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Abstract

In this paper we show how the usage of Residue Number Systems (RNS) can
easily be turned into a natural defense against many side-channel attacks (SCA).
We introduce a Leak Resistant Arithmetic (LRA), and present its capacities to
defeat timing, power (SPA, DPA) and electromagnetic (EMA) attacks.

keywords: Side Channel Attacks, Residue Number Systems, RNS Montgomery
multiplication

1 Introduction

Side-channel attacks rely on the interactions between the component and the real world.
Those attacks formerly appeared in the network security world and eventually came
within the smartcard and embedded system world to become the most pertinent kind
of attacks on secure tokens. Some attacks monitor the computation through its time
execution or its power consumption in order to discover secrets, as shown by P. Kocher
in [19, 18]. Some others try to modify the component’s behavior or data, through fault
injection as pointed out first by D. Boneh, R. A. DeMillo, and R. J. Lipton in [6] in
the case of public-key protocols, and extended to secret-key algorithms by E. Biham
and A. Shamir in [5]. From noise adding to whole algorithm randomization, different
ways have been considered to secure the implementations against side channels [19], and
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especially against power analysis [18, 12]. One difficult task when preventing from SCA
is to protect from differential power analysis (DPA) introduced by P. Kocher in [18]
and its equivalent for electromagnetic attacks (EMA) [9, 1], and recent multi-channel
attacks [2]. These specific attacks take advantage of correlations between the internal
computation and the side channel information.

The purpose of Leak Resistant Arithmetic (LRA) is to provide a protection at the
arithmetic level, i.e. in the way we represent the numbers for internal computations. We
show how the usage of Residue Number Systems (RNS), through a careful choice of the
modular multiplication algorithm, can easily be turned into a natural defense against
SCA. In the same time, our solution provides fast parallel implementation and enough
scalability to support key-size growth induced by the progress of classical cryptanalysis
and computational power. In addition, another advantage of LRA is that classical
countermeasures still apply at the upper level. We illustrate this fact in Sect. 3.3 through
an adaptation to LRA of the Montgomery ladder [23], which has been analyzed in the
context of side-channels [15], and which features (C safe-error and M safe-error protected)
make it a first-class substitute to the square-and-multiply algorithm.

This paper puts together previous works from J.-C. Bajard and L. Imbert on RNS
Montgomery multiplication and RSA implementation [3, 4], and P.-Y. Liardet original
idea of addressing SCA using RNS, proposed in September 2002 in [20]. The same
idea has been independently investigated by M. Ciet, M. Neeve, E. Peeters, and J.-J.
Quisquater, and recently published in [8]. In Sect. 3.1, we address the problem of the
Montgomery factor when RNS bases are randomly chosen, and we propose solutions
which make it possible to randomly select new RNS bases during the exponentiation in
Sect. 3.3.

2 The Residue Number Systems

In RNS, an integer X is represented according to a base B = (m1,m2, . . . ,mk) of
relatively prime numbers, called moduli, by the sequence (x1, x2, . . . , xk), where xi =
X mod mi for i = 1...k. The conversion from radix to RNS is then easily performed.
The Chinese Remainder Theorem (CRT) ensures the uniqueness of this representation
within the range 0 6 X < M , where M =

∏k
i=1 mi. The constructive proof of this the-

orem provides an algorithm to convert X from its residue representation to the classical
radix representation:

X =
k∑

i=1

xi Ti

∣∣T−1
i

∣∣
mi

mod M, (1)
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where Ti = M/mi and
∣∣T−1

i

∣∣
mi

is the inverse of Ti modulo mi. In the rest of the paper,
|X|m denotes the remainder of X in the division by m, i.e. the value (X mod m) < m.

One of the well known advantages of RNS is that additions, subtractions and multipli-
cations are very simple and can be efficiently implemented on a parallel architecture [17].
Furthermore, only the dynamic range of the final result has to be taken into account
since all the intermediate values can be greater than M . On the other hand, one of the
disadvantages of this representation is that we cannot easily decide whether (x1, . . . , xk)
is greater or less1 than (y1, . . . , yk).

