N

N

General Non-Approximability Results in Presence of
Hierarchical Communications
Rodolphe Giroudeau, Jean-Claude Konig

» To cite this version:

Rodolphe Giroudeau, Jean-Claude Konig. General Non-Approximability Results in Presence of Hier-
archical Communications. [Research Report] 03019, LIRMM. 2003, pp.11. lirmm-00191921

HAL Id: lirmm-00191921
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191921
Submitted on 26 Nov 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191921
https://hal.archives-ouvertes.fr

Laboratoire

d’Informatique Rapport de Recherche

de Robotique
et de Microélectronique
de Montpellier

LIRMM

No : 03-019

Mars 2004

General non-approximability results
in presence of hierarchical communi-

cations

R. Giroudeau and J.C. Konig, konig,rgirou@lirmm.fr

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier
161 rue Ada, 34392 Montpellier cedex 5
tel : (4+33)4 67 41 85 85 — fax : (+33)4 67 41 85 00

General non-approximability results in presence of
hierarchical communications

Mars 2004

Abstract

We investigate the problem of minimizing the makespan (resp. the sum of the com-
pletion time) for the multiprocessor scheduling problem in presence of hierarchical
communications. We show that there is no hope to find a p-approximation with

1 1
p<1l+ 13 (resp. 1+ 2c—+4) (unless P = N'P) for the case where all the tasks

of the precedence graph have unit execution times, where the multiprocessor is com-
posed of an unrestricted number of machines with [> 4 identical processors each, and
where ¢ denotes the communication delay between two tasks ¢ and 7 submitted to a
precedence constraints and to be processed by two differents machines. We also prove
that the problem becomes polynomial whenever the makespan is at most (¢ + 1).es

Keywords: scheduling, hierarchical communications, non-approximability

Résumé

Mots-clés : ordonnancement, communications hiérarchiques, non-approximabilité

1 Introduction

Scheduling theory is concerned with the optimal allocation of scare ressources to activities
over time. The theory of the design of algorithms for scheduling is younger, but still has a
significiant history.

Models used by the scheduling theory keep track of technology evolution:

e In the PRAM’s model, in which communications are considered as instantaneous,
the critical path gives the makespan of the schedule.

e In the homogeneous scheduling delay model, each arc (7, j) modelizes the poten-
tial data transfert between the task ¢ and the task j provided that ¢ and j are
processed on two different processors.

With the increasing importance of parallel computing, the question of how to schedule
a set of tasks on an architecture becomes critical, and has received much attention. More
precisely, scheduling problems involving precedence constraints are among the most difficult
problems in the area of machine scheduling and are most studied problems.

In this paper, we adopt the hierarchical communication model [3] in which we assume
that the communication delays are not homogeneous anymore; the processors are con-
nected in clusters and the communications inside the same cluster are much faster than
those between processors belonging to different ones. This model captures the hierarchical
nature of the communications using today parallel computers, as shown by many PCs or
workstations networks (NOWs) [18, 1]. The use of networks (clusters) of workstations as a
parallel computer [18, 1] has renewed the interest of the users in the domain of parallelism,
but also pointed out new challenging problems related to the exploitation of the potential
computation power offered by such a system.

Most of the attempts to modelize these systems were in the form of programming sys-
tems rather than abstract models [20, 21, 7, 6]. Only recently, some attempts concerning
this issue appeared in the literature [3, 8]. As state before, the one that we adopt here is the
hierarchical communication model which is devoted to one of the major problems appear-
ing in the attempt of efficiently using such architectures, the task scheduling problem. The
proposed model includes one of the basic architectural features of NOWSs: the hierarchical
communication assumption i.e. a level-based hierarchy of the communication delays with
successively higher latencies. More formally, given a set of clusters of identical processors,
and a precedence graph, we consider that if two communicating tasks are executed on the
same processor (resp. on different processors of the same cluster) then the corresponding
communication delay is neglected (resp. is equal to what we call interprocessor communi-
cation delay). On the contrary, if these tasks are executed on different clusters, then the
communication delay is more important and it is called the intercluster communication
delay.

We are given m multiprocessors machines (or clusters) that are used to process n
precedence constrained tasks. Each machine (cluster) comprises several identical parallel
processors. A couple (c;j,¢€;;) of communication delays is associated to each arc (3,)
between two tasks in the precedence graph. In what follows, ¢;; (resp. ¢;;) is called
intercluster (resp. interprocessor) communication, and we consider that c¢;; > €;. If
tasks 7 and j are executed on different machines IT and II’, then j must be processed at
least ¢;; time units after the completion of 4. Similarly, if 4+ and j are executed on the
same machine IT but on different processors m and 7’ then the processing of j can only

start €;; units of time after the completion of i. However, if 4 and j are executed on
the same processor then j can start immediately after the end of i. The communication
overhead (intercluster or interprocessor delay) does not interfere with the availability of the
processors and any processor may execute any task. Our goal is to find a feasible schedule
of the tasks minimizing the makespan, i.e. the time needed to execute all the tasks subject
to the precedence graph.

Formally, in the hiearchical scheduling delay model we associate a couple of value
(cij,eij) with €ij < ¢ij V(Z,]) € FE such that :

o if IT = IV and if 7} = 7] then ¢; +p; <t;
e else if II* = I17 and if 7r,ic = 7T£, with k # k' then ¢; 4+ p; + €5 < t;
o else IT #Hj ti+pitcj <t

where t; denotes the processing time of the task ¢ and p; its duration. The objective, is
to find a schedule, i.e. an allocation of each task to a time interval on one processor, such
that the communication delays are taken into account and the completion time (makespan)
is minimized (the makespan is denoted by Cpez and it corresponds to Iféa‘?({tz +pi}).

