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The Minimum Degree Heuristic and the Minimal

Triangulation Process

Anne Berry� Pinar Heggernesy Genevi�eve Simonetz

Abstract

The Minimum Degree Algorithm, one of the classical algorithms of sparse matrix compu-

tations, is a heuristic for computing a minimum triangulation of a graph. It is widely used as a

component in every sparse matrix package, and it is known to produce triangulations with few

�ll edges in practice, although no theoretical bound or guarantee has been shown concerning

the amount of �ll it introduces. An additional remarkable property of Minimum Degree ob-

served in practice is that it often produces a minimal triangulation. Despite extensive research

on optimizing the running time of this heuristic, few theoretical results are known about it.

Our goal in this paper is to examine the theoretical reasons behind such good behaviour.

We give new invariants which explain, at least in part, the mechanisms underlying this heuris-

tic. We show that Minimum Degree is in fact robust, in the sense that it is resilient to error,

as even when an undesirable triangulating edge with respect to minimal triangulation is added

at some step of the algorithm, at later steps the chances of adding only desirable edges re-

main intact. We also use our new graph theoretical insight to propose an improvement of this

heuristic, which introduces at most as many �ll edges as Minimum Degree but is guaranteed

to yield a minimal triangulation.

1 Introduction

For the past forty years, problems arising from applications have given rise to challenges for graph

theorists, and thus also to a wealth of graph-theoretic results.

One of these is computing a minimum triangulation. Though the problem originally arised from

the �eld of sparse matrix computation [10, 24], it has applications in various areas of computer

science, such as database management systems [26], knowledge based systems [15] and computer

vision [6].

Large sparse symmetric systems of equations arise in many areas of engineering,as the structural

analysis of a car body, or the modeling of air ow around an airplane wing. The physical structure

can often be thought of as covered by a mesh where each point is connected to a few other

points, and the related sparse matrix can simply be regarded as an adjacency matrix of this mesh.

Such systems are solved through standard methods of linear algebra, like Gaussian elimination,

and during this process non-zero entries are inserted into places that originally held zeros, which

increases both the storage requirement and the time needed to solve the system. It was observed

very early that �nding a good pivotal ordering of this matrix can reduce the amount of �ll thus

introduced: in 1957, Markowitz [18] introduced the idea behind the algorithm known today as

Minimum Degree, choosing a pivot row and column at each step of the Gaussian elimination to

decrease the product of the number of corresponding o�-diagonal non-zeros. Tinney and Walker

[27] later applied this idea to symmetric matrices, and Rose [24] developed a graph theoretical

model of it.

�LIMOS UMR CNRS 6158, Bat Isima, BP 10 125, 63 173 Aubi�ere, France. berry@isima.fr
yDepartment of Informatics, University of Bergen, N-5020 Bergen, Norway. pinar@ii.uib.no
zLIRMM, 161 Rue Ada, 34 392 Montpellier, France. simonet@lirmm.fr

1



It appeared rapidly that solving such systems is easy when the undirected graph represented

by the corresponding matrix is chordal (or triangulated). This is due to the property that �nding a

good pivotal ordering on the matrix is equivalent to �nding in the corresponding underlying graph

a perfect elimination scheme [13], which means repeatedly �nding a simplicial vertex and removing

it. This process was shown by Fulkerson and Gross [9] in 1965 to characterize chordal graphs.

When the underlying graph fails to be chordal, however, a solution can be found by embedding

the graph into a chordal graph by adding edges, a process called triangulation.

As early as 1961, Parter [22] presented an algorithm, known as Elimination Game (EG), which

simulates Gaussian elimination by repeatedly choosing a vertex and adding edges to make its

neighborhood into a clique before removing it, thus introducing the connection between sparse

matrices and graphs. In view of the results in [9], no non-zero entries are introduced when the

underlying graph is chordal, and when this fails to be the case, EG produces a triangulation of the

input graph.

As can be observed on the example in Figure 1, the number of �ll edges in the resulting

triangulation is heavily dependent on the order in which EG processes the vertices.