For cryptographic applications, modular reduction (X mod N), multiplication (XY mod
N) and exponentiation (XE mod N) are the most important operations. Many solutions
have been proposed for those operations. For example, it is well known that they can
be efficiently computed without trial division using Montgomery algorithms [22].

Let us briefly recall the principles of Montgomery multiplication algorithm. Given
two integers βk, N such that gcd(βk, N) = 1, and 0 6 XY < βkN , Montgomery multipli-
cation evaluates XY (βk)−1 mod N by computing the value Q < βk such that XY +QN

is a multiple of βk. Hence, the quotient (XY + QN)/βk is exact and easily performed.
The result is less than 2N . More detailed discussions on Montgomery reduction and
multiplication algorithms can be found in [21, 7].

2.1 RNS Montgomery Multiplication

In this section we recall a recent RNS version of the Montgomery multiplication algo-
rithm, previously proposed in [3, 4]. In the RNS version of the Montgomery multiplica-
tion, the value

M1 =
k∏

i=1

mi, (2)

is chosen as the Montgomery constant (instead of βk in the classical representation).
Hence, the RNS Montgomery multiplication of A and B yields

R = ABM−1
1 mod N, (3)

where R,A, B and N are represented in RNS according to a predefined base B1. As in
the classical Montgomery algorithm we look for an integer Q such that (AB + QN) is a
multiple of M1. However, the multiplication by M−1

1 cannot be performed in the base
B1. We define an extended base B2 of k extra relatively prime moduli and perform the
multiplication by M−1

1 within this new base B2. For simplicity we shall consider that

1According to the CRT testing the equality of two RNS numbers is trivial.
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both B1 and B2 are of size k. Let us define B1 = (m1, . . . ,mk) and B2 = (mk+1, . . . m2k),
with M2 =

∏k
i=1 mk+i, and gcd(M1,M2) = 1.

Now, in order to compute Q, we use the fact that (AB + QN) must be a multiple of
M1. Clearly Q = −ABN−1 mod M1, and thus

qi = −aibin
−1
i mod mi, ∀i = 1 . . . k. (4)

As a result, we have computed a value Q < M1 such that Q = −ABN−1 mod M1. As
pointed out previously we compute (AB + QN) in the extra base B2. Before we can
evaluate (AB + QN) we have to know the product AB in base B2 and extend Q, which
has just been computed in base B1 using (4), in base B2. We then compute R = (AB +
QN)M−1

1 in base B2, and extend the result back to the base B1 for future use (the next
call to Montgomery multiplication). Algorithm 1 describes the computations of our RNS
Montgomery multiplication. It computes the Montgomery product ABM−1

1 mod N ,
where A,B, and N are represented in RNS in both bases B1 and B2.

Algorithm 1 : MM(A,B, N,B1,B2), RNS Montgomery Multiplication
Input : Two RNS bases B1 = (m1, . . . ,mk), and B2 = (mk+1, . . . ,m2k), such that M1 =∏k

i=1 mi,M2 =
∏k

i=1 mk+i and gcd(M1,M2) = 1; a positive integer N represented
in RNS in both bases such that 0 < 4N < M1, M2 and gcd(N,M1) = 1; (Note that
M1 can be greater or less than M2.) two positive integers A,B represented in RNS
in both bases, with AB < M1N .

Output : A positive integer R represented in RNS in both bases, such that R ≡
ABM−1

1 (mod N), and R < 2N .
1: T ← A⊗RNS B in B1 ∪ B2

2: Q← T ⊗RNS (−N−1) in B1

3: Extend Q from B1 to B2

4: R← (T ⊕RNS Q⊗RNS N)⊗RNS M−1
1 in B2

5: Extend R back from B2 to B1

Steps 1, 2 and 4 of algorithm 1 consist of full RNS operations and can be performed
in parallel. As a consequence the complexity of the algorithm clearly relies on the two
base extensions of lines 3 and 5.