Notice that the hierarchical model that we consider here is a generalization of the
classical scheduling model with communication delays ([9], [11]). Consider for instance
that for every arc (i,j) of the precedence graph we have c¢;; = €. In that case the
hierarchical model is exactly the classical scheduling communication delays model.

Complexity results: On the negative side, Bampis et al. in [5] studied the impact
of the hierarchical communications on the complexity of the associated problem. They
considered the simplest case, i.e. the problem P(P2)|prec; (cij,€ij) = (1,0);pi = 1|/Cmaz,
and they showed that this problem does not possess a polynomial time approximation al-
gorithm with ratio guarantee better than 5/4 (unless P = N'P). Recently [13] Giroudeau
proved that there no hope to find a p-approximation with p < 6/5 for the couple of com-
munication delays (c;j,€;5) = (2,1). If duplication is allowed, Bampis et al. [4] extended
the result of [10] in the case of hierarchical communications providing an optimal algorithm
for P(P2)|prec; (cij, €i5) = (1,0);p; = 1; dup|Craz-

Approximation results: On the positive side, the authors presented in [3] a 8/5-
approximation algorithm for the problem P(P2)|prec; (cij, €i;) = (1,0); pi = 1|Crnaz Which
is based on an integer linear programming formulation. They relax the integrity constraints
and they produce a feasible schedule by rounding. This result is extended to the problem
P(Pl)|prec; (cij, €i5) = (1,0);p; = 1|Cynaq leading to a lel—approximation algorithm.

The challenge is to determinate a thresold for approximation algorithm for the two
more general problems: P(Pl > 4)|prec;(cij,€ij) = (¢,1);pi = 1|Cpag and P(Pl >
4)|prec; (cij, €i5) = (¢,); pi = 1|Crpaz with ¢ < c.

Remark: Notice that concerning the problem denoted by P(P2)|prec; (cij,€ij) =
(2,1); pi = 1|Cinaz, in the case of Cpuer = 5 (resp. Crar = 3) the problem is NP-complete
(resp. polynomial). For Cpee = 4 we conjecture that there exist a polynomial time
algorithm see [13].

We study in this article, the impact of introducing the notion of hierarchical commu-
nications on the hardness of approximating the multiprocessors scheduling problem such
that the processors of the parallel architecture are partitioned into clusters (we study the
case where there are only [> 4 processors per cluster). The communication delays between
the [processors in the same cluster denoted by €;; is equal to one (resp. ¢’) unit(s) of time

whereas the communication delays between two processors in a different cluster denoted by
cij is equal to ¢ units of time. Our problem can be denoted as P(PI > 4)|prec; (cij, €ij) =
(e, 1);pi = 1|Cma:c (resp. P(Pl > 4) |prec; (cijaeij) = (c, C,);pi = 1|Cmaw)-

In order to give the thresold for the two problems described below, we prove that the
problem of deciding whether an instance of P(Pl > 4)|prec; (cij, €ij) = (¢, 1);pi = 1|Crag
with ¢ > 3 (resp. P(Pl > 4)|prec; (cij, €ij) = (¢, ¢');pi = 1|Cpas With ¢ > ' +1, ¢ > 1)
has a schedule of length at most ¢ 4+ 3 is N'P-complete (resp. ¢ + 3). We also extend the
non-approximability result in the case of the completion time, denoted in what follows by
> ; Cj. In order to obtain this result, we use the polynomial time transformation using to
NP-completess proof for the minimization of the makespan, and the gap technic proposed
by Hoogeveen et al. [15].

We also prove that the problem of deciding whether an instance of
P(Pl)|prec; (cij, €i) = (¢,¢');pi = 1|Crmaz) has a schedule of length at most (c + 1)
is polynomial.

This article is organized as follows: in the next section, we prove that the problem
of deciding whether an instance of P(Pl > 4)|prec; (cij, €ij) = (¢,1);pi = 1|/Crnaz (resp.
P(PL > 4)|prec; (cij, €ij) = (¢,c);pi = 1|Cmag) has a schedule of length at most (c + 3)
is N'P-complete. We extend this result to the criteria is the minimization of the com-
pletion time by proving that there is no hope to find p-approximation algorithm with p
strictly less than 1+ ﬁ. In an Appendix, we give some preliminaries results concerning
the problem which be used to the polynomial transformation in order to prove the non-
approximability results and we show that the problem of deciding whether an instance of
P(Pl|prec; (cij, €ij) = (¢, c); pi = 1|Crmaz has a feasible schedule of length at most (c + 1)
is solvable in polynomial time.

2 The non-approximability results

In the first part of this section we study the makespan length minimizing problem for
P(PL > 4)|prec;(cij,€ij) = (¢ > 3,1);pi = 1|Crnaz and P(Pl > 4)|prec; (cij, €ij) =
(¢,d);pi = 1|Cpaz with ¢ > ¢ +1 > 1. In the second part we change the makespan
length Cipey to the sum of completion times) j Cj where Cj =t; + 1.

2.1 The minimization of the length of the makespan
2.1.1 The P(Pl > 4)|prec; (cij, €ij) = (¢ > 3,1); p; = 1|Cpnaz problem with ¢ >3

Theorem 2.1 The problem of deciding whether an instance of P(Pl > 4)|prec; (cij, €ij) =
(¢ >3,1);p; = 1|Cpnaz has a schedule of length at most ¢ + 3 is N'P-complete.

