
HAL Id: lirmm-00191926
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191926

Submitted on 26 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pregroups and the French noun phrase
Sylvain Degeilh, Anne Preller

To cite this version:
Sylvain Degeilh, Anne Preller. Pregroups and the French noun phrase. 03023, 2003, pp.19. �lirmm-
00191926�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191926
https://hal.archives-ouvertes.fr

 1

Sylvain Degeilh
LIRMM/CNRS

Montpellier
France

degeilh@lirmm.fr

Anne Preller
LIRMM/CNRS

Montpellier
France

preller@lirmm.fr

Pregroups and the French noun phrase

ABSTRACT:
 We study mathematical and algorithmic properties of Lambek’s pregroups and illustrate them by analysing the
French noun phrase. We establish robustness properties of pregroups and present a simple algorithm of complexity 3n for
deciding reduction in an arbitrary free pregroup as well as a linear algorithm covering a large class of language fragments. In
the French noun phrase, the agreement of determiners, adjectives and nouns and word order are treated.

Introduction

 When choosing a formal system for computational purposes, one looks for efficiency (taking

decidability for granted), robustness and provable verification. The mathematical concept of pregroups has

these properties. As we hope that our readers come from as varied backgrounds as linguistics, logic or

computation, we formulate and reformulate mathematical properties in terms of their significance in linguistic

analysis, like conservativity of extensions as robustness in Section 1. Section 2 covers algorithmic properties

and is more technical. Both Sections are intended as an argument, why one should prefer pregroups to other

systems when analysing a language fragment as we did in Section 3 for the French noun phrase.

Pregroups are an algebraic tool introduced by J. Lambek [Lamb 99] to recognise grammatically well-

formed sentences in natural languages. In linguistic applications, one uses free pregroups where the

mathematical machinery reduces to two simple schematic rewrite rules, the contractions. This tool provides an

elegant theory which is universal, independent of the language. Up till now, fragments of Arabic, English,

French, German, Italian, Japanese, Latin, Polish, Turkish among others have been analysed with the help of

pregroups. Besides the simplicity and the universality, other properties can be proven, due to the mathematical

character of the tool.

Indeed, the theory of pregroups is decidable. Therefore, as we shall explain below, the problem

whether a given string of words is a well-formed construct of a typed language fragment is decidable. The

general decision problem for free pregroups can be implemented by an algorithm of complexity 3n ,

guaranteeing thus an efficient algorithm for the typing checking of language fragments. Our “nearest left

parentheses” algorithm in Proposition 3 adapts and simplifies an algorithm given in [Earley] for context free

grammars. Earley’s algorithm was written for context free grammars and uses the number of rewrite rules of the

grammar as a bound. It cannot be applied as such to deciding reduction in pregroups. Indeed, the schema of the

two contraction rules in pregroups yields an infinite set of rewrite rules in the corresponding context free

grammar. Even if only finitely many rewrite rules are needed when type checking a given language fragment,

 2

Earley’s algorithm would be quite a bit more cumbersome than ours. In certain language fragments, our

algorithm simplifies further to an algorithm which is linear in the number of words. We also formulate a

sufficient criterion for linearity (Proposition 2), which we hope will influence the way the types are chosen for a

language fragment. Finally, typing with pregroups is robust. As extensions of the theory of pregroups are

conservative, the typing of a language fragment can be extended to include new constructs, new words without

changing the previous analysis. Thus the typing of the French noun phrase given in Section 3 extends earlier

work of [Barg-Lamb] on the French sentence structure. It is also part of ongoing work of a more comprehensive

fragment. Though our typing covers a liberal notion of determiners and can account for the distinction between

the indefinite versus the partitive reading of the articles du, des etc., our typing is far from covering all aspects

and aims above all at a demonstration of the potential of pregroups.

1. Mathematical properties and their linguistic meaning

To explain how pregroups work in linguistic, we recall briefly the definitions and the immediate consequences.

Definition 1: A pregroup is a partially ordered monoid in which each element a has both a left adjoint a� and a

right adjoint ra satisfying

 (Contraction) 1a a⋅ →�

1ra a⋅ →

(Expansion) 1 ra a→ ⋅

 1 a a→ ⋅ � .

The arrow denotes the partial order relation, the dot denotes multiplication and is generally omitted. By

definition, the multiplication is associative and the order is compatible with multiplication, that is

 a b→ and c d→ implies ac bd→ .

A linguist will work with the free pregroup generated by a partially ordered set of so called basic types. For

a given language fragment, one chooses a set of symbols, the basic types, and defines a partial order on this set.

We use bold face symbols a , b to vary over basic types.

The basic types and their iterated adjoints form a set Σ of simple types :

 Σ = {… a , a , a, a , a ,r rr�� � … …., b , b , b, b , b ,r rr�� � …}

The strings of simple types will be called types. The arrow a b→ is now read as “ a reduces to b ”. In fact, the

elements of the free pregroup generated by a set of basic types identify with the types constructed from the same

set of basic types, see [Lambek99]. The unit 1 denotes the empty string.

The simple types inherit the order from the basic types as follows:

 (I) If a b→ then b a , b ar r→ →� � , a b , a brr rr→ →�� �� , b a , b arrr rrr→ →��� ��� , etc.

 3

The order between basic types is “declared”, i.e. can be looked up in a table. Hence the ordering of simple types

follows from the same table. Indeed, to check whether a b→ , it suffices to check whether a and b have the

same exponent, i.e. a sa = , bsb = where a and b are basic and s consists of a finite number n of repetitions of

the same symbol, either � or r. If this is the case, then a b→ if either n is even and a b→ or n is odd and

b a→ . Otherwise, neither a reduces to b nor b to a .

The contractions of simple types can now also be understood as rules :

 (II) …, 1a a →��� �� , 1a a →�� � , 1a a →� , 1a ar → , 1a ar rr → , 1a arr rrr → ,….

In linguistic applications, where one works with a free pregroup, only the contractions and ordering of simple

types is needed (for the detail, see below), i.e. the rules (I) and (II) are all that is to be kept in mind when

“typing” a language fragment.