As mentioned above, it is of primary importance to add as few edges as possible when running

Elimination Game. The corresponding problem is that of computing a minimum triangulation,

which unfortunately is NP-complete, as shown by Yannakakis [28].

Although it is possible to compute in polynomial time a triangulation which is minimal (mean-

ing that an inclusion-minimal set of edges is added, [20], [25]), this process is not pursued by the

sparse matrix society in practice, since such a triangulation can be far from minimum, as can be

seen from the example of Figure 1(b).

As a result, researchers have resorted to heuristics, of which one of the most universally used

and studied is Minimum Degree, or MD : this runs the Elimination Game by choosing at each step

a vertex of minimum degree in the transitory elimination graph, as illustrated by Figure 1(d). This

algorithm is widely used in practice, and it is known to produce low �ll triangulations. In addition,

MD is also observed [5] to produce triangulations which are often minimal or close to minimal.
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Figure 1: (a) A graph G, and various triangulations of G by EG through the given orderings: (b)

A minimal triangulation with O(n2) �ll edges. (c) A non-minimal triangulation of G with less �ll.

(d) A minimum triangulation of G.

MD has given rise to a large amount of research with respect to improving the running time of

its practical implementations, and the number of papers written on this subject is in the hundreds

[1, 11]. However, very little is known theoretically as to its quality. It has in fact been analyzed

theoretically only to a limited extent, which makes it diÆcult to gain control over this heuristic in

order to improve it yet further, although recent research has been done on algorithms for low �ll

minimal triangulations [5, 7, 23].

In this paper, we use recent graph theoretical results on minimal triangulation and minimal

separation to explain, at least in part, why MD yields such good results. In fact, it turns out that

one of the reasons why MD works so well is that the EG algorithm is remarkably robust, in the

sense that it is resilient to error: if at some step of the process an undesirable edge with respect to
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minimal triangulation is added, at later steps the chances of adding only desirable edges remain

intact. One of our contributions here is that we use the insight we have gained on the mechanisms

which govern EG and MD to propose an algorithmic process which improves the results obtained

by MD, giving triangulations that are both minimal and have low �ll.

The remainder of this work is organized as follows: Section 2 gives the graph theoretic back-

ground, introduces EG formally, and gives previous results on minimal separation and minimal

triangulation. In Section 3, we give some new invariants for EG and MD, and explain why these

algorithms are resilient to error, and why in many cases MD computes a minimal triangulation.

Section 4 proposes a new algorithmic process in view of using the results of the paper to improve

MD.

2 Preliminaries

Given a graph G = (V;E), we denote n = jV j and m = jEj. For any subset A of V , G(A) denotes

the subgraph of G induced by A. For the sake of simplicity, will use informal notations such as

H = G+ feg+ fxg when H is obtained from G by adding edge e and vertex x. For any vertex v

of G, NG(v) denotes the neighborhood of v in G, and NG[v] denotes the set NG(v) [ fvg. For a
given set of vertices X � V , NG(X) = [v2XNG(v) �X , and NG[X ] = [v2XNG(v) [X (we will

omit the subscripts when there is no ambiguity).

A clique is a set of pairwise adjacent vertices. A vertex is simplicial if its neighborhood is a

clique. We will say that we saturate a set of vertices X when we add to the graph all the edges

necessary to make X into a clique. A graph is chordal, or triangulated, if it contains no chordless

cycle of length � 4. The set F of edges added to an arbitrary graph G = (V;E) to obtain a

triangulation H = (V;E + F ) of G is called a �ll.

(G;�) will denote a graph G, the vertices of which are ordered according to �. We will use

� = (v1; v2; :::; vn), where �(vi) = i.

The algorithmic description of Elimination Game (EG) given below de�nes the notations we

will use in the rest of this paper:

Algorithm Elimination Game

Input: A graph G = (V;E), and an ordering � of the vertices in G.