Many different methods have been proposed to perform the base extension. Among
those based on the CRT, [24] and [16] use a floating-point like dedicated unit, [26]
proposes a version with an extra modulo greater than k (this method is not valid for the
first extension of Algorithm 1), [25] perform an approximated extension, and [3] allow
an offset for the first base extension which is compensated during the second one. Other
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solutions have been proposed which use the mixed radix system (MRS) [10]. The great
advantage of the MRS approach is that the modification of one modulus, only requires
the computation of at most k new values.

In [8], Posch and Posch’s RNS Montgomery algorithm [25] is used, together with
J.-C. Bajard et al. base extensions [3], which requires the computation of Ti and T−1

i

for each modulus mi, where Ti = M/mi is about the same size as M , i.e. about 512
bits. In the context of random bases, precomputations are inconceivable (their choices
of parameters lead to more than 235 possible values for M). So we suppose that they
evaluate these values at each base selection. Note that our algorithm uses the MRS
conversion to avoid this problem.

2.2 Modular Exponentiation

The RNS Montgomery multiplication easily adapts to modular exponentiation algo-
rithms. Since the exponent is not represented in RNS, we can consider any classic
method for modular exponentiation, from the basic binary (square-and-multiply) al-
gorithm to other fast exponentiation methods [11]. As with any Montgomery based
exponentiation algorithm, the first step in the evaluation of XE mod N , is to transform
the input X into the so-called Montgomery representation: X ′ = XM1 mod N (X ′ is
sometimes referred to as the N -residue of x according to M1). This is done using a
Montgomery multiplication with X and (M2

1 mod N) as inputs. This representation has
the advantage of being stable over Montgomery multiplication:

MM(X ′, Y ′, N,B1,B2) ≡ XY M1 mod N.

At the end of the exponentiation, the value Z ′ = XEM1 mod N is converted back into
the expected result Z = XE mod N using a last call to Montgomery multiplication with
Z ′ and 1 as inputs.

3 Leak Resistant Arithmetic

One advantage of the RNS algorithms presented in previous sections is to offer many
degrees of freedom for the randomization of processed data. In this section we pro-
pose two approaches based on the random selection of the RNS bases, which provides
randomization, both at the circuit level (spatial randomization) and the data level (arith-
metic masking). They represent a good trade-off between randomization strength and
implementation cost. We consider two approaches:
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• Random choice of the initial bases: Randomization of the input data is pro-
vided by randomly choosing the elements of B1 and B2 before each modular ex-
ponentiation.

• Random change of bases before and during the exponentiation: A generic
algorithm is proposed offering many degrees of freedom in the implementation and
at the security level.

3.1 Solving the Problem of the Montgomery Factor

A random draw of B1 and B2 is seen as a permutation γ, over the predefined set B of
size 2k. The first k elements give B1,γ =

(
mγ(1), . . . ,mγ(k)

)
, and the next k ones give

B2,γ =
(
mγ(k+1), . . . ,mγ(2k)

)
. We denote M1,γ and M2,γ the products of the elements of

B1,γ and B2,γ respectively:

M1,γ =
k∏

i=1

mγ(i), M2,γ =
2k∏

i=k+1

mγ(i).

Before we give more details on SCA aspects, we solve an important problem due to
the random choice of B1 and B2. As pointed out before, modular exponentiation of any
input X usually starts with an initial modular multiplication to get into the Montgomery
representation, according to the so-called Montgomery factor. As mentioned before, we
would have to perform the Montgomery multiplication of X and (M2

1,γ mod N). But
since M1,γ is the product of k randomly chosen moduli, we do not know (M2

1,γ mod N)
beforehand. The huge number of possibilities for M1,γ (further evaluated) makes the
precomputation of the products of all the subsets of k elements of B unconceivable.
On-the-fly evaluation of (M2

1,γ mod N), after the random choice of B1,γ , would be very
expensive and would require dedicated hardware.