As a first step, the language fragment has to be described in common grammatical terms. We select the

words which are supposed to be in the mental or electronic dictionary, for example nouns, adjectives etc. and

introduce the grammatical notions describing the grammatically well-formed constructs of the fragment. The

next step is to define the set of basic types and its ordering. It must reflect the grammatical constructions under

consideration. In general, one will aim at keeping the set of basic types as small and with few inequalities as

possible. Finally, to every word of the fragment, one associates one or several types, to be written next to the

word in dictionary. Meta-rules serve to organise the content of the dictionary. Instead of explicitly writing the

type(s) of a word into the dictionary, it (they) may be described by a meta-rule.

The typing must be done in a way that a sequence of words is a well-formed construct (sentence, noun

phrase, etc) if and only if the corresponding string of types reduces to the basic type corresponding to the

construct. If a word has more than one type, then it is enough that one of the possible choices yields a string

reducing to the type in question. This equivalence is the key property. Every typing that respects it is said to be

correct (it recognises only well-formed constructs) and complete (it recognises all well-formed constructs) with

respect to the fragment.

A correct and complete typing satisfies the principle of Substitution : If a word is replaced by another

word with the same type, then a well-formed string of words remains well-formed. Indeed, being a well-formed

string of words is equivalent of having a string of types reducible to a given basic type and, by assumption, the

string of types is the same before and after substitution.

Every correct and complete typing satisfies properties which permit to extend the typing to larger

fragments without changing the properties of the previous typing. We call these the robustness properties:

a) Assigning new types to words, without changing the set of basic types :

Suppose a word W has type d and we add a type c such that c d→ . Then every string of words recognised

well-formed using the type assignment d for W is recognised well-formed using c .

b) Extensions by new basic types.

 4

This means that one can extend a given set B of basic types, by declaring new types and adding inequalities

involving the new types, obtaining thus a larger set of basic types B' . Then the free pregroup 'P generated by

B' includes the free pregroup P generated by B . Whenever both a and b belong to the smaller pregroup P

and a b→ can be derived in P , then this also holds in the larger 'P . Conservativity is a sort of converse of

this fact, it says : if a b→ can be derived in the larger pregroup 'P and both a and b belong to the smaller

pregroup, then the whole reduction can be done in the smaller pregroup. This is not trivial, because we might

have come to the conclusion a b→ by showing a c→ and c b→ using one of the new types c .

Conservativity is a consequence of the so-called Switching Lemma in [Lambek99] (see below) provided the

order of the old basic types remains unchanged.

The linguistic significance of this is that typing by pregroups is robust. Once it has been shown correct

and complete for a fragment it will remain so in the extensions. It also simplifies the task of verifying that a

typing is correct and complete. One can proceed step by step, extending the fragment by adding basic type after

basic type, and then verify only that the typing involving the new type(s) is also correct and complete for the new

constructs.

Here are the promised mathematical details on which our assertions above are based. Except Proposition 1, they

are either straight forward or to be found in [Lambek99].

1. 1 1a a a= = (1 is the unit of the monoid)

2. (ab)c a(bc)= (multiplication is associative)

3. a b→ and c d→ implies ac bd→ (order is compatible with multiplication).

4. 1ab ba→ → implies a b= � and rb a= (adjoints are unique)

5. ()ab b a=� � � , ()r r rab b a= (adjunction is quasi-distributive)

6. a b→ implies b a→� � and r rb a→ (adjunction reverses the order).

7. r ra a a= =� � (no mixed adjoints)

Properties 1. – 3. are in the definition of a monoid, the properties 4. - 7. can be easily derived from Definition 1.

For example, to derive that rb b= � , use 1b b bb→ →� � and 4. with a b= � . Similarly, 5. follows from 4.

Indeed, r r(ab)(b a) = r ra(bb)a → 1 ra a = raa Æ 1 → rb b = 1rb b → r rb (a a)b = r r(b a)(ab) . Hence, by 4.,

()r r rab b a= .

In free pregroups, important additional properties hold. First of all, they are non-commutative and the iterated

adjoints of basic types are all different. The most important result is expressed in the Switching Lemma

[Lambek99, Proposition 2], which we shall include here for completeness sake. Recall that the elements of the

partially ordered set generating the free pregroup are called basic types, their iterated left or iterated right

adjoints are called simple types. Strings of simple types are called types, the empty string being denoted 1.

Lambek [loc.cit.] shows that this monoid of types is in fact the free pregroup generated by the basic types.

 5

Hence, concatenation plays the role of multiplication and the empty string that of the unit. It is convenient to use

a uniform notation for the simple types, be they iterated left adjoints or iterated right adjoints: Write

 2 1 0 1 2a a a a a() () () () ()... , , , , ,...− −

for

 a a a a ar rr... , , , , ,...�� � .

Then, by definition, every type has the form

 1
1

k(n)(n)
k...a a

where 1 k,...,a a are basic types and 1 kn ,...,n are integers. The types form already a pregroup, if one defines

adjoints by

 1 11 1
1 1:k k(n) (n)(n) (n)

k k(...) ...a a a a− −=�

 1
1

k(n)(n) r
k(...)a a : = 11 1

1
k(n) (n)

k ...a a+ +

and the order on types as the reflexive and transitive closure of the following three relations where c,d are

arbitrary types and ,a b are basic:

(Induced step)

 (n) (n)c d c da b→ , if either n is even and a b→ or n is odd and b a→ .

(Generalised contraction)

 1(n) (n)c d cda b + → , if either n is even and a b→ or n is odd and b a→ .

(Generalised expansion)

 1(n) (n)cd c da b+→ , if either n is even and a b→ or n is odd and b a→ .

Notice that for every basic type b , one has the contractions

 (n)b 1(n)b + → 1, whatever the integer n .

Switching Lemma (Lambek) : Let 1 na ,...,a and 1 mb ,...,b be simple types. Then 1 na ...a → 1 mb ...b if and only if

there are a substring
1 ki ia ...a of 1 na ...a and a substring

1 ki ib ...b of 1 mb ...b such that

 1 na ...a →
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b , 1
p pi ia b , p k→ ≤ ≤ ,

where
1 ki ia ...a is obtained from 1 na ...a by generalised contractions only, 1 mb ...b is obtained from

1 ki ib ...b by

generalised expansions only and finally
1 ki ib ...b is obtained from

1 ki ia ...a by induced steps only.