Output: A triangulation G+
� of G.

begin

G1
�  G; H  G;

for k = 1 to n do

Let F be the set of edges necessary to saturate NGk
�
(vk) in G

k
�;

Gk+1
�  Gk

� + F � fvkg;
H  H + F ;

G+
�  H ;

end

According to the de�nition used in [20], we will call Gk
�(fvk; :::; vng�NGk

�
[vk]) the section graph

at step k. The edges added during an execution of EG are well de�ned by the following lemma by

Rose, Tarjan and Lueker:

Lemma 2.1 ([25]) Given (G;�), vivj is an edge of G+
� if and only if vivj is an edge of G or there

is a path in G between vi and vj , all intermediate vertices of which have a number which is strictly

smaller than minfi; jg.

The Minimum Degree (MD) heuristic is based on EG: it takes as input a graphG, and computes

an ordering � along with the corresponding triangulation G+
� , by choosing at each step a vertex of

minimum degree in Gk
� and numbering it as vk.
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Before proceeding to the next section, we will need some results on minimal separation. The

notion of a minimal separator was introduced by Dirac [8] to characterize chordal graphs. Given a

graph G = (V;E), a vertex set S � V is a minimal separator if G(V �S) has at least two connected
components C1 and C2 such that NG(C1) = NG(C2) = S (C1 and C2 are called full components).

Characterization 2.2 ([8]) A graph is chordal i� all its minimal separators are cliques.

Recent research [14, 21, 2] has shown that minimal separators are central to minimal triangu-

lations. The idea behind this is that forcing a graph into respecting Dirac's characterization will

result into a minimal triangulation, by repeatedly choosing a not yet processed minimal separa-

tor and saturating it. We will need the de�nition of crossing separators, which characterize the

separators which disappear when a saturation step of this process is executed:

De�nition 2.3 ([14]) Let S and S0 be two minimal separators of G. S and S0 are said to be

crossing if there exist two connected components C1; C2 of G(V � S), such that S0 \ C1 6= ; and
S0 \ C2 6= ; (the crossing relation is symmetric).

The saturation process described above can be generalized by choosing and simultaneously

saturating a set of pairwise non-crossing minimal separators instead of a single minimal separator

at each step, until a chordal graph is obtained. We will refer to this generalized process as the

Saturation Algorithm. Given a set S of minimal separators of G, we will denote GS the graph

obtained from G by saturating all the separators belonging to S.

The following results from the works of Kloks, Kratsch and Spinrad [14] and Parra and Sche�er

[21] provide a proof of this algorithm and will be used in Sections 3 and 4.

Theorem 2.4 ([21]) A graph H = (V;E + F ) is a minimal triangulation of G = (V;E) i� there

is a maximal set S of pairwise non-crossing minimal separators of G such that H = GS.

Corollary 2.5 A graph H = (V;E +F ) is a minimal triangulation of G = (V;E) i� H is chordal

and there is a set S of pairwise non-crossing minimal separators of G such that H = GS.

We will also need the following Lemmas, which follow from the work in [21]:

Lemma 2.6 ([21]) Let G = (V;E) be a graph, let S and S0 be sets of pairwise non-crossing minimal

separators of G and GS, respectively. Then S [ S0 is a set of pairwise non-crossing minimal

separators of G.

Lemma 2.7 ([21]) Let G = (V;E), be a graph and S a set of pairwise non-crossing minimal

separators of G. Then any minimal triangulation of GS is a minimal triangulation of G.

We will also use the notion of substar, which was introduced by Lekkerkerker and Boland [16]

in connection with their characterization of chordal graphs.

De�nition 2.8 ([16]) Given a graph G = (V;E) and a vertex x of G, the substars of x in G are

the neighborhoods in G of the connected components of G(V �N [x]).

In fact, although Lekkerkerker and Boland seemed not to be aware of this, the set of substars

of some vertex x is exactly the set of minimal separators included in the neighborhood of x. LB-

simpliciality of a vertex was de�ned in [3] in the following way for more convenient terminology.