Proof

It is easy to see that P(Pl > 4)|prec; (cij, €ij) = (¢ > 3,1);p; = 1|Cpaw = ¢ + 3 € N'P.

Our proof is based on a reduction from IIy (The AN'P-completeness of the problem Iy
is given in the section 4.1 in an Appendix).

Given an instance 7* of Tly, we construct an instance 7 of the problem P(Pl >
4)|prec; (cij; €i5) = (¢ > 3,1);p; = 1|Cppag = ¢ + 3, in the following way:

1. For each variable x € V we introduce three variables-tasks z, Z and Z with precedence
constraints: £ — z and £ — 7.

2. For each clause C; = (z V y) of size two, we introduce one clause-task D; (these
tasks are denoted in what follows clauses-tasks of type D). We add the precedence
constraint £ — D; and y — D;.

3. For each clause of size three C; = (y V z V 1),

(a) we introduce (2 x (¢ — 2) + 3) clauses-tasks yz, yt, zt, CF and yzt, with

k € {1,...,¢—2}. For every literal [occurring in Cj, we add the precedence
constraint:

l_>ci1a y—yz, y —>yt, z— zt, z—>yz, t > yt, t — zt, and

C’f—)Cf“, and yzty — yzty,q, k€ {1,...,c¢—3}

(b) We add ((c+3) x (I —3) 4+ (¢ — 2)) dummy tasks denoted df’j, Vie{l,...,l1—

3}, ke{l,...,c+3} and II" with m € {1,...,¢c— 2} together with constraints:
o d 5 d"H vie{1,...,1-3}, ke{l,...,c+2}and I = ™ m e
{1,...,e=3} o . . A .
o We also add, d>7 — C}, I — d>7, I — d, &7 = 1}, [— d, Vj €
{1,...,1 — 3} where [design a literal occuring in the clause C;.

e At the final, for all literal [occuring in the clause C; we add the following
precedence constraints: [— yzt; — d?’j, Vjie{l,...,1 —3}.

The above construction is illustrated in Figure 1. This transformation can be clearly
computed in polynomial time.

o Let us first assume that there is a schedule of length at most (c¢+3). In the following,
we will prove that there is a truth assignment I : V — {0, 1} such that each clause
in C has exactly one true literal.

In this case, we can remark :

1.

4.

All the tasks of a path of length four (the length of a path is the number of
tasks in the path) are executed in the same cluster. Let be C; = (yVzVt) a
clause. So, in the same cluster K; we must execute the tasks Cf, df’j , Y2t Y,
2, G, 2, 1, 4, 2, 1, and IJ.

The dummy tasks df’j use (I — 3) processors of K; without free time (a commu-
nication is not allowed on a path of length (¢ + 3)).

The arcs from the tasks v, z, t, ¥, z, t to the tasks df’j imply that the tasks vy,
z,t, 7, 2, t, 7, 2, and t are executed at the slots 1, 2 and 3 on the three others
processors.

The precedence constraint between the tasks ytz; and d?’j implies that the task
ytz, is executed at slot 4 and therefore two tasks among ¥, z, t are processed
at slot 2.

At the slot 2, one task among y, z, t must be executed. Otherwise the tasks
Cf, lf, yz, yt, zt, ﬁj, j > 1 and the three clauses-tasks of type D admitting
the tasks y, z,t as predecessors, must be executed during the slots 5 to (c+3)
on the three free processors of K;. This is not possible because at most (3¢ — 3)

tasks can be executed on three processors during (¢ — 1) slots.

4

Suppose that the tasks 4, z and t are executed at slot 2. The clauses-tasks of type
D admitting the tasks y, z and ¢ as predecessors are executed at slot (¢ + 3) on
the same cluster because they can not be executed on an other cluster (since the
intercluster communication delay is ¢) and the tasks corresponding to the others
literals are scheduled at slot 2 on an other cluster.

Now we affect the value true to the literal if an associated task is executed at slot
2 and false otherwise. This gives a solution at our problem.

e Conversely, we suppose that there is a truth assignment I : V — {0, 1}, such that
each clause in C has exactly one true literal. Suppose that the true litteral in the
clause C; = (y V z V) is t. Therefore, the schedule, in the Figure 1 is feasible on the
three free processors.

This concludes the proof of Theorem 2.1.
O

In the following, we proof the N"P-completeness of the special couple of communication
delays (cij,€;5) = (3,2) (this case will be generalized in the Theorem 2.4).

Theorem 2.2 The problem of deciding whether an instance of P(PlL > 4)|prec; (cij, €ij) =
(3,2); pi = 1|Cinaz has a schedule of length at most 6 is N'P-complete.

Proof It is easy to see that P(Pl > 4)|prec; (cij, €i5) = (3,2);pi = 1|/Cnaz = 6 € N'P.
Our proof is based on a reduction from IIs.
Given an instance 7* of Il,, we construct an instance m of the problem P(Pl >
4)|prec; (cij; €i5) = (3,2);pi = 1|Crmaz = 6, in the following way:

1. For each variable x € V we introduce three variables-tasks x, z and with precedence
constraints: £ — x and £ — .

2. For each clause C; = (zV7) of size we introduce one clause-task D;. For every literal
[occurring in C;, we add the precedence constraint [— D;.

3. For each clause of size three C; = (y V z V t), we introduce two clauses-tasks C; and
w. For every literal [occurring in Cj;, we add the precedence constraint [— C; and
[— yzt.
We add (6 x (I —3)+1) dummy tasks denoted df’j, Vied{l,...,1-3}, ke {l,...,6}
and [; together with constraints:

(a) dj? = d> - ... = ¥,

(c) For every literal [occurring in Cj, [— d;l Jand [— 1.