Call a pair of simple types (,c d) contractible, if 1(n) (n)c , da b += = and either a → b and n even or b a→ and

n odd.

 6

Corollary (Lambek) : For simple types 1 na ,...,a and b , 1 na ...a b→ holds if and only if there is a simple type

b' b→ such that one can obtain b' from 1 na ...a by repeatedly omitting pairs of contractible adjacent types.

I) The first consequence is the decidability of the type checking problem, namely to decide whether a b→

where a is an arbitrary type and b is simple.

Indeed, given a string 1 na ...a choose an index i such that 1i i(a ,a)+ is contractible and omit 1i ia a + , start again

with 1 i-1 i+2 na ...a a ..a until an irreducible string is reached, i. e. a string without adjacent contractible types. As

different choices may lead to different irreducible substrings, the answer is yes, if at least one of the choices

leads to a simple type b' for which b' b→ .

Hence, if a correct and complete typing has been provided for a language fragment, then the fragment itself is

decidable. Given a string of words in the dictionary of the fragment enumerate all possible strings of types

corresponding to the words. As every word has only finitely many types, there are only finitely many such

strings. Then test for each string, if it reduces to an appropriate basic type.

Another consequence is the characterisation of conservative extensions :

II) Proposition 1: (Conservativity of extensions) : Let B be an ordered subset of 'B , i.e. B is a subset of 'B

and a → b in B if and only if a,b B∈ and a → b in 'B . Then the free pregroup 'P generated by 'B is

conservative over the free pregroup P generated by B . That is to say, for all elements e, f of P such that

e f→ holds in 'P , e f→ holds already in P .

Proof: Let e, f be elements of P such that e f→ holds in 'P . First consider the special case where e f→ is

a generalised contraction. Then there are basic types a,b B∈ and an integer n such that 1(n) (n)e c da b += ,

f cd= and either a → b in 'B and n is even or b → a in 'B and n is odd. By hypothesis, this implies

a → b in B and n is even or b → a in B and n is odd. Therefore e f→ is a generalised contraction in

P . By a similar argument, one shows that a generalised expansion (induced step) in 'P is also a generalised

induced step in P .

In the general case, there are simple types 1 na ,...,a and 1 mb ,...,b of P such that 1 ne a ...a= , 1 mf b ...b= and

1 na ...a → 1 mb ...b in 'P . Apply the Switching Lemma. There is a substring
1 ki ia ,...,a of 1 na ,...,a and a

substring
1 ki ib ,...,b of 1 mb ,...,b such that

 1 na ...a →
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b ,
p pi ia b→ in 'P , 1 p k≤ ≤ ,

1 ki ia ...a is obtained from 1 na ...a by repeated generalised contractions and 1 mb ...b is obtained from
1 ki ib ...b by

repeated generalised expansions. Now for every generalised contraction c d→ , from c P∈ follows d P∈ .

Indeed, d is obtained from c by omitting two simple types. Similarly, for every generalised expansion c d→ ,

from d P∈ follows c P∈ . Hence
1 ki ia ...a and

1 ki ib ...b are in P and all the intermediary generalised

 7

contractions, expansions and induced steps take place in P . By the first part of the proof, this implies that

1 na ...a →
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b , and
p pi ia b→ , 1 p k≤ ≤ , already hold in .P

The Proposition 1 simplifies the task of verifying that the typing is correct and complete. One can

proceed step by step, extend the fragment by adding new basic types and assigning new types to words. Then to

show that the typing is correct and complete with respect to the larger fragment, it suffices to consider the

sequences of words with new types. The only prerequisite is not to change the order between the old basic types.

For example, suppose B B c' []= where c is a new basic type. We may declare a c→ and/or c b→ for some

“old” basic types a,b B∈ . However, we must take care not to declare both a c→ and c b→ , unless a → b

already holds in B . Notice that this step by step approach is normally taken for granted. The conservativity

property says that this approach is safe. This is not as trivial as one might think. Obviously, a sequence of

words which is a grammatically well-formed construct of the smaller fragment remains so in the larger fragment.

Just use the typing and the reduction in the smaller pregroup P , which remains a reduction in the bigger one

P' . It is, however, not so obvious that a sequence of words which is not well-formed in the smaller fragment

does not become well-formed in the bigger fragment, even if no new types are involved. Indeed, suppose that a

sequence of words gets assigned a type c in the smaller fragment, but is not well-formed. As the typing in P is

correct and complete with respect to the smaller fragment, we have ac → where a is the basic type

corresponding to a the grammatical notion under investigation. A priori, one cannot exclude that c d→ and

ad → , where d is a new type in P' . But then, it would follow that ac → in P' . From this we would have to

conclude that the sequence of words is now well-formed, because its type reduces to a . Conservativity

guarantees that this cannot happen, as from ac → in P' it would follow that ac → in P , contradicting

ac → .

This property is used in fact continuously and most of the time without saying so. We will do so in Section 3

2. Algorithmic Properties

The type checking problem for free pregroups is to decide by a general method whether 1 ... na a b→ for

arbitrary simple types 1 , ..., na a and any irreducible type b , i.e. a string of simple types containing no

contractible pair of adjacent simple types. The Corollary to the Switching Lemma gives such a method:

For deciding whether 1 ... na a b→ holds, it suffices to omit a contractible pair of adjacent types 1i ia a + and repeat

this procedure in all possible ways until the resulting string is irreducible. If at least one of the resulting strings

b' satisfies b' b→ , the answer is yes, otherwise it is no.

Any implementation of this decision procedure is called a type checking algorithm. The decision

procedure for free pregroups provides a solution to the problem whether a sequence of words belongs to a

language fragment. For each word in the sequence choose one of its types in the dictionary. The sequence of

words belongs to the fragment if and only if one of the strings of assigned types reduces to a specific basic type,

say the type of a noun phrase or the type of a sentence. An algorithm which provides associated strings of types

for a string of words is called a type assignment algorithm. To keep this paper in reasonable limits, we restrict

ourselves to the efficiency of type checking algorithms.