De�nition 2.9 A vertex x is LB-simplicial if every substar of x is a clique.

This was implicitly used by [16] to characterize chordal graphs as graphs such that every vertex

is LB-simplicial, but the notion of substar is also very useful in the context of minimal triangulation,

because it provides a fast and easy way of repeatedly �nding sets of pairwise non-crossing minimal

separators when running the Saturation Algorithm. This is fully described in [4], with in particular

the following lemma:

Lemma 2.10 ([4]) The substars of a vertex x in a graph G are pairwise non-crossing in G.

4



3 Properties of Elimination Game related to minimal trian-

gulation

We will now examine how EG behaves with respect to the minimal separators of the graph which

is to be triangulated.

3.1 EG and partial minimal triangulation

We will �rst extend the de�nition of substar given in Section 2 to that of substars of (G;�).

De�nition 3.1 Given (G = (V;E); �), we will say that a set S � V of vertices is a substar of

(G;�) if there is some step k of EG such that S is a substar of vk in Gk
�, which will be referred to

as a substar de�ned at step k of EG.

Clearly, during the execution of the EG, at each step k, making the currently processed vertex vk
simplicial will saturate these substars, and may also add some extraneous edges which do not have

both endpoints in some common substar, so that two kinds of edges can be added:

� Edges which have both endpoints in some common substar de�ned at step k. We will refer

to these edges as substar �ll edges.

� Edges which do not have both endpoints in some common substar de�ned at step k. We will

refer to these as extraneous edges.

In Section 2, we mentioned that in G and for a given vertex v, the substars of v are the minimal

separators included in the neighborhood of v. One of our most interesting discoveries is that, in

fact, all the substars de�ned by EG are minimal separators of the input graph, whether or not

extraneous edges have been added at earlier steps. This fact is stated in Theorem 3.3, and its

proof is based on the following Lemma, which is interesting in its own right, as it describes a

strong correspondence between the structures of G and Gk
�.

Lemma 3.2 Given (G = (V;E); �) and an integer k 2 [1; n], let Gk
� = (V k

� ; E
k
�) and S � V k

� .

The connected components of Gk
�(V

k
� � S) are the sets C \ V k

� where C is a connected component

of G(V � S) such that C \ V k
� 6= ;, with the same neighborhoods, i.e. NGk

�
(C \ V k

� ) = NG(C).

The proof of this lemma is given in the Appendix.

Theorem 3.3 Every substar of (G;�) is a minimal separator of G.

Proof : Let S be a substar de�ned at step k. S is a minimal separator of Gk
�; by Lemma 3.2,

there are at least as many full components of G(V � S) as of Gk
�(V

k
� � S). So S is also a minimal

separator of G. 2

We are now ready to state our Main Theorem:

Main Theorem 3.4 The set of substars of (G;�) forms a set of pairwise non-crossing minimal

separators of G.

Proof : Let S and S0 be two substars of (G;�) de�ned at steps k and k0 respectively, with k � k0.

By Theorem 3.3, they are both minimal separators of G. Let us show that they are non-crossing

in G. If k = k0 then they are non-crossing in Gk
� by Lemma 2.10, so they are non-crossing in G

by Lemma 3.2. We suppose now that k < k0. S is a clique of Gk+1
� and S0 � V k+1

� , so there

is a connected component C of Gk+1
� (V k+1

� � S0) such that S � S0 [ C. By Lemma 3.2, there

is a connected component C 0 of G(V � S0) containing C, so S � S0 [ C 0. Hence S and S0 are

non-crossing in G. 2
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Figure 2: Two executions of EG on the same graph with (b) an arbitrary ordering, and (c) an MD

ordering.

Note that this theorem does not guarantee that the set of substars de�nes a set of pairwise

non-crossing minimal separators which is maximal. For instance, for any non complete graph G, if

v1 is a universal vertex of G then there is no substar of (G;�) whereas G has at least one minimal

separator. A less trivial counterexample is given in Figure 2(b) of Example 3.5.