Sketch of the proof

o Let us first assume that there is a schedule of length at most (c¢+3). In the following,
we will prove that there is a truth assignment I : V — {0, 1} such that each clause
in C has exactly one true literal.

In the same way as prevouisly, the tasks from a path of length four must be executed
on the same cluster, thus the tasks di-w and [for every literal [occurring in the clause

C; of size three, must be executed on the same cluster K;. Moreover [(resp. 1) is
executed on K; (otherwise it is executed at slot 5 or 6 and it has two successors).

Among the six tasks ! and I, only three can be executed at slot 2. Thus three are
executed at slot 3 or after and the three clauses-tasks of type D successors of these
literals must be executed on K; at slot 6 (the second literal must be executed at slot
2 on other clusters).

The three tasks [(resp. [) can not be executed at slot 2, otherwise the task yzt (resp.
C;) can not be processed at slot 5 on K; or at slot 6 on an other cluster. Thus, the
tasks yzt and C; are executed on K; at slot 5.

Since the task yzt admit four predecessors [(for I =y, z, or t) and l;. Two of them
must be executed at slot 2 (among the three literals I) and the two others (the last [
and [;) on the same processor at slot 3 and 4. As the task C; has three precedessors
I and only one can be executed at slot 2, the two others must be executed on the
same processor at slot 3 and 4.

If we affect the value true on the literals corresponding to the tasks executed at
slot 2 and false to the other literals, we have a solution to our problem.

e Conversely, we suppose that there is a truth assignment I : V — {0, 1}, such that
each clause in C has exactly one true literal. It is easy to decide a schedule of length
6.

O

2.1.2 The P(Pl > 4)|prec; (cij, €i;) = (¢,¢'); pi = 1|/Crnaz problem with ¢ > ¢ +1 > 2

In this section, we generalize the result given by the Theorem 2.1.

Theorem 2.3 The problem of deciding whether an instance of P(Pl > 4)|prec; (cij, €ij) =
(¢,d);pi = 1|Craz, with ¢ > ¢ +1 > 2, has a schedule of length at most (c + 3) is
NP-complete.

Proof
It is easy to see that P(Pl > 4)|prec; (cij, €i5) = (¢,¢);pi = 1|Cppaz = ¢+ 3 € NP.
Our proof is based on a reduction from IIs.
Given an instance 7* of Ilp, we construct an instance m of the problem P(Pl >
4)|prec; (cij; €i5) = (¢,); pi = 1|Crmaz = ¢+ 3, in the following way:

1. For each variable x € V we introduce three variables-tasks x, z and & with precedence
constraints: £ — x and £ — Z.

2. For each clause C; = (z V y) of size two, we introduce one clause-task D;. For every
literal [occurring in Cj;, we add the precedence constraint [— D;.

3. For each clause of size three C; = (y V z V 1),

(a) we introduce ((3 x ') + 3 x (c — ¢/ — 1)) clauses-tasks CF, yzt,, L, yz;, 2t;
and yt; with k€ {1,...,c—c —1} and j € {1,...,c}.

e For every literal [occurring in C;, we add the precedence constraint [— Cil,
and y — yzg, Yy = ylo, 2 = 2te, 2 = Yz, t = yto, t = zta. We add
w1, — we — ... = we where w is a generic task (yt, yz or zt).

e We add the following precedence:

Ck— CFL 1k — IFL Yzt — yzty,q, k€ {1,...,c—c —2}.

(b) We add ((c +3) x (I = 3) + (¢ — ¢ — 1)) dummy tasks denoted di”’, Vj €
{1,...,1-3}, ke {l,...,c+3} and I¥,Vk € {1,...,c — ¢ — 1} together with

constraints:
did —dit vje{l,...,1-3}, ke{l,...,c+2}

o We also add d> — C}, I — d°*™ T - yzt;, and T — d°*%, | -

df”’j , Vi e {l,...,l — 3} where [design a literal occuring in the clause
C;.
e Moreover we add the following contraints: d?’J =1t vje{l,...,1-3}.

The above construction is illustrated in Figure 2. This transformation can be clearly
computed in polynomial time.

The proof is given in an Appendix (see section 4.2).

In the following, the Theorem 2.2 will be generalized.

Theorem 2.4 The problem of deciding whether an instance of P(PlL > 4)|prec; (cij, €ij) =
(e,e—1);p; = 1|Crpae with ¢ > 3, has a schedule of length at most (c+3) is N'P-complete.

Proof It is easy to see that P(Pl > 4)|prec; (cij, €i5) = (¢,c—1);p; = 1|Cnag = c+3 € N'P.
Our proof is based on a reduction from IIs.
Given an instance m* of Ilp, we construct an instance m of the problem P(PI >
4)|prec; (cij; €i5) = (¢, ¢ — 1);p; = 1|Crpaz = ¢+ 3, in the following way:

1. For each variable x € V we introduce three variables-tasks z, Z and Z with precedence
constraints: £ — z and £ — Z.

2. For each clause C; = (z V) of size two, we introduce one clause-task D;. For every
literal [occurring in Cj;, we add the precedence constraint | — D;.

3. For each clause of size three C; = (y V z V t), we introduce two clauses-tasks C; and
yzt. For every literal [occurring in C;, we add the precedence constraint [— C; and
I — yzt.
We add (6 x (I — 3) + 2 x ¢ — 5) dummy tasks denoted d*/, Vj € {1,...,1-3}, k€
{1,...,c+3}L 15 ke {1,...,c—2}, bf' k' € {1,...,¢c—3}, together with constraints:

(a) di7 — d> — ... = dT
(b) I} 212 — ... =152

(c) b} = b2 — ... = b3

(d) 1¢% = yzt and b ° — C;.