 8

The result of the reduction of a string of types to an irreducible one depends in general on the choice of

the contracted pairs. For example, a a aar�� � reduces with two contractions to the empty string, namely by

contracting the left most and the right most pair. On the other hand, by contracting the central pair a a� one

obtains the irreducible string a ar�� . The type checking problem for free pregroups can be replaced by the more

specific one which checks if a string reduces to the empty string 1 , see Lemma 1 below. The set of all strings

1 ... na a such that 1 1... na a → can be characterised by a context free grammar. However, this context free

grammar has an infinite set of terminal symbols (the simple types and 1) and its set of rewrite rules is infinite.

Indeed, it includes all the rules of the form 1() ()a an nE E E E+
⇒ where a is a basic type, n an integer and E a

new, non-terminal symbol standing for a string which reduces to the empty one. Hence the efficient algorithm of

complexity K 3n in [Earley] does not apply, because K is a common bound for the set of terminal symbols and

the set of rewrite rules. If we are only interested in linguistic applications, we may restrict the set of strings by

requiring that the intervening simple types belong to a given finite set. However, our algorithm in Propostion 3

not only is simpler than Earley’s but also implements the decision procedure for type checking in an arbitrary

free pregroup. Like Earley’s, it reads the string from left to right and has complexity 3n , but with a much lower

constant. For certain sets of strings, our algorithm can be simplified even further to one that is linear in the

length n of the string, see Proposition 4. This linear algorithm is useful in linguistic applications. The strings of

types associated to a word of the language fragment very often satisfy the criterion which permits the use of the

linear algorithm.

 We begin with a criterion for subsets of free pregroups permitting linear type checking. A triple of

simple types (a,b,c) is said to be critical, if both (a,b) and (b,c) are contractible. This is equivalent to saying

that there are basic types , ,a b c and an integer n such that 1(n)a a −= , (n)b b= , 1(n)c c += and ()b a(n) n→ ,

() ()b cn n→ . The latter is the case, exactly when either n is even and ,b a b c→ → or n is odd and

,a b c b→ → . A string of simple types is linear, if it has no substring of length 3 which is a critical triple. The

typing of a language fragment is said to be linear, if all strings of types corresponding to strings of words in the

dictionary are linear. For example, ra aa� is linear, but ra aa� is not linear. Or if a b→/ , then rcba aab� is

linear, but if a b→ , then rcba aab� is not linear.

Proposition 2: Every linear type has a unique irreducible form.

Proof: Suppose 1 na ...a is linear. Use induction on n , the length of the string. If 1n = , the property is obvious.

For the induction step, notice that every substring of 1 na ...a is again linear. Moreover, whenever 1i ia a + and

1j ja a + are both contractible, the indices 1 1i,i , j, j+ + are all different. Suppose 1 na ...a has k pairs of

contractible adjacent types. Omitting them in 1 na ...a corresponds to k simultaneous contractions. They can be

done in any order without changing the result. If 0k = , then 1 na ...a is irreducible. Otherwise, the unique

substring resulting from the k contractions has length less than n and we may conclude by induction

hypothesis.

 9

Lemma 1: Suppose that 1 na ,...,a and b are simple types. Then 1 na ...a b→ if and only if b�

1 na ...a 1→ .

Proof: Assume that b�

1 na ...a 1→ and use induction on the length n . If 1n = , 1b a� 1→ must be generalised

contraction. From the definition of generalised contractions, it follows at once that 1a b→ . Assume n 1> . If

1b a� are contractible, we conclude as above. Otherwise, the first generalised contraction transforming b�

1 na ...a

to 1 must be in 1 na ...a . Hence the result has the form b�

1 2ni ia ...a
−

 with b�

1 2ni ia ...a
−

1→ . By induction

hypothesis,
1 2ni ia ...a

−
b→ . As 1 na ...a →

1 2ni ia ...a
−

, the property follows. As 1 na ...a b→ implies

1 1nb a ...a b b→ →� � , we are done.

It is easy to device a linear-time algorithm which reads a string from left to right and produces an irreducible

form. For linear strings, it will provide the only irreducible string obtainable by contractions. In fact, this left to

right algorithm is a closely linked to the more general one below which solves the type checking problem

without restriction on the strings.

Proposition 3 : There is an algorithm which decides in at most 3n steps whether 1 1... na a → .

Proof: We define a function Nlp which maps a string S of length n and an integer { }1 1, ...,i n∈ + to a subset

of { }1, ...,i and show that

 1) S 1Æ if and only if 0 1(,)Nlp S n∈ +

 2) 1(,)Nlp S n + can be calculated in at most 3n steps

We omit the parameter S to simplify notation. The intuitive idea of Nlp is the following : Process the string

1 ... nS a a= from left to right, looking for all possible contractions, reading the symbol ia at stage 1i + . This

symbol could be a left “parenthesis” to a later pa , i.e. i pa a≤ � , or a “right parenthesis” to some earlier ja , i.e.

r
i ja a≤ . As it cannot be both in the same reduction, one has to keep track of more than one reduction, or at least

of the indispensable information. It turns out that the left parentheses ready for contraction at stage i is all that

is needed to continue the processing to stage 1i + . Therefore at stage 1i + , ia is declared an “open” left

parenthesis (to be contracted with some right parenthesis which might come up later), i.e. the index i is stored in

1()Nlp i + . Notice that for this choice, ia becomes the nearest open left parenthesis for 1ia + . However, ia

might also be a right parenthesis to the nearest left parenthesis in a reduction made up to stage i . So, for each

()j Nlp i∈ , we check if r
i ja a≤ . If this is the case, ja becomes “closed” and the open left parenthesis at stage

j become ready again for contraction at stage 1i + . Hence, Nlp has the following definition.

Definition 2:

 { }1 0()Nlp =

 10

 { }1
(),

() ()
r

i jj Nlp i a a
Nlp i i Nlp j

∈ ≤

+ = ∪ ○ , 1 i n≤ ≤

The rest of the proof follows from the next 5 lemmas.

Lemma 2 : { }1 0() , ...,Nlp i i+ ⊆ .

This follows immediately from the definition.

Lemma 3 : If 1()k Nlp i∈ + , then 1k ia a 1+ ... Æ , i.e. ka is ready for contraction with 1ia + .