Example 3.5 Figure 2 shows two executions of EG on graph G.

(a) A graph G and an ordering � are given. The minimal separators of G are: f1; 3g, f3; 5g,
f3; 7g, f1; 4; 6g, f1; 4; 7g, f1; 4; 8g, f3; 5; 7g, f4; 5; 7g, f4; 5; 8g, f4; 6; 8g, f3; 4; 6g.

(b) We now demonstrate the execution of EG on (G;�) resulting in the graph shown in (b).

Step 1: N(1) = f2; 3; 5g, C1 = f4; 6; 7; 8g; N(C1) = f3; 5g; substar �ll edge 35 and extraneous

edge 25 are added. Step 2: N(2) = f3; 5g; C2 = f4; 6; 7; 8g; N(C2) = f3; 5g; 2 is simplicial, so no

edge is added. Step 3: N(3) = f4; 5; 8g, C3 = f6; 7g; N(C3) = f4; 5; 8g; substar �ll edges 48 and

58 are added. Step 4: N(4) = f5; 6; 7; 8g; 4 is universal, so no component is de�ned; extraneous

edges 57 and 68 are added; the remaining graph becomes a clique; no further edge is added.

The set of substars of (G;�) is thus ff3; 5g; f4; 5; 8gg, which is a set of pairwise non-crossing

minimal separators of G, but not a maximal one as ff3; 5g; f4; 5; 8g; f4; 5; 7gg and ff3; 5g; f4; 5; 8g;
f4; 6; 8gg are also sets of pairwise non-crossing minimal separators of G. If only substar �ll edges

are preserved, a chordless cycle 5678 remains in the graph thus obtained. In order to saturate a

maximal set of pairwise non-crossing minimal separators of G, f4; 5; 7g or f4; 6; 8g should also be

saturated.

(c) On the same graph, MD yields a minimal (and even minimum) triangulation.

We would like to end this subsection with a discussion on the robustness of EG and MD

regarding the process of de�ning non-crossing minimal separators of G. If, during the EG process,

no extraneous edge is added, then the triangulation which is computed is minimal. However, due to

Theorem 3.4, even when extraneous edges have been added, all substar �ll edges added later belong

to a set of pairwise non-crossing minimal separators of G, and therefore to a minimal triangulation

of G. Thus if only a few extraneous edges are added during EG process, they will not destroy the

property that all the substar �ll edges are \useful" edges and that these few extraneous edges are

the only \unnecessary" edges introduced. This makes EG a fault-tolerant procedure.

3.2 Conditions for EG and MD to produce minimal triangulations

We have seen that EG does not necessarily compute a minimal triangulation. However, as men-

tioned earlier, MD is observed in practice to often produce orderings that are minimal or close to

minimal, in addition to low �ll. We will now give an explanation of this good behaviour of MD

through Lemma 3.6.

Lemma 3.6 Let vk be a vertex of minimum degree in Gk
� such that the union of all substars de�ned

at step k is equal to a substar S de�ned at step k. Then only substar �ll edges are added at step k.
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Proof : Assume by contradiction that there is an extraneous edge yz added at step k. Then y or

z, say y, is not in S. NGk
�
(y) � NGk

�
[vk]�fy; zg, so that jNGk

�
(y)j < jNGk

�
(vk)j, which contradicts

the fact that vk is a vertex of minimum degree in Gk
�. 2

This result shows in particular that when the section graph is connected at some step of MD,

then �ll edges are added at that step only within the single substar de�ned. As is clear from the

proof of this lemma, this is not the case in general for EG. Moreover, in most practical applications

[19], the input graph is sparse; although no statistical result has been established on this, intuitively,

a vertex x of minimum degree quite often de�nes only one substar, which usually corresponds to

a connected section graph. MD run on sparse graphs thus stands a signi�cantly higher chance of

generating minimal triangulations than EG.

4 Improving the results of Minimum Degree

Based on the results of the previous sections, we now present a variant of MD that produces a

minimal triangulation and yields at most the same amount of �ll, because it computes a minimal

triangulation which is a subgraph of that computed by MD.