(e) For every literal [occurring in Cj, [— df“’j and [— lf‘Q and d?’j — bf_?’, Vj e
{1,...,1-3}.

Sketch of the proof

o Let us first assume that there is a schedule of length at most (c¢+3). In the following,
we will prove that there is a truth assignment I : V — {0, 1} such that each clause
in C has exactly one true literal. In the same way as prevouisly, the tasks from a
path of length four must be executed on the same cluster. Thus the tasks df’] and
[for every literal I occurring in the clause C; of size three, must be executed on the
same cluster K;. Moreover, the literal [(resp. 1) is executed on K; (otherwise it is
executed at slot (¢ + 2) or (c+ 3) and it has two successors).

Among the six tasks [and [, only three tasks can be executed at slot 2. Thus, three
tasks are executed at slot 3 or after and the three clauses-tasks of type D admitting
these tasks as predecessors must be scheduled on K; at slot (c+3) (the second literal
must be executed at slot 2 on other cluster).

The three tasks [(resp. I) can not be executed at slot 2 otherwise the task yzt (resp.
C;) can not be executed at slot (¢ + 2) on K; or at slot (c + 3) on an other cluster.
Therefore, the tasks yzt and C; are executed on K; at slot (¢ + 2).

Since the task yzt has (c+1) predecessors i (for I = v, z, or t) and I¥. Two of them
must be executed at slot 2 and the (¢ — 1) others on the same processor at slot 3 to
(c+1). As the task C; has ¢ precedessors (the literal I and the tasks b¥'), only one
can be executed at slot 2, the (¢ — 1) others must be executed on the same processor
at slot 3 to (¢ +1).

If we affect the value true on the literals corresponding to the tasks executed at
slot 2 and false otherwise, we have a solution to our problem.

e Conversely, we suppose that there is a truth assignment I : V — {0, 1}, such that
each clause in C has exactly one true literal. It is easy to deduce a schedule of length
(c+3).

O

Corollary 2.1 There is no polynomial-time algorithm for the problem P(Pl >
4)|prec; (cij, €ij) = (¢,); pi = 1|Craz with ¢ > ¢ performance bound smaller than 1+ .

c+3
unless P # NP.

Proof
Corollary 2.1 stems from an immediate consequence of the Impossibility Theorem, (see
[11], [12]) and the Theorems 2.1, 2.2, 2.3, 2.4.
O

2.2 The problem of minimizing the sum of all completion times

In this section, we will show that there is no polynomial-time algorithm for the problem
P(Pl > 4)|prec; (cij,€i5) = (¢ > 3,d);pi = 1132, Cj, with ¢ > ¢, with performance
bound smaller than 1+ ﬁ unless P # NP. This result is obtained by the polynomial

transformation used for the proof of the Theorem 2.1 and the gap technic (see [15]).

2.2.1 The P(Pl > 4)|prec; (cij, €ij) = (¢ > 3,);pi = 1] >-; Cj problem

Theorem 2.5 There is no polynomial-time algorithm for the problem P(Pl >
4)|prec; (cij, €ij) = (¢ > 3,¢);pi = 1|32, Cj with ¢ > ¢’ with performance bound smaller
than 1 + ﬁ unless P # NP.

Proof

We suppose that there is a polynomial time approximation algorithm denoted by A
with performance guarantee p with p <1+ ﬁ,

Let be I the instance of the problem P(Pl > 4)[prec; (cij, €ij) = (¢,¢');pi = 1|Crax
obtained by a reduction (see Theorem 2.1). Let be I’ the instance of the problem P(Pl >
4)|prec; (cij, €i5) = (¢, c');pi = 1| Z]- C; by adding = new tasks from an initial instance I.
(2¢+5)lc+(c+3)pn

(2¢+5)—(2¢+4)p
of the old tasks (an old tasks are from the polynomial transformation used for the proof

of the Theorem 2.1, 2.2 , 2.3 , 2.4. We obtain a complete graph from the old tasks and the
new tasks.

If there exists such an algorithm A, then it can be used to decide an existence of a
truth assigment.

Let A(I') (resp. A*(I')) be the result computed by A (resp. an optimal result) on an
instance I'.

In the precedence constraints, each z (with z >) new tasks is a successor

1. If A(I") < (2¢+5)pz+ (c+3)pn then A*(I') < (2¢+5)pz+ (c+3)pn. We can deduce
that the last of the old tasks in an optimal schedule had been executed at time (c+3)
or before. Indeed, we suppose that one task ¢ among the n old tasks is executed at
t = ¢+ 4 in an optimal schedule. Among the z new tasks, only the tasks which
are executed on the same cluster as ¢ can be scheduled before the time ¢ = 2¢ + 5
(i.e. at most lc tasks). So A*(I') > (2¢+ 5)(z — lc). Then z < Cetdllet(ctS)on

2¢+4)—(2¢+3
(2¢-+5)lc+(c+3)pn (2c+4)—(2c+3)p
“@etd)—(2c+3)p -

Thus, there exists a schedule of length ¢ + 3 on an old tasks.

contradiction with = >

2. We suppose that A(I') > (2¢ + 4)pz + (¢ + 3)pn. So, A*(I') > (2¢+ 4)z + (c +
3)n because an algorithm A is a polynomial time approximation algorithm with
performance guarantee p. There is no schedule of length at most ¢ + 3 for the tasks
from an Instance I.