Indeed, use induction on i k− . If i k= , then 1 ...k ia a+ is the empty string and 1 1Æ . Assume

0i k− > and ()k Nlp iŒ . Then there is a ()j Nlp iŒ such that ()k Nlp jŒ and r
i ja a≤ . By Lemma 2 and

assumption, k j i< < , therefore j k i k− < − and i j i k− < − . Thus by induction hypothesis, 1 1...k ja a 1+ − Æ

and 1 1...j ia a 1+ − Æ . Finally, 1 1 1 1...k j j j i ia a a a a a+ − + −...

r
j i j ja a a a 1Æ Æ Æ .

Lemma 4 : If 1k ia a 1+ ... Æ , then 1()k Nlp i∈ + .

 Again proceed by induction on i k− . If i k= , then 1()k Nlp i∈ + by definition. Let 0i k− > and

assume that 1k ia a 1+ ... Æ . Then there is an index j such that 1 1k j i+ ≤ ≤ − such that 1 1...j ia a 1+ − Æ , r
i ja a≤

and 1 1...k ja a 1+ − Æ . By induction hypothesis, this implies that ()j Nlp iŒ and ()k Nlp jŒ . So, 1()k Nlp i +Œ

by definition.

Lemma 5 : 0 1()Nlp n∈ + if and only if 1 ... na a 1Æ .

Apply Lemma 3 and Lemma 4 to 0k = , i n= .

Lemma 6 : 1()Nlp i + can be calculate from ()Nlp i in at most 2 1i + steps. The complexity of 1()Nlp n + is

3n .

Indeed, to calculate 1()Nlp i + we first copy i into 1()Nlp i + and then must compare ia with r
ja for every

()j Nlp iŒ . By Lemma 2, we make at most i comparisons. Each time the comparison succeeds, the elements

of ()Nlp j are copied into 1()Nlp i + . But ()Nlp j has at most j elements and j is bounded by i . On the

whole, we have executed at most 2 1i + steps, counting a comparison and recopying an element as one-step

operation. Finally, to calculate 1()Nlp n + , we must calculate 1(), ..., ()Nlp Nlp n one after the other, so we do

at most 2 1()n n + steps. Notice that the constant of 3n is 1 in this estimate.

Corollary 1: If there is a bound K such that ()Nlp i K< for all i , then the complexity of 1()Nlp n + is linear

n .

 11

Indeed, the number of steps from ()Nlp i to 1()Nlp i + is bounded by 2 1K + , hence 1()Nlp n + can be

calculated in at most 2 1()K n+ steps.

Notice that Nlp makes enough calculations to scan all possible reductions of the string. In some

situations, it might be enough to find just one reduction yielding an irreducible string. The hope is that if there

are fewer reductions to keep track of, it is more likely to find a bound for the set of “nearest left open

parentheses”. A slight modification of Nlp produces such a reduction, which can be calculated in at most 4n

steps. The idea is to open a new left parenthesis, only if necessary. Call the corresponding function Llp , the

“lazy left parenthesis” function. It is defined on { }1, ...,n , the string S of length n being given, and takes

subsets of { }1, ...,n as values.

Definition 3:

{ }1 0()Llp =

{ }
if

1
 else

()
(), ()

() j Link i
Llp j Link i

Llp i
i

 ≠ ∅+ = 


∪
Œ

where { }1() () : , r
i jLink i j Llp i j a a= ≤ ≤Œ , 1 i n≤ ≤ .

One shows easily that 1()Llp i + is included in 1()Nlp i + and has exactly one element. Moreover, ()j Link iŒ

means that ja is contracted with ia in the reduction defined by Llp . More precisely, say that i and j are

linked, if ()j Link iŒ or ()i Link jŒ . Then :

Lemma 7 : 1) If 1()k Llp i∈ + , then 1k ia a 1+ ... Æ and whenever 1k m i+ ≤ ≤ there exists a p such that m and

p are linked and 1k p i+ ≤ ≤ .

2) If ()j Link iŒ , then j ia a 1... Æ .

3) ()m Link pŒ implies for all i p> and all ()j Llp iŒ that j p> or j m< .

4) Every index p is linked to at most one index m .

Proof: 1) Proceed as in Lemma 3. Assume 1()k Llp i∈ + and 1k m i+ ≤ ≤ . If k i= , there is nothing to show.

If k i< , then there is ()j Link iŒ such that ()k Llp jŒ . As () ()Link i Llp i⊆ , the induction hypothesis applies

to i j− and to j k− . Remark that if or m j m i= = , then m is indeed linked to some p with 1k p i+ ≤ ≤ . 2)

is an immediate consequence of 1). 3) Suppose ()m Link pŒ , i p> and ()j Llp iŒ . Use induction on i p− .

In the case of 1i p= + , we have ()j Llp mŒ , as ()Link p ≠ ∅ . Hence j m< . If 1i p> + , then either

1j i p= − > or 1()j Llp i −Œ and therefore by induction hypothesis j p> or j m< . To see 4), remark first

that an index p cannot be linked to two different smaller indices, as ()Link p has at most one element. By 3)

 12

an index m cannot be linked to two larger ones, say p and i with p i< . And it also cannot be linked to a

smaller and a larger one, as ()m Link pŒ , ()p Link iŒ would also contradict 3).

Finally, the next and last Lemma confirms that the unlinked elements of the string in increasing order form an

irreducible substring.

Lemma 8 : Let Unlinked = { }1 , ..., qi i be the set of unlinked indices in increasing order. Then the following

holds

I) every index less than 1i (respectively between i
�

 and 1i +� , respectively larger than qi) is linked to some index

below 1i (respectively between i
�

 and 1i +� , respectively larger than qi). II) ia
�

 and
1ia

+�
 are not contractible.

Proof: The assertion I) follows from Lemma 7, 1) and 2). To show II), assume 1i i +=
�

 and let ()j Llp iŒ . By

choice of i , r
i ja a≤/ , i.e. ja and ia are not contractible. Hence, it suffices to show that j i=

�
. In view of

Lemma 7, 1), it suffices to show that j is not linked to any index. If j was linked to a smaller index, this

would contradict Lemma 7, 3). If j was linked to an index greater than i , this would imply that i is linked by

Lemma 7, 1). Finally, j cannot be linked to a larger index which would be less than i , because of Lemma 7, 1)

and 4).