The solution we propose is achieved through a call to our RNS Montgomery mul-
tiplication where the roles of the bases B1,γ and B2,γ are exchanged. The following
proposition holds:

Proposition 1 For every permutation γ over B, the Montgomery representation of X

according to B1,γ, i.e. the value X M1,γ mod N , is obtained with (note the order of B1,γ

and B2,γ in the call to MM):

MM(X, M mod N,N,B2,γ ,B1,γ), (5)

where M =
∏2k

i=1 mi.
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Proof: It suffices to remark that ∀γ, we have M = M1,γM2,γ. Thus:

MM(X, M mod N,N,B2,γ ,B1,γ) = XM1,γM2,γM−1
2,γ mod N = XM1,γ mod N.

�

It is important to note that M mod N does not depend on γ. This value is precom-
puted for each mi. We obtain the result in RNS for the two bases, and we continue
the exponentiation, with the two bases B1,γ and B2,γ playing their usual role as in
MM(., ., N,B1,γ ,B2,γ). This solution only requires the precomputation of 2k small con-
stants, of the size of the mjs: for j = 1...2k, we store the values |M mod N |mj

, where
M =

∏2k
j=1 mj .

We remark that this problem of the Montgomery factor is not mentioned in [8]. Using
their notations, the precomputation of M̃2 mod p and M̃2 mod q for all the possible RNS
bases would require the precomputation of

(
69
9

)
> 235 values of 512 bits each (more than

6.5 TBytes). We must then assume that M̃2 mod p and M̃2 mod q (or X M̃ mod p

and X M̃ mod q) are computed using other techniques, like Barrett or Quisquater, as
precisely pointed out in [13]. This would require dedicated hardware (protected against
SCA), and thus, drastically increase the size of the circuitry. In this case, the advantages
of the RNS solution seems very limited. Using the same parameters, our algorithm only
requires 144 Kbytes of memory, and one call to RNS Montgomery (which has to be done
anyway).

3.2 Initial Random Bases

Taking into account the order of the elements within the bases, a set B of 2k moduli,
leads to 2k! different bases B1,γ and B2,γ of k moduli each. Since two consecutive ex-
ponentiations are performed with two different permutations, γ and γ′, identical input
data leak different information through the side-channel. Actually, after step 2 of algo-
rithm 1, we have computed Q = (qγ(1), . . . , qγ(2)) in B1,γ , where qγ(i) = q mod mγ(i) for
i = 1...k. Then, for each mγ(j) in B2,γ , we evaluate

|q|mγ(j)
=

∣∣t1 + mγ(1)(t2 + mγ(2)(t3 + · · ·+ mγ(k−1)tk) · · · )
∣∣
mγ(j)

, (6)
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where the tis are evaluated as follows, with µs,t = m−1
γ(s) mod mγ(t):

t1 = |q|mγ(1)
= qγ(1) (7)

t2 =
∣∣(qγ(2) − t1)µ1,2

∣∣
mγ(2)

(8)

...

tk =
∣∣(· · · (qγ(k) − t1)µ1,k − · · · − tk−1)µk−1,k

∣∣
mγ(k)

(9)

From (6) to (9), we remark the influence of γ on the computations. It is clear that the
values µs,t used to evaluate the tis are different for each new permutation. Moreover,
although all of them need to be precomputed, only about half of them (those with s > t)
are used in (7) to (9). The same remark applies for (6) where all the operands differ
from one permutation to another. It is also important to note that equations (6) to (9)
require modular arithmetic to be performed modulo different values at each permutation.
Initial random bases will thus give very different traces through the side-channel, even
with identical input data. This significantly increases the number of experiments the
attacker should try in order to retrieve secret information.