Indeed, if there exist such an algorithm, by executing the x tasks at time t = 2¢ + 3,
we obtain a schedule with a completion time stricly less than (2c + 4)z + (¢ + 3)n
(there is at least one task is executed before the time ¢ = ¢ + 2). A contradiction
since A*(I') > (2¢+ 4)z + (¢ + 3)n.

Therefore, if there is a polynomial time approximation algorithm with performance
guarantee bound smaller than 1+ ﬁ, it can be used for distinguing in polynomial time the
positive instances from the negative instances to the problem , P(Pl > 4)|prec; (cij, €;5) =
(¢,);pi = 1|Cpnaq thus providing a polynomial time algorithm for a AP-hard problem.
Consequently, the problems P(Pl > 4)|prec; (cij, €i;) = (¢, ¢');pi = 1|3 C; and does not
possess an p-approximation, with p < 1+ ﬁ.

O

3 Conclusion

In this paper, we first proved that the problem of deciding whether an instance of P(PI >
4)|prec; (cij, €i5) = (¢ > 3, < ¢);pi = 1|Cpag has a schedule of length at most ¢ + 3 is
NP-complete. We generalize the results given by Bampis et al. [5] and Giroudeau [13].

This result is to be compared with the result of [16], which states that P|prec;c;; =
1;p; = 1|Cnaz = 6 is N'P-complete. Our result implies that there is no p—approximation
algorithm with p <1+ H—LS’ unless P = N'P. In addition, we show that there is no hope
to find a p-approximation algorithm with p strictly less than p < 1+ ﬁ for the problem
of the minimization of the sum of the completion time.

Second, we established that the problem of deciding whether an instance of
P(Pl)|prec; (cij, €i) = (¢,¢');pi = 1|Cmagz has a schedule of length at most (¢ + 1) is
solvable in polynomial time.

An interesting question for further research is to find an approximation algorithm with
performance guarantee better than the trivial bound of (¢ + 1) by combining the 4/3-
approximation algorithm [17] for the problem P|prec;ci; = 1;p; = 1|Cpmag and the 8/5-
approximation algorithm [3] for the problem P(P2)|prec; (cij, €ij) = (1,0);pi = 1|Crnaz
and developping p-approximation in the case of our goal is to find a feasible scheduling of
the tasks minimizing a bicriteria conditions.

Acknowledgment. We would like to thank Olivier Cogis for his comments on this
work.

References

[1] T.E. Anderson, D.E. Culler, D.A. Patterson, and the NOW team. A case for NOW
(networks of workstations). IEEE Micro, 15:54-64, 1995.

[2] E. Bampis, A. Giannakos, and J.C. Konig. On the complexity of scheduling with large
communication delays. Furopean Journal of Operation Research, 94:252-260, 1996.

[3] E. Bampis, R. Giroudeau, and J.-C. Konig. A heuristic for the precedence constrained
multiprocessor scheduling problem with hierarchical communications. In H. Reichel
and S. Tison, editors, Proceedings of STACS, LNCS No. 1770, pages 443-454. Springer-
Verlag, 2000.

[4] E. Bampis, R. Giroudeau, and J.C. Konig. Using duplication for multiprocessor
scheduling problem with hierarchical communications. Parallel Processing Letters,
10(1):133-140, 2000.

. Bampis, R. Giroudeau, and J.C. Konig. On the hardness of approximating the

5| E. B is, R. Giroud d J.C. Koénig. On the hard f i i h
precedence constrained multiprocessor scheduling problem with hierarchical commu-
nications. RAIRO-RO, 36(1):21-36, 2002.

[6] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg. On optimal strategies
for cycle-stealing in networks of workstations. IEEE Trans. Comp., 46:545-557, 1997.

[7] R. Blumafe and D.S. Park. Scheduling on networks of workstations. In 3d Inter Symp.
of High Performance Distr. Computing, pages 96105, 1994.

10

18]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

F. Cappello, P. Fraignaud, B. Mans, and A. L. Rosenberg. HHHCoHP-Towards a Re-
alistic Communication Model for Hierarchical HyperClusters of Heterogeneous Pro-
cessors, 2001. Proceedings of IPDPS’01,IEEE/ACM,IEEE Press.

B. Chen, C.N. Potts, and G.J. Woeginger. A review of machine scheduling: complexity,
algorithms and approximability. Technical Report Woe-29, TU Graz, 1998.

P. Chrétienne and J.Y. Colin. C.P.M. scheduling with small interprocessor communi-
cation delays. Operations Research, 39(3):680-684, 1991.

P. Chrétienne and C. Picouleau. Scheduling Theory and its Applications. John Wiley
& Sons, 1995. Scheduling with Communication Delays: A Survey.

M.R. Garey and D.S. Johnson. Computers and Intractability, a Guide to the Theory
of N'P-Completeness. Freeman, 1979.

R. Giroudeau. Non-approximability results in presence of hierarchical communica-
tions. Technical Report 02-206, LIRMM, January 2003.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and
approximation in deterministics sequencing and scheduling theory: a survey. Ann.
Discrete Math., 5:287-326, 1979.

H. Hoogeveen, P. Schuurman, and G.J. Woeginger. Non-approximability results for
scheduling problems with minsum criteria. In R.E. Bixby, E.A. Boyd, and R.Z. Rios-
Mercado, editors, IPCO VI, Lecture Notes in Computer Science, No. 1412, pages
353-366. Springer-Verlag, 1998.