Proposition 4 : The type checking problem of a linear fragment can be decided by a linear algorithm.

Proof: By Lemma 1, it suffices to find an algorithm which is linear in the length of the string and produces an

irreducible form of the string. For this it suffices to add a new step at stage 1i + : erase j and i from { }1, ...,n ,

whenever the test ()j Link iŒ succeeds. Together with the two steps to calculate 1()Llp i + , at most four

operations are performed on the whole at stage 1i + .

3. French Noun phrases

 By Proposition 1 on conservativity of extensions, the typing proposed below may be viewed as an

extension of the typing in [Barg-Lamb]. To make things work, the new basic types have to be related to the old

ones. For example, we introduce the basic type ngn to denote a complete noun phrase, depending on its gender

g and number n. We postulate gnn n→ , where n is a type used in [loc.cit.] in the situations where the gender

and number are of no importance.

 The noun phrases analysed here are either names or a determiner followed by a noun. After the noun or

between it and the determiner may be adjectives. A noun alone is in general an incomplete noun phrase, though

French knows some noun phrases formed from a noun without a determiner. As these are rather archaic and

exceptional, we will not consider them in what follows. The so-called prenominal adjectives precede the noun,

the postnominal adjectives follow it. A noun with correctly declined and correctly placed adjectives forms an

incomplete noun phrase. A determiner transforms an incomplete noun phrase into a complete noun phrase,

which may be subject or object in a sentence. The notion of determiner follows [Le bon usage], it includes the

 13

indefinite article un, une, the definitive article, le, la, l’, les and its contracted forms with de namely du, des, the

possessive and demonstrative pronouns such as well as the preposition de followed by an adverb of degree like

beaucoup, peu

3.1 Nouns and Adjectives

Nouns are count-nouns like chat, pomme and mass-nouns like eau, pain, vent etc, but also courage,

beauté and so on. Noun phrases inherit this distinction. Nouns as well as adjectives vary in gender and number.

Therefore we distinguish the types of noun phrases by indices g and n , where 1g = stands for masculine

2g = for feminine, whereas n = 1 means singular and n = 2 means plural. Thus we use the symbol cgn for a

count-noun phrase and similarly mgn for a mass-noun phrase. The gender of a noun is given in the dictionary

as well as its plural form. Number and gender of noun and adjectives must agree in an noun phrase and

constitute the number and gender of the noun phrase. Many mass-nouns have no plural form, for example riz .

If it has one, we treat the plural form as count-noun.

The formation of the noun phrase also has to take into account the dislike of French speakers of the

hiatus where two consecutive vowels would clash. For example, l’arbre, cet arbre, bel arbre, mon eau, but *le

arbre, ce arbre, *beau arbre, *ma eau.1 Every type x will have a copy 'x used for words or sequences of

words of which the first letter is a vowel.2 Thus we have basic types g nx , where x stands for c, c', m or m' .

Adjectives are not only divided into prenominal adjectives and postnominal adjectives3, but they also

must respect a certain order, if more than one precedes or follows the noun. For example bon vin, vin blanc,

beau petit chat, autre beau petit chat, vin blanc pétillant, bon petit vin blanc pétillant etc. but *vin bon, *blanc

vin, *petit beau chat, *vin pétillant blanc etc. If two adjectives should occupy the same position, they must be

linked by a copula, for example film noir et blanc 4. We assume that the classification of the adjectives into

prenominal and postnominal hierarchy classes is known and can be looked up in the dictionary. We use Arabic

digits for the prenominal classes 1 2, , ...C C , Roman ones for the postnominal classes , , ...I IIC C , i.e. we have

classes hC where { } { }1 2h , ,... I,II,...∈ ∪ . The lower the number of its class, the closer the adjective will be to the

noun. Thus blanc belongs to IC , petit to 1C , pétillant to IIC . This distribution into hierarchy classes

necessitates the introduction of corresponding basic types for the incomplete noun phrases xhgn where

{ } { }1 2h , ,... I,II,...∈ ∪ or 0h = for bare nouns:

We postulate

h gn gnx x→ , for all h , x = c, c', m or m' .

1 This phenomenon is even more pervasive in the spoken language where the otherwise silent terminal
consonant of a word is pronounced, if the following word starts with a vowel.
2 There are words whose first letter is a silent h which are assimilated to words starting with a vowel.
3 Some adjectives may belong to both classes, especially if classic French or regional variations are also to be
covered
4 This can be done with the usual polymorphic typing of the copula. To keep the paper in reasonable limits, we
ignore this case.

 14

The type 0 gnx corresponds to a noun, it is given in the dictionary, for example

 amande : 021c'

 pain : 011m

 eau : 021m '

The types xign , for { }1 2, , ...i Œ correspond to incomplete noun phrases starting with an adjective in hierarchy

class iC . The types xkgn for { }, , ...k I IIŒ correspond to incomplete noun phrases starting with a noun and

ending with an adjective in class kC . This will be accomplished by assigning the types to adjectives as follows:

Meta-Rule 1 (Special adjectives): The masculine form singular of a few special adjectives like beau, noubeau,

vieux has a variant bel, nouvel, viel to be used if the next word starts with a vowel.5 The type of beau, bel etc. is

therefore

beau,… : 211 11x xh
� , for 1 0, , , , ...h I II=

vieux, … : 111 11x xh
� , for 0, , , ...h I II=

bel, … : 211 11x x h'
� , 1 0, , , , ...h I II=

viel, : 111 11x x h'
� , for 0, , , ...h I II=

where x c= , x m= .

The types of the non special adjectives and the feminine singular and the plural form of the special adjectives

are described by the meta-rule below:

5 In the spoken language, every adjective ending in a silent consonant will have a variant form where the last
letter is audible if the following word starts with a vowel.

 15

Meta-Rule 2 (Adjectives):

Let A be an adjective and gnA its declined form of gender g and number n .

1) If A belongs to the prenominal hierarchy class Ci , 1 2, , ...i = , then

 gnA : x yi gn hgn
� , 1 0, ..., , , , ...h i I II= − ,

where

 if A starts with a consonant, either x c= and , 'y c c= or x m= and , 'y m m= ,

if A starts with a vowel, either 'x c= , , 'y c c= or 'x m= , , 'y m m= .