Initial random bases also provides data randomization. Selecting two bases of k mod-
uli each within a set of exactly 2k moduli, gives

(
2k
k

)
= (2k)!

k!k! pairs (M1,γ ,M2,γ), i.e.
(
2k
k

)
different Montgomery representations. Let us explain why this parameter corresponds
to the level of randomization of the input data provided by our arithmetic. Randomiza-
tions of the message and the exponent are well known techniques to defeat DPA [19].
These randomizations prevent from chosen and known plain-text SCA targeting a secret
carried out by the exponent during the exponentiation. In classical arithmetic solu-
tions, such a masking can be obtained by choosing a pair of random values (ri, rf ), with
ri ≡ r−1

f (mod N), and by multiplying (modulo N) the message X by ri before the
exponentiation, such that Xri mod N has a uniform distribution2. Similar techniques
are used to randomize the exponent and the modulus. The size of the random factor(s)
must be chosen large enough to ensure a good level of randomization.

In our case, M1,γ plays the same role as the random factor ri. The first step of the
exponentiation which converts X into XM1,γ mod N , thus provides message randomiza-
tion. Since M1,γ is the product of randomly selected moduli, and can take

(
2k
k

)
different

values, we can consider that the output XM1,γ mod N has a uniform distribution (if k

is large enough). It is important to note that the randomization of X is free since the
first call to MM(...) must be performed anyway.

2A final multiplication by re
f mod N is required at the end.
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Table 1 gives randomization rates of different base sizes, and the corresponding size
of the factor ri in classic arithmetic solutions, computed as blog2(

(
2k
k

)
)c. For example,

we remark that k = 34 (|B| = 68), provides about the same randomization level as a
random factor ri of 64 bits.

Table 1: Randomization level of different base sizes, and their equivalent in classic
arithmetic masking solutions.

size of B
(
2k
k

)
equiv. size of ri (in bits)

36 9075135300 33
44 2104098963720 40
52 495918532948104 48
60 118264581564861424 56
68 28453041475240576740 64
80 107507208733336176461620 76

In terms of memory requirements, initial random bases require the precomputation
of 2k moduli mi of n bits each, 2k − 1 modular inverses |m−1

i |mj (i 6= j) for each mj ,
and 2k values |M mod N |mi ; a total of 2k(2k + 1) n-bit integers. Table 2 gives the
total memory requirements for different values of k and n and the corresponding RSA
equivalent dynamic range (computed as k(n − 1), which is the size of the lower bound
of M1,γ considering 2n−1 ≤ mi < 2n). For example, a set B of 2k = 68 moduli of
32 bits each (which correspond to approximately 1054-bit numbers in classical binary
representation) requires about 18 Kbytes of memory.

Table 2: Memory requirements for various parameters k and n, and the corresponding
RSA equiv. size.

k n = size of the mis (in bits) memory (in KBytes) dynamic range

30 18 8 > 510
25 32 10 > 775
34 32 18 > 1054
17 64 9.5 > 1071
32 64 33 > 2016

We remark that the space complexity is in O(k2n). Thus, it is better to consider
smaller bases with larger moduli. Of course, the complexity of the basic cells which
perform the arithmetic over each mi increases at the same time. A tradeoff between the
two parameters k and n has to be found, according to the hardware resources.
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3.3 Random Bases During Exponentiation

In this section, we show how we can randomly change the RNS bases during the expo-
nentiation. As for the initial random bases version presented in the previous section, we
must solve another problem, the on-the-fly conversion between two different Montgomery
representations.

Let us assume that initial random bases have been selected and that the exponen-
tiation algorithm has computed until, say Y = XαM1,γ mod N over the two bases
(B1,γ ,B2,γ). In order to continue with two new random bases (B1,γ′ ,B2,γ′), we have to
switch from the old Montgomery representation (according to M1,γ) to the new one (ac-
cording to M1,γ′). In other words, the question is: given XαM1,γ mod N , how can we
compute XαM1,γ′ mod N?

