girth
g and oriented chromatic number 5. Né#egt
al. [9] constructed for everg, g > 3, an oriented
outerplanar graph with girth at leagt which
has oriented chromatic number 5. The class
of outerplanar graphs is strictly included in the
class of partial 2-trees: that completes the praof.

4 Concluding remarks

In this paper, we characterized the oriented chro-
matic number of partial 2-trees for every girth
g > 3. Note that our results improve the previ-
ously known lower bounds for the oriented chro-
matic number of planar graphs with girths 5 and 6
(see Theorems 1(2) and 1(3¥s(Py) > 6 for ev-
eryg € [5,6]. Moreover, we show in the remainder
that our proof techniques can be used to improve
the upper bound of the oriented chromatic number
of planar graphs with girth at least 11.

Remind that Theorem 1 giveg(P11) < 7. It
is well-known that a planar graph with minimum
degree 2 and girth at leagt= 5k + 1 necessarily
contains gk+ 1,2)-path [9]. Thus, a planar graph
with girth at least 11 contains(&, 2)-path (i.e. two
adjacent 2-vertices). This allows us to prove the
following new upper bound:

Theorem 9 Xo(P11) <6.

The proof techniques are the same than those in

Figure 4: The six non isomorphic tournaments A€ Proof of Theorem 3(1). Actually, we can prove

five vertices without source nor sink.

that every planar graph with girth at least 11 admits
a homomorphism to the tournaméhtdepicted in
Figure 1(b). To get this result, we consider a min-
imal (w.r.t. the number of vertices) planar graph
with girth at least 11 having no homomorphism
to Ts. We can prove that this graph contains nei-
ther a 1-vertex, nor &3,2)-path thanks to Propo-
sition 5. This contradicts the above-mentioned re-
mark: such a planar graph does not exist.
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