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Pregroups and the French noun phrase 
 

ABSTRACT: 
 We study mathematical and algorithmic properties of Lambek’s pregroups and illustrate them by analysing the 
French noun phrase.  We establish robustness properties of pregroups and present a simple algorithm of complexity 3n  for 
deciding reduction in an arbitrary free pregroup as well as a linear algorithm covering a large class of language fragments.  In 
the French noun phrase, the agreement of determiners, adjectives and nouns and word order are treated. 
 
Introduction 

 When choosing a formal system for computational purposes, one looks for efficiency (taking 

decidability for granted), robustness and provable verification.  The mathematical concept of pregroups has 

these properties.  As we hope that our readers come from as varied backgrounds as linguistics, logic or 

computation, we formulate and reformulate mathematical properties in terms of their significance in linguistic 

analysis, like conservativity of extensions as robustness in Section 1.  Section 2 covers algorithmic properties 

and is more technical.  Both Sections are intended as an argument, why one should prefer pregroups to other 

systems when analysing a language fragment as we did in Section 3 for the French noun phrase.   

Pregroups are an algebraic tool introduced by J. Lambek [Lamb 99] to recognise grammatically well-

formed sentences in natural languages.  In linguistic applications, one uses free pregroups where the 

mathematical machinery reduces to two simple schematic rewrite rules, the contractions.  This tool provides an 

elegant theory which is universal, independent of the language.  Up till now, fragments of Arabic, English, 

French, German, Italian, Japanese, Latin, Polish, Turkish among others have been analysed with the help of 

pregroups.  Besides the simplicity and the universality, other properties can be proven, due to the mathematical 

character of the tool. 

Indeed, the theory of pregroups is decidable.  Therefore, as we shall explain below, the problem 

whether a given string of words is a well-formed construct of a typed language fragment is decidable.  The 

general decision problem for free pregroups can be implemented by an algorithm of complexity 3n , 

guaranteeing thus an efficient algorithm for the typing checking of language fragments.  Our “nearest left 

parentheses” algorithm in Proposition 3 adapts and simplifies an algorithm given in [Earley] for context free 

grammars.  Earley’s algorithm was written for context free grammars and uses the number of rewrite rules of the 

grammar as a bound.  It cannot be applied as such to deciding reduction in pregroups.  Indeed, the schema of the 

two contraction rules in pregroups yields an infinite set of rewrite rules in the corresponding context free 

grammar.  Even if only finitely many rewrite rules are needed when type checking a given language fragment, 
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Earley’s algorithm would be quite a bit more cumbersome than ours.  In certain language fragments, our 

algorithm simplifies further to an algorithm which is linear in the number of words.  We also formulate a 

sufficient criterion for linearity (Proposition 2), which we hope will influence the way the types are chosen for a 

language fragment.  Finally, typing with pregroups is robust.  As extensions of the theory of pregroups are 

conservative, the typing of a language fragment can be extended to include new constructs, new words without 

changing the previous analysis.  Thus the typing of the French noun phrase given in Section 3 extends earlier 

work of [Barg-Lamb] on the French sentence structure.  It is also part of ongoing work of a more comprehensive 

fragment.  Though our typing covers a liberal notion of determiners and can account for the distinction between 

the indefinite versus the partitive reading of the articles du, des etc., our typing is far from covering all aspects 

and aims above all at a demonstration of the potential of pregroups.   

 

 

1.  Mathematical properties and their linguistic meaning 

To explain how pregroups work in linguistic, we recall briefly the definitions and the immediate consequences. 

 

Definition 1:  A pregroup is a partially ordered monoid in which each element a  has both a left adjoint a�  and a 

right adjoint ra  satisfying 

 

 (Contraction) 1a a⋅ →�   

1ra a⋅ →  

 

(Expansion) 1 ra a→ ⋅  

   1 a a→ ⋅ � . 

 

The arrow denotes the partial order relation, the dot denotes multiplication and is generally omitted.  By 

definition, the multiplication is associative and the order is compatible with multiplication, that is  

   a b→  and c d→  implies ac bd→ . 

 

A linguist will work with the free pregroup generated by a partially ordered set of so called basic types.  For 

a given language fragment, one chooses a set of symbols, the basic types, and defines a partial order on this set.  

We use bold face symbols a , b  to vary over basic types. 