A straightforward solution is to get out of the old Montgomery representation with

MM(Y, 1, N,B1,γ ,B2,γ) = Xα mod N = Z,

and to enter into the new Montgomery representation with

MM(Z,M mod N,N,B2,γ′ ,B1,γ′) = XαM1,γ′ mod N

using the solution proposed in Sect. 3.2. The exponentiation can then continue according
to M1,γ′ until the next base change. The main drawback of this solution is that we loose
the randomization of Xα mod N between the two calls to MM(...).

A better solution consists in inverting the order of the two calls to MM(...). Actually,
if we first call (note the order of B1,γ and B2,γ)

MM(XαM1,γ mod N,M mod N,N,B2,γ′ ,B1,γ′),

we obtain
XαM1,γM1,γ′ mod N.

We then call
MM(XαM1,γM1,γ′ mod N, 1, N,B1,γ ,B2,γ)

and get the expected result
XαM1,γ′ mod N.

As a result, the value Xα mod N is always masked by a random quantity.
In order to illustrate the fact that our arithmetic easily adapts to existing counter-

measures at the upper level, Algorithm 2 is a RNS variant of an exponentiation algorithm
(adapted from the Montgomery ladder [23]), proposed by M. Joye and S.-M. Yen [15].
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The permutations are indiced according to the bits of the exponent. We start with the
initial random permutation γl and we use γi and γi+1 to represent the old and new ones
at each iteration (note that γi+1 can be equal to γi if no new permutation is selected.).
Note that this generic algorithm offers many implementation options in the frequency of

Algorithm 2 : RME(X, C, N,B), Randomized Modular Exponentiation
Input : A set B = {m1, . . . ,mk,mk+1, . . . ,m2k} of relatively prime integers ; an integer

X less than N represented in RNS for all mj ∈ B, with 4N < M1,γ , where M1,γ =∏k
i=1 mγ(i) for all permutation γ of B ; a positive exponent E =

∑l−1
i=0 ei2i.

Output : A positive integer Z = XE mod N represented in RNS over B.
1: Select randomly γl

2: U0 ←MM(1,M mod N,N,B2,γl
,B1,γl

)
3: U1 ←MM(X, M mod N,N,B2,γl

,B1,γl
)

4: for i = l − 1 down to 0 do

5: b← ei

6: Ub ←MM(Ub, Uei , N,B1,γi+1 ,B2,γi+1)
7: if new γi randomly selected then

8: U0 ←MM(U0,M mod N,N,B2,γi ,B1,γi)
9: U0 ←MM(U0, 1, N,B1,γi+1 ,B2,γi+1)

10: U1 ←MM(U1,M mod N,N,B2,γi ,B1,γi)
11: U1 ←MM(U1, 1, N,B1,γi+1 ,B2,γi+1)
12: else

13: γi = γi+1

14: end if

15: Uei ←MM(Uei , Uei , N,B1,γi ,B2,γi)
16: end for

17: Z ←MM(U0, 1, N,B1,γ0 ,B2,γ0)

base exchange. Although it is always possible to pay the price for a new permutation of
B at each iteration, this is our feeling that such an ultimate option does not necessarily
provides a better security, although this seems difficult to prove at the algorithmic level.

4 Implementation Aspects

In this section we propose an efficient addressing scheme which shows that our algorithms
can be implemented rather efficiently at a reasonable hardware cost.
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In a highly parallel implementation, the circuit can be built with 2k identical basic
cells. If k is large it might not be possible to build a circuit having actually 2k cells.
In this case, it is always possible to implement the algorithms with fewer cells, at the
price of less parallelization, by adding control to deal with the available cells. Each
elementary cell can perform the basic modular arithmetic operations. It receives three
operands x, y, m, one control bit and return either the sum or the product3 (depending
on the control bit) of x and y modulo m (see Fig. 1).