2) If A belongs to the postnominal hierarchy class kC , , , ...k I II= , then

 gnA : x xr
h gn i gn , where , ', , 'x c c m m= , 0 h k≤ < .

Examples:

vin : 011m

blanc : 011 11
r

Ic c , 011 11m mr
I

pétillant : 011 11c cr
II , 11 11c cr

I II , 011 11m mr
II , 11 11m mr

I II ,

bon : 211 011c c � , 211 11Ic c � , 211 11IIc c � , …, 211 011m m � , 211 11Im m � , 211 11IIm m � , …

vin blanc

011m 011 11m mr
I → 11mI

vin pétillant

 011m 011 11m mr
II → 11IIm

vin blanc pétillant

011m 011 11m mr
I 11 11m mr

I II → 11IIm

 bon vin blanc pétillant

 211 11IIm m � 011m 011 11m mr
I 11 11m mr

I II → 211 11IIm m � 11IIm → 211m .

Similarly,

petit chat, petit chat noir: 111c

 beau (petit) chat (noir): 211c

A comment on our use of indices is appropriate: Notice that the types of *petite chat or *chat petit will

not reduce to a simple type. Types which differ “only” by the value of an index, say 011c and 111c , are just as

 16

different types as those which look “completely different”, say 11IIm and 012c . The use of indices is

convenient, when defining the dictionary, i.e. when assigning types to the words of the language fragment. Each

index, better each position of the index in the subscript of a type symbol represents a “feature” of the concept,

like gender, number, position of the adjective. The fact that a (sequence of) word(s) starts with a vowel or

consonant could also reasonably be called a feature. For reasons of readability, this feature is expressed by the

presence or absence of the symbol ' in the superscript, (prime). The theory of pregroups does not include

unification of features, but indices are a good device to find efficient type assignment algorithms .

When checking whether bon vin is an incomplete noun phrase, we must try all possible type

assignments of this sequence of two words until we hit one which reduces to the appropriate basic type. Only

one of the possible types for bon, namely 211 011m m � , will result in a string which reduces the type of bon vin to

211m . Notice that another type for bon must be used in bon vin blanc pétillant. Type assignment can be made

more efficient by keeping the variables as long as possible. The Meta-rule describes types for bon as 211 11x xh
� ,

for 1 0, , , , ...h I II= , x c, m= . This corresponds to eight or more types, depending on the number of hierarchy

classes. As a first step, the improved type assignment algorithm would assign the string 211 11x xh
�

011m to bon

vin and at a second step make x m= and 0h = . Hence, a simple calculus of equality of “features” is part of an

efficient type assignment algorithm.

3.2. Determiners

A determiner transforms an incomplete noun phrase into a complete noun phrase, which may be subject or object

in a sentence. The notion of determiner follows [Le bon usage], it includes the indefinite article un, une, the

definitive article, le, la, l’, les and its contracted forms with de namely du, des, the possessive and demonstrative

pronouns such as well as the preposition de followed by an adverb of degree like beaucoup, peu

 The complete noun phrase formed with the possessive or demonstrative pronoun, definite or indefinite

article can be subject or attribute or direct object. It has type gnn or n'gn where the indices ,g n represent

gender and number. If the latter do not matter, we use n with n ngn → . In view of Proposition 1 our work can

be considered as an extension of the analysis given in [Barg-Lamb]. In some constructions with the preposition

de, one needs to know if the complete noun phrase is formed with a mass-noun or a count-noun. Therefore it is

convenient to introduce a type y ngn gn→� , for y c, m= and y n'gn gn→� , for y = c', m' .

General complete noun phrase

Roughly speaking, names are complete noun phrases and so are nouns, with or without adjectives, when

preceded by an article or a demonstrative or possessive pronoun.

 Albert : 11c '�

 Marie : 21c�

 17

 le : 11 11n x � , ,x c m=

les : 2 2n x x cg g , = , 1 2g ,=

ces, mes,… : 2 2x x x cg g , =� , 1 2g ,=

ce, mon, ton, son, notre, votre, leur : 11 11x x �� , ,x c m=

 la, cette, ma, ta, sa, notre, votre, leur : 21 21x x �� , ,x c m=

 cette, mon, ton, son, notre, votre, leur : 21 21x x' �� , ,x c m=

l’ : 1 1x xg g'
�� , 1 2g ,= , ,x c m=

cet : 11 11x x' �� , ,x c m=

ces, mes,… : 2 2x x x cg g , =� , 1 2g ,=

 un : 11 11x' x �� , ,x c m=

 une : 21 21x' x �� , ,x c m=

The difference between the types of le, les and the other determiners lies in the fact that prepositions like de, à

contract with le, les to yield a new word: du, (*de le), des (*de les) etc.

Example :

 un bon vin blanc

 11 11m' m ��

211 11IIm m � 011m 011 11m mr
I Æ 11 11m' m ��

211m Æ 11 11m' m ��

11m Æ 11m'� Æ 11n'

Notice that these determiners yield complete noun phrases which can be subject, object and attribute: un bon vin

blanc me plait, j’aime un bon vin blanc, c’est un bon vin blanc.

Partitive complete noun phrase

 French has complete noun phrases formed with the partitive article, du, de la, de l’, des. Functioning as

partitive 6, de transforms an incomplete noun phrase into a complete one. This partitive noun phrase can be

direct object of a verb (Il mange du pain), attribute (C’est du sable) or even subject (des enfants jouent dans la

rue), i.e. the partitive article is understood as an indefinite article. In everyday French however, one rarely uses a

noun phrase with the partitive article in the singular as the subject of a sentence :*Du pain est sur la table, ?De

l’eau s’est infiltrée dans les fondements, ?Du sable gêne l’engrenage are replaced by il y a du pain sur la table,

il y a de l’eau qui s’est infiltrée…, il y a du sable qui gêne l’engrenage.