We have seen in Section 3 that the set S of non-crossing minimal separators of G de�ned by

the set of all substars of (G;�) is not necessarily maximal. Thus if we remove all extraneous

edges from G+
� (or equivalently, add to G only the substar �ll edges), the graph GS thus obtained

might fail to be triangulated. However, by Lemma 2.7, we know that any minimal triangulation

H of GS is a minimal triangulation of G. We thus propose a process which computes a minimal

triangulation of the graph GS obtained by running MD on G and removing the extraneous edges.

In order to give the MD approach its chances, we will repeat the process of running MD on the

partially triangulated graph obtained and removing the extraneous edges, until a chordal graph is

obtained. However, at the beginning of each iteration, we will remove all LB-simplicial vertices,

according to the following result:

Lemma 4.1 Let G = (V;E) be a graph, let X be the set of LB-simplicial vertices of G, let

G0 = G(V �X) = (V 0; E0); then for any minimal triangulation H 0 = (V 0; E0+F 0) of G0, the graph

H = (V;E + F 0) is a a minimal triangulation of G.

Proof : H is chordal because for any cycle C in H of length � 4, either C is in H 0 and then

C has at least one chord, or C contains a vertex x of X and then the neighbors of x in C induce

a chord of C, as they belong to the substar of x de�ned by the component containing the other

vertices of C. So H is a a triangulation of G. It is a minimal one because for any chordal graph

H1 = (V;E + F 0

1) with F
0

1 � F 0, the graph H 0

1 = (V 0; E0 + F 0

1) is chordal too, so that F
0

1 = F 0. 2

Thus the LB-simplicial vertices can only cause MD to add extraneous edges, as well as unneces-

sarily increasing some vertex degrees, which justi�es our systematically eliminating them from the

graph at each step. Note that any step of the MD process tends to create LB-simplicial vertices,

so removing these can make a signi�cant di�erence regarding the quality of the �ll obtained.

We now present the new algorithm.

Algorithm Minimal Minimum Degree (MMD)

Input: A graph G.

Output: A minimal triangulation H of G.

begin

Run MD on G, which de�nes an ordering � and a set of substars S of (G;�);

G0  GS; H  GS;

while G0 is not chordal do

Remove all LB-simplicial vertices from G0;

Run MD on G0, which de�nes an ordering � and a set of substars S of (G0; �);

7



G0  G0

S
; H  HS;

end

It should be noted that graphs can be constructed such that no execution of MD can produce

a minimal triangulation. Such an example is a graph consisting of two large cliques, connected by

a single path of length � 2. The graph is chordal, but vertices on the path will be chosen by MD

at �rst steps, introducing unnecessary �ll. MMD will not encounter any problem with that kind

of graph, since the only minimal triangulation of a chordal graph is the graph itself.

We now prove that MMD gives a �ll which is as least as good a that of MD, by showing that

MMD yields a subgraph of G+
� .

Theorem 4.2 Let S be the set of substars of (G;�). Then any minimal triangulation H of GS is

a minimal triangulation of G which is a subgraph of G+
� .

The proof of this theorem is given in the Appendix.

Theorem 4.3 Minimal Minimum Degree computes a minimal triangulation of G which is a sub-

graph of G+
� , where � is the MD ordering computed at the beginning of the algorithm.

Proof : MMD terminates, because at the beginning of each step, the LB-simplicial vertices are

all removed, so that the vertex of minimum degree which is chosen �rst is not LB-simplicial; as a

result, making it simplicial cannot fail to add at least one substar �ll edge. Let us prove MMD

correctness. Let H be the output graph, let S0 be the set of substars computed at the beginning

of the algorithm and S0 be the union of those computed in the while-loop. Thus H = (GS0 )S0 ,