The precomputed values are stored in a multiple access memory and are addressed
through a permutation table which implements γ. Each elementary cell has an identifi-
cation number and performs the operation modulo the value given by γ for this number.
For example, in Fig. 1, the jth cell performs the modular multiplication xµi,j mod mγ(j),
where µi,j (see 3.2 for details) is retrieved from the memory through the permutation
table. When the value µi,j = |m−1

γ(i)|mγ(j)
is required, the indices i, j are passed to γ

which returns the value stored at the address (γ(i), γ(j)). When i = j, the memory
blocks can be used to store the |M mod N |mi . The advantage of using a permutation

Elementary modular arithmetic cellsPermutation tableMultiple−access memory

Cell |x µi,j |mγ(j)

˛̨̨̨
m
−1
γ(i)

˛̨̨̨
mγ(j)

i

j

γ(i)

mγ(j)

γ(j)

µi,j
Basic

#j

x

Figure 1: Sketch of a RNS-based cryptoprocessor with a network of elementary cells
exchanging data with the memory through a permutation table.

table is that the cells do not have to deal with the permutations themselves. Each time
we randomly select a new couple of bases, we just need to reconfigure the permutation
table.

3We can also consider a multiply-and-add operation which returns xy + z mod m.
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5 Side-Channel Analysis

In LRA, timing attacks are prevented by masking the input data. Actually, since M1,γ

comes from a randomly chosen subset of B, the first Montgomery multiplication provides
randomization of the message at no extra cost4. Note also that timing attacks can still be
prevented at the algorithmic level with LRA as presented in Sect. 3.3 with the adaptation
of the exponentiation method proposed in [15].

LRA provides natural resistance to SPA, DPA and EMA, by generating a very high
level of randomization, both at the data level and the order of the computations.

The first feature brought by the proposed LRA is the randomization of the bases.
If we assume that the architecture has exactly 2k elementary cells, each cell performs
its computations with a randomly drawn modulo. Hence, if the same computation is
performed several times, a given cell never computes the same calculation. This leads
to protections that act at different levels. First, we have the so-called spatial protection,
since a given location, i.e. a cell, behaves differently for the same calculation (same input
data); this helps to foil EMA focusing on the activity of an elementary cell. Moreover,
the random choice of the bases leads to the randomization of the message. This is a well
known technique to defeat DPA as well as SPA.

The second feature, which acts against SPA and DPA, is due to the random bases
changes during the exponentiation. Actually, the values from an iteration to another
within the exponentiation algorithm are no longer correlated. By the way, it thwarts
classical DPA in iterative attacks e.g. on RSA algorithms. Moreover, many implemen-
tation options in the frequency of base exchange allow the user to easily increase the
level of randomization.

Previous attacks on public key protocols using Fault injection [6] works well when the
values are stored in the classic positional binary number representation. For example,
the attack on non-CRT implementation of RSA makes the assumption that the flip of
one bit of a register during the exponentiation changes a value z to z±2b for an unknown
bit b. Since RNS is not such a positional number system, this assumption is not valid
anymore and known fault attacks do not apply. Moreover, the use of (redundant) residue
number and polynomial systems for error checking/correcting has been investigating in
the past (see [14], [27]) and would apply perfectly to our system in order to reinforce
the resistance against fault-based attacks (in the case of the CRT signature scheme
for example). Even though fault injection issues has not been addressed here, it is not

4If further masking is required, a random multiple of φ(N) can easily be added to the exponent

(represented in classical binary representation) before each modular exponentiation.
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unreasonable to think that the LRA could also be used to defeat them. A deeper analysis
is required in order to see how this goal can be accurately achieved.

6 Conclusions

We presented a new defense against side channel analysis adapted to public key cryp-
tosystems operating over large finite rings or field (RSA, ElGamal, ECC over large prime
fields, etc). For that purpose we introduced a Leak Resistant Arithmetic (LRA) based
on Residue Number Systems (RNS). We provided concrete algorithms together with
example of implementation. Our approach allows the usage of many implementation
optimizations at the field operator level without introducing weaknesses. The compu-
tation overhead due to our technique is shown to be negligible regarding to the overall
computation time. We have shown that the LRA provides self robustness against EMA,
DPA and SPA at the field implementation level. Moreover, at an upper level, usual
protections against SCA easily adapt.
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