We introduce a new type gnn� , 1 2 1 2g , ; n ,= = , together with a super-type n� such that gnn n→� � . It is

the type of a complete noun phrase which in general will not be used as subject. The plural partitive article des

6 i.e. determining part of a mass or a group

 18

transforms a plural count noun into a complete noun phrase. The same holds for the singular partitives du, de la,

de l’, when preceding a mass-noun phrase. 7

Hence the types

 des : 2 2n x x c cg g , , '=�� 8

 du : 11 11n m ��

 de : 1 1n mg g
���

Examples

 (Je mange) des pommes

 22 22n c �� 22c Æ 22n̂

(Je mange) du pain

 11 11n̂ m � 11m Æ 11n̂

(Il y a) de l’air

 11 1n m ���

11m� Æ 11n̂

Two comments: The first concerns the use of a partitive complete noun phrase as the subject of a sentence.

Compare

(1) Des gens vous demandent.

(2) *Des nombres pairs sont divisibles par deux.

The first sentence is generally accepted, see [Le bon usage], [Carlier], [Kleiber], whereas the second is rejected.

The obvious reason lies in the meaning of the two sentences. The partitive article has the meaning of a

existential quantifier, whereas the rejected sentence (2) would require a universal quantifier. The latter can be

rendered by the definite article les:

 (3) Les nombres pairs sont divisibles par deux.

Our analysis assigns different types to the noun phrases des nombres pairs and les nombres pairs, namely 12n�

and 12n . By an appropriate typing of the French sentence structure, it will therefore be possible to accept (1) and

(3) and to reject (2).

Our second comment concerns the use of de instead of des if the noun is preceded by an adjective. We have

(i) des fleurs

(ii) des jolies fleurs

7 The partitive article is also used to construct a postnominal complement to a noun phrase like le temps des cerises, le goût
du pain, la forme de la pomme. One would have to declare still more types for des, du, de which is beyond the scope of this
paper.

8 This implies that des jolies fleurs is accepted as a complete noun phrase.

 19

(iii) de jolies fleurs

Our typing up to this point does not recognize (iii). This can easily be repaired by assigning to de new types,

namely

 de : 2 2n cg hg
�� , 1 2, , ...h =

d’ : 2 2n c'g hg
�� , 1 2, , ...h =

Notice that this typing accepts de jolies fleurs and d’autres fleurs as complete noun phrases, but not de fleurs.

However, the latter will be analysed as a “quasi” complete noun phrase by assigning still more types to de as we

shall explain next..

Adverbial determiners

The preposition de preceded by adverbs of degree like assez, beaucoup, combien, peu also functions as a

determiner, for example peu d’enfants, beaucoup de pain, combien de sable. Hence, d’enfants, de pain, de sable

may be considered as “almost” complete noun phrases.

 Yet another type gnx� will have to account for the “almost” complete noun phrases formed with de

alone, without a subsequent definite article. Then we declare following new types for de

 de : c cg n g n
�� , 1 1g gm m �� ,

 d’ : gn gn'c c �� , 1 1g g'm m �� ,

 assez, beaucoup : gn gnn x �� , either x c= and 2n = or x m= and 1n = .

Examples :

(Je mange) beaucoup de pain

 11 11n m �� 11 11m m �� 11m Æ 11n

Beaucoup de chats (arrivent)

 12 12n c �� 12 12c c �� 12c Æ 12n

Anticipating on the analysis of the sentence structure, we have introduced two different types for the complete

noun phrase, ngn and ngn
� . The subtypes xgn

� of ngn were needed to recognise the transformation of a complete

noun phrase formed with a definite article (l’eau) into a complete “indefinite” noun phrase (de l’eau).

4. Conclusion

In Section 1, we have established the conditions for extending a language fragment without changing

the completeness and correctness of the typing of the original fragment. The results of Section 2 show how and

when the efficient general type checking algorithm can be improved to a linear one; an important property in

implementations. Sections 1 and 2 combine to an argument that complexity, besides the actual grammar, could

and should influence the typing of language fragments. The criterion for linearity has already influenced our

 20

typing in Section 3. There we have also explained how each position of an index in the subscript corresponds to

a “feature”, used to organise the dictionary in a succinct way. Thus, meta-rules are not but part of the grammar,

but help to organise the dictionary.

Future work should take advantage of this succinct organisation of the dictionary to devise efficient type

assignment algorithms. Certainly, more criterions for language fragments which can be decided in linear time

would be welcome. We are convinced that pregroups are the tool for real time applications verifying grammars.

Larger and larger fragments of natural languages need to be typed.

References
[Barg Lamb] Danièle Bargelli, Joachim Lambek, An algebraic approach to the French sentence structure,

Logical Aspects of Computational Linguistics, 4th International Conference, LACL 2001, Le
Croisic, France, June 27-29, 2001, Proceedings 2099: pp. 62-78, 2001.

[Carlier] Anne Carlier, La Résistance des articles du et des à l’interprétation générique, in D. Amiot et
al., editors, Le syntagme nominal syntaxe et sémantique, Artois Presses Université, 2001

[Earley] Jay Earley, An efficient context-free parsing algorithm, Communications of the AMC, Volume
13, Number 2, pp 94-102, 1970

[Kleiber] Georges Kleiber, Indéfinis: lecture existentielle et lecture partitive, in G. Kleiber et al., editors,
Typologie des groupes nominaux, Presses Universités Rennes, 2001

[Lambek99] Joachim Lambek, Type Grammar revisited, in A. Lecomte et al., editors, Logical Aspects of
Computational Linguistics, Springer LNAI 1582, pp.1 –27, 1999

[Le bon usage] Maurice Grevisse, André Goosse, Le bon usage, grammaire française, Duculot, 2001

	Pregroups and the French noun phrase
	ABSTRACT:
	Introduction
	Proposition 2: Every linear type has a unique irreducible form.
	Proposition 3 : There is an algorithm which decides in at most � steps whether �.
	We omit the parameter � to simplify notation. The intuitive idea of� is the following : Process the string � from left to right, looking for all possible contractions, reading the symbol � at stage �. This symbol could be a left “parenthesis” to a lat
	Proposition 4 : The type checking problem of a linear fragment can be decided by a linear algorithm.
	Proof: By Lemma 1, it suffices to find an algorithm which is linear in the length of the string and produces an irreducible form of the string. For this it suffices to add a new step at stage �: erase � and � from �, whenever the test � succeeds. Toge
	Partitive complete noun phrase
	
	
	Adverbial determiners
	
	
	References