GS0 being the input graph of the while-loop. By Theorem 4.2 it is suÆcient to show that H is a

minimal triangulation of GS0 , or more generally that for any input graph G0 of the while-loop, the

graph G0

S0 , where S0 is the union of the sets of substars computed in the while-loop, is a minimal

triangulation of G0. Let us prove this property by induction on the number p of iterations of the

while-loop before G0 gets chordal. It trivially holds for p = 0, as in that case G0 is chordal and S0

is the empty set. We suppose that it holds when the number of iterations of the while-loop before

G0 gets chordal is p. Let us show that it holds when this number is p + 1. Let G0

1 be the graph

obtained from G0 by removing all its LB-simplicial vertices, let S01 be the set of substars computed

at the �rst iteration of the while-loop and S00 be the union of those computed at the following

iterations, and let G00 be the graph obtained at the end of the �rst iteration. Thus G00 = (G0

1)S0

1
and

S
0 = S

0

1 [ S
00. By induction hypothesis, G00

S00 is a minimal triangulation of G00, so by Theorem 3.4

and Lemma 2.7, it is also a minimal triangulation of G0

1. G
00

S00 = ((G0

1)S0

1
)S00 = (G0

1)S0

1
[S00 = (G0

1)S0 .

Thus the graphs G0

S0 and G00

S00 are obtained from G0 and G0

1 respectively by adding the same set

F 0 of edges, so by Lemma 4.1, G0

S0 is a minimal triangulation of G0, which completes the proof by

induction and therefore the proof of MMD correctness. 2

With practical tests, we have compared MMD against MD, with respect to the number of edges

in the resulting triangulation. We have done a simple and straightforward implementation of MMD

in Matlab, and we have run the tests both on randomly generated graphs of varying density, and

on graphs from Matrix Market [19]. On each graph G, we �rst generated an MD ordering �. Then

we compared the number of �ll edges in G+
� to the number of �ll edges produced by MMD. As

expected by Theorem 4.3, the number of �ll edges resulting from MMD was always less than or

equal to the number of �ll edges resulting from MD. An interesting point is that on most graphs,

MMD required only two iterations of the while-loop. The reduction in the number of �ll edges

achieved by MMD was not very large, because of MD's remarkably good performances. However,

this improved algorithm may both give signi�cant results on very large graphs and help researchers

gain a better evaluation of how close MD gets to an optimal solution.

Finally, we would like to mention that existing MD codes in use are very fast although the

theoretical running time of these implementations is not good [12]. In addition, other iterative

procedures for computing minimal triangulations have been implemented to run fast in practice

[23]. Thus we believe that, with some e�ort, MMD can be implemented to run eÆciently in

practice.
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5 Conclusion

Our contributions in this paper are threefold. We have found new invariants for the Elimination

Game process, proving that it de�nes and saturates a set of minimal separators of the input

graph, with a remarkably fault-tolerant behavior. We have shown that Minimum Degree has

additional properties that gives it a high chance of actually producing minimal triangulations,

thereby explaining this practical behavior of MD. Finally, we have given a new algorithm that

produces minimal triangulations with low �ll, based on our �ndings about EG and MD.
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Appendix

In the following proofs, for any graph G = (V;E) and S � V , CG(S) denotes the set of connected

components of G(V � S). We will use the following characterization (C) of the edges of Gk
�, with

Gk
� = (V k

� ; E
k
�) and V

k
� = fvk; vk+1; :::; vng:

(C): for any distinct i; j 2 [k; n], vivj 2 Ek
� i� there is a path in G between vi and vj (the

path may have only one edge) all intermediate vertices of which are numbered < k (i.e. do not

belong to V k
� ).

The proof of (C) is similar to that of Lemma 2.1.

Lemma 3.2: Given (G = (V;E); �) and an integer k 2 [1; n], let Gk
� = (V k

� ; E
k
�) and S � V k

� .

The connected components of Gk
�(V

k
� � S) are the sets C \ V k

� where C is a connected component

of G(V � S) such that C \ V k
� 6= ;, with the same neighborhoods, i.e. NGk

�
(C \ V k

� ) = NG(C).