J.A. Hoogeveen, J.K. Lenstra, and B. Veltman. Three, four, five, six, or the complexity
of scheduling with communication delays. O. R. Lett., 16(3):129-137, 1994.

A. Munier and J.C. Kénig. A heuristic for a scheduling problem with communication
delays. Operations Research, 45(1):145-148, 1997.

G.F. Pfister. In Search of Clusters. Prentice-Hall, 1995.

C. Picouleau. New complexity results on scheduling with small communication delays.
Discrete Applied Mathematics, 60:331-342, 1995.

A L. Rosenberg. Guidelines for data-parallel cycle-stealing in networks of workstations
I: on maximizing expected output. Journal of Parallel Distributing Computing, pages
31-53, 1999.

A L. Rosenberg. Guidelines for data-parallel cycle-stealing in networks of workstations
IT: on maximizing guarantee output. Intl. J. Foundations of Comp. Science, 11:183—
204, 2000.

B. Veltman. Multiprocessor scheduling with communications delays. PhD thesis, CWI-
Amsterdam, Holland, 1993.

11

4 Appendix

4.1 Premilaries results

In this section, we give one polynomial transformation in order to prove the N7P-
completeness of the problem IIs (the definition of this problem is given below). This
problem is used to the polynomial transformation for the N"P-completeness of the schedul-
ing problems.

o The problem II; is the problem Monotone-one-in-three-3SAT. Let us, first recall
the definition of Monotone-one-in-three-3S AT problem.

Instance of problem Monotone-one-in-three-3SAT:

— Let V ={z1,...,2,} be a set of n variables.

— Let C = {C4,...,Cp} be a collection of clauses over V such that every clause
has size three and contains only unnegated variables (the variables in the same
clause are different).

Question:

Is there a truth assignment for V such that every clause in C has exactly one true
literal?

We know that ITy is N'P-complete [12].

e The problem II; is a variant of the well known SAT problem [12]. We will call this
variant the One-in-(2,3)SAT(2,1) problem that we will denote as II. Let n be a
multiple of 3 and let C be a set of clauses of cardinality 2 or 3. There are n clauses
of cardinality 2 and n/3 clauses of cardinality 3 so that:

— each clause of cardinality 2 is equal to (z V §) for some z, y € V with z # y.

— each of the n literals = (resp. of the literals Z) for z € V belongs to one of the
n clauses of cardinality 2, thus to only one of them.

— each of the n literals # belongs to one of the n/3 clauses of cardinality 3, thus
to only one of them.

— whenever (z V §) is a clause of cardinality 2 for some z, y € V, then z and y
belong to different clauses of cardinality 3.
Question:

Is there a truth assignment for I : V — {0, 1} such that every clause in C has exactly
a true literal?

In order to illustrate Iy, we consider the following example.
Example The following logic formula is a valid instance of Ily:
(.’E()V:L'l\/IEQ)/\(IE3\/IE4V:L‘5)/\(IEO\/.’L‘3)/\(Ii3\/.’L‘())/\(ii‘4VIC2)/\(ii‘lv.fl?4)/\(:f5VIE1)/\(52VIE5).

For this instance, the answer to Il, is yes. It suffices to choose zyp = 1, z3 = 1 and
z; =0 for i = {1,2,4,5}. This yields a truth assignment satisfying the formula, and
there is exactly one true literal in every clause. For the proof of the A'P-completeness
see the Theorem 4.1.

12

Theorem 4.1 Iy is N'P-complete.

Proof

It is easy to see that IIy € N'P.

Our proof is based on a reduction from II;.

Given any instance 7* of the problem Iy, we construct an instance 7 of Ily in the
following way:

e If a variable z; occurs only one time, it is sufficient to add a copy of the clause in
which it belongs.

e We can suppose that each variable z; occurs k; > 2 times in 7*, then we rename the
jth occurrence (1 < j < k;) of z; by introducing a new variable Ti;_yy- Let V' be
the set of new variables obtained in this way. In every clause of 7%, we rename the
occurring variables in a greedy manner and we complete the corresponding instance 7
by adding the following clauses of length two: (), Vi,Vj,1 <j <k;.

Let C’ be the set of the obtained clauses.

Ti;_1y V Ti(j mod k)

It is now easy to verify that every instance 7 of IIs obtained by the above construction
respects the following two properties:

Property 1: Every variable of V' occurs three times in w. More precisely, every
variable occurs:

e two times unnegated, and more precisely one time in a clause of length three and
one time in a clause of length two,

e one time negated in a clause of length two different from the clause in which its
unnegated occurrence appears.

Property 2: The variables of V' occurring in a same clause of length two are such
that their unnegated occurrences belong to disjoint clauses of length three.
Property 3: If it exists the clause (z V) then the clause (z V y V z) is not allowed.

e Suppose that there is a truth assignment I : V — {0, 1}, such that each clause in
C has exactly one true literal. In the following, we will prove that there is a truth
assignment I' : V' — {0,1} such that each clause in C' has also exactly one true
literal.

If we take I'(z;,_,,) = I(:),Vi,5,1 < j < ki, we can see first that all clauses of
length three become true and each of them has exactly one true literal, since all
clauses of length three in C respect this property.

In addition, it is clear that every clause of length two is satisfied and only one literal
in each of them is true.