Proof : Let S � V k
� . We have to prove that CGk

�
(S) = fC \ V k

� ; C 2 CG(S) j C \ V
k
� 6= ;g

and 8C 2 CG(S); NGk
�
(C \ V k

� ) = NG(C). Let C 2 CG(S) such that C \ V k
� 6= ; and let

C 0 = C \ V k
� . Let us show that C 0 2 CGk

�
(S) and NGk

�
(C 0) = NG(C). Gk

�(C
0) is connected

(because for any vertices x and y in C 0, there is a path P in G(C) between x and y and by (C),

the sub-sequence of P containing only the vertices belonging to V k
� is a path in Gk

�(C
0) between

x and y). Let us show that NGk
�
(C 0) � NG(C). Let x 2 NGk

�
(C 0) and y 2 C 0 such that xy 2 Ek

�.

By (C), there is a path in G between x and y all intermediate vertices of which belong to V � V k
� ,

and therefore belong to V � S and consequently belong to C, so x 2 NG(C). Let us show that

NG(C) � NGk
�
(C 0). Let x 2 NG(C) and y 2 C such that xy 2 E. As C 0 6= ;, we may choose

z 2 C 0. Let P be a path in G(C) between y and z and let z0 be the �rst vertex of P from y belonging

to V k
� . z0 2 C 0 and by (C), xz0 2 Ek

�, so x 2 NGk
�
(C 0). Thus NGk

�
(C 0) = NG(C). As C 0 6= ;,

C 0 � V k
� � S, Gk

�(C
0) is connected and NGk

�
(C 0) = NG(C) � S, it follows that C 0 2 CGk

�
(S).

Therefore, fC \ V k
� ; C 2 CG(S) j C \ V

k
� 6= ;g � CGk

�
(S). As [C2CG(S)(C \ V

k
� ) = V k

� � S, the

reverse inclusion holds too. 2

Theorem 4.2: Let S be the set of substars of (G;�). Then any minimal triangulation H of GS is

a minimal triangulation of G which is a subgraph of G+
� .

Proof : We will use the following property (P) proven in [4]:

(P) Let S be a set of pairwise non-crossing minimal separators of G and T be a minimal separator

of GS. Then CG(T ) = CGS(T ) and 8C 2 CG(T ); NG(C) = NGS(C).

Let H be a minimal triangulation of GS. By Theorem 3.4 and Lemma 2.7, H is a minimal

triangulation of G. Let us show that H is a subgraph of G+
� . By Theorem 2.4 and the fact that

GS is a subgraph of G+
� , it is suÆcient to show that any minimal separator of GS is a clique of G+

� .

Let T be a minimal separator of GS and k be the minimum value of �(v) for v in T . To show that

T is a clique of G+
� , it is suÆcient to show that every vertex v of T �fvkg is a neighbor of vk in G

k
�

(because NGk
�
(vk) is a clique of G

k+1
� and therefore a clique of G+

� ). Let v 2 T �fvkg. Let us show

that v 2 NGk
�
(vk). If there is a full component C of CG(T ) such that C \ V k

� = ; then let P be a

path in G between vk and v all intermediate vertices of which are in C; the intermediate vertices

of P do not belong to V k
� so by (C) v 2 NGk

�
(vk). We suppose now that for every full component

C of CG(T ), C \ V
k
� 6= ;, and we assume by contradiction that v 62 NGk

�
(vk). As T is a minimal

separator of GS, it is a minimal separator of G by Theorem 3.4 and (P) and therefore of Gk
� by

Lemma 3.2. Let S be the substar of (G;�) de�ned at step k by the component containing v. S is

a minimal separator of Gk
� separating the vertices vk and v of T , so S and T are crossing in Gk

�.

Hence S intersects at least two components of CGk
�
(T ), and therefore of CG(T ) by Lemma 3.2 and

of CGS(T ) by Theorem 3.4 and (P). But as S 2 S, S is a clique of GS so that S cannot intersect

two components of CGS(T ), a contradiction. 2
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