Consequently, if 7* is satisfiable then 7 is also satisfiable.

e Conversely, assume that there is a truth assignment I' : V' — {0, 1} such that each
clause of C’ has exactly one true literal. In the following, we will prove that there is a
truth assignment I : V — {0, 1} such that each clause in C has exactly one true literal.
Because of the form of the clauses of length two (i ;_,, Vi, 04 k)), Vi, Vi, 1 <j <k
and given that I’ is such that there is exactly one true literal in every clause, we

13

can conclude that all the variables x;,, for every fixed 4 and any k, have the same
assignment in I’. In order to find a truth assignment for C, it is sufficient to put
I(z;) = I'(z4,) for every i. Clearly, this assignment respects the desired property of

the uniqueness of a true literal per clause.

Consequently, if 7 is satisfiable then 7* is also satisfiable.

The above transformation can be computed in polynomial time and so Il is NP-

complete.
O

@ we D'

w € D"

®
O '

@ <) ’w;),E t,ﬂ
w € yzc’,Ztc’,th’} slot ¢ + 3

0 stot dstot Rstot 3... 4 c+2 c+3

3 ‘2 ‘z‘zt‘cil CZ.C*% 2.0
o

9 1y [v] vt e

i ‘ t ‘E ‘yzti yz‘yztg yzt%_Qb;I,n"

@ & Lk

Execution of the dummy tasks

Figure 1: A partial schedule and a partial precedence graph for a clause C; = (y V z V t) for the

casc =1

4.2 Proof of the theorem 2.3

e Let us first assume that there is a schedule of length at most (c+3). In the following,
we will prove that there is a truth assignment I : V — {0, 1} such that each clause

in C has exactly one true literal.

In this case, we can remark :

14

o2 e
o .
@ o
—|—2,j @ 4, ... 4’@(:’—1

%}a @) A
(3

w € {y, z,t}
w1 €1Y,Y
Wy € 12,2
O
w € yzC’ath’,ytc’}
slot ¢ + 3
O siot dsiot 2siot 3...4 C—|—20+3
2z | 2]zt ... #tof C} e d
g
9 lg [v]vh - yt] 1] I (R
N
t ‘ t ‘{ ‘yzl yzC/Fyztiyzc/‘ yzt, yztc_c_qg
d;;] d;,] dfﬂ d;‘F*’,j

Execution of the dummy tasks

Figure 2: A partial schedule and a partial precedence graph for a clause C; = (y V z V t) for the
general case

1. All the tasks of a path of length four are executed in the same cluster. Let be
Ci = (yV z V) a clause. So in the same cluster K; we must execute the tasks
Czku d;c,ju yu Z, tu gv 2, E’ ga 21 tAa a‘nd lf

2. The dummy tasks dfC’ ; use (I —3) processors of K; without free time (a commu-
nication is not allowed on a path of length (¢ + 3)).

3. The arcs from y, z, t, y, z, t to the task dle’j imply that the tasks y, z, t, v, 2,
t, 4, 2, and ¢ are executed to the slots 1, 2 and 3 on the three others processors.
Therefore the tasks [, I, [are processed consecutively on the same processor
(with [= y or z or t).

4. At the slot 2, three of the six tasks / and I are executed. Thus, three are
processed at the slot 3 or after, and the three clauses-tasks of type D containing
these literals must be executed on Kj; at the slot (¢ 4+ 3) (the second literal of
these clauses must be processed at the slot 2).

5. The three tasks / can not be executed simultanously at the slot 2. Otherwise,
the three tasks [are scheduled at the slot 3 and the tasks yt., yzy, ztq, Cf, lf
and yzt; with k € {1,...,c— ¢ =1}, j € {2,...,¢— ¢ — 1}, must be processed
between the slots (¢ +4) to (¢+2) on three processors. So, there are (¢c—c' —1)

15

slots on three processors in order to execute (3+2 % (c—c¢ —1)+c—c —2)
tasks (i.e. 3 x (¢ — ') — 1 tasks). It is impossible.

6. At slot 2, one task among the tasks y, z,t must be executed. Otherwise:

— If [c > ¢ + 2] The tasks yzt; are executed on K; (they are on a path of
length more than 4). So we must execute on K; at slot (¢’ +4) or after the
tasks yzt;, j > 1, 2ty yto, y2e, CF, 1¥ and the three clauses-tasks of type

D successors of the tasks y, z, and ¢. Therefore (3¢ — 3¢’ +2) tasks must be
executed in (¢ — ¢’) slots. Impossible.

— If [c = ¢' + 2] The tasks zty, yto, yz«, C}, I} and the three clauses-tasks
admitting the tasks y, z,t as predecessors must be executed on 2 slots on

K;. Impossible.

Now we affect the value true to the literal if the associated task is executed at slot
2 and false otherwise. This gives a solution at our problem.

e Conversely, we suppose that there is a truth assignment I : V — {0, 1}, such that each
clause in C has exactly one true literal. Suppose that the true litteral in C; = (yVzVt)
is t. Therefore, the schedule, in the Figure 2 is feasible on the three free processors.

This concludes the proof of Theorem 2.3.

4.3 A polynomial time algorithm for C,,,, =c+1

Remark: The problem of deciding whether an instance of P(Pl)|prec; (cij, €ij) =
(c,);pi = 1Cmaw (resp. P(PL > 3)lprec; (cij,€i5) = (¢ = 3,1);pi = 1|Cmag) has a
schedule of length at most (c+1) is solvable in polynomial time since [and ¢ are constants

Proof

The problem becomes polynomial for Cpey = ¢+ 1. In this case the communication
interclusters are forbidden. Therefore, each connected component of the precedence graph
must be constitued by at most [x (¢ + 1) tasks. The problem to determinate if a graph of

at most size [X (¢ + 1) can be scheduled in ¢ + 1 units of times is clearly polynomial.
O

16