The basic types and their iterated adjoints form a set Σ  of simple types : 

   Σ  = {… a , a , a, a , a ,r rr�� � … …., b , b , b, b , b ,r rr�� � …} 

The strings of simple types will be called types.  The arrow a b→  is now read as “ a  reduces to b ”.  In fact, the 

elements of the free pregroup generated by a set of basic types identify with the types constructed from the same 

set of basic types, see [Lambek99]. The unit 1 denotes the empty string. 

 

The simple types inherit the order from the basic types as follows:  

 (I) If a b→  then b a , b ar r→ →� � , a b , a brr rr→ →�� �� , b a , b arrr rrr→ →��� ��� , etc.   
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The order between basic types is “declared”, i.e. can  be looked up in a table.  Hence the ordering of simple types 

follows from the same table.  Indeed, to check whether a b→ , it suffices to check whether a  and b  have the 

same exponent, i.e. a sa = , bsb =  where a  and b  are basic and s consists of a finite number n of repetitions of 

the same symbol, either �  or r.  If this is the case, then a b→  if either n is even and a b→  or n is odd  and 

b a→ .  Otherwise, neither a  reduces to b  nor b  to a .   

 

The contractions of simple types can now also be understood as rules : 

 (II) …, 1a a →��� �� , 1a a →�� � , 1a a →� , 1a ar → , 1a ar rr → , 1a arr rrr → ,…. 

In linguistic applications, where one works with a free pregroup, only the contractions and ordering of simple 

types is needed (for the detail, see below), i.e. the rules (I) and (II) are all that is to be kept in mind when 

“typing” a language fragment.   

 

As a first step, the language fragment has to be described in common grammatical terms. We select the 

words which are supposed to be in the mental or electronic dictionary, for example nouns, adjectives etc. and 

introduce the grammatical notions describing the grammatically well-formed constructs of the fragment.  The 

next step is to define the set of basic types and its ordering.  It must reflect the grammatical constructions under 

consideration.  In general, one will aim at keeping the set of basic types as small and with few inequalities as 

possible.  Finally, to every word of the fragment, one associates one or several types, to be written next to the 

word in dictionary.  Meta-rules serve to organise the content of the dictionary.  Instead of explicitly writing the 

type(s) of a word into the dictionary, it (they) may be described by a meta-rule. 

 

The typing must be done in a way that a sequence of words is a well-formed construct (sentence, noun 

phrase, etc) if and only if the corresponding string of types reduces to the basic type corresponding to the 

construct.  If a word has more than one type, then it is enough that one of the possible choices yields a string 

reducing to the type in question.  This equivalence is the key property.  Every typing that respects it is said to be 

correct (it recognises only well-formed constructs) and complete (it recognises all well-formed constructs) with 

respect to the fragment. 

 

A correct and complete typing satisfies the principle of Substitution :  If a word is replaced by another 

word with the same type, then a well-formed string of words remains well-formed.  Indeed, being a well-formed 

string of words is equivalent of having a string of types reducible to a given basic type and, by assumption, the 

string of types is the same before and after substitution. 

 

Every correct and complete typing satisfies properties which permit to extend the typing to larger 

fragments without changing the properties of the previous typing.  We call these the robustness properties: 

a) Assigning new types to words, without changing the set of basic types :  

Suppose a word W has type d  and we add a type c  such that c d→ .  Then every string of words recognised 

well-formed using the type assignment d  for W is recognised well-formed using c .   

b) Extensions by new basic types.   
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This means that one can extend a given set B  of basic types, by declaring new types and adding inequalities 

involving the new types, obtaining thus a larger set of basic types B' .  Then the free pregroup 'P  generated by 

B'  includes the free pregroup P  generated by B .  Whenever both a  and b  belong to the smaller pregroup P  

and a b→  can be derived in P , then this also holds in the larger 'P .  Conservativity  is a sort of converse of 

this fact, it says :  if a b→  can be derived in the larger pregroup 'P  and both a  and b  belong to the smaller 

pregroup, then the whole reduction can be done in the smaller pregroup. This is not trivial, because we might 

have come to the conclusion a b→  by showing a c→  and c b→  using one of the new types c .  

Conservativity is a consequence of the so-called Switching Lemma in [Lambek99] (see below ) provided the 

order of the old basic types remains unchanged.   

 

The linguistic significance of this is that typing by pregroups is robust.  Once it has been shown correct 

and complete for a fragment it will remain so in the extensions. It also simplifies the task of verifying that a 

typing is correct and complete.  One can proceed step by step, extending the fragment by adding basic type after 

basic type, and then verify only that the typing involving the new type(s) is also correct and complete for the new 

constructs.   

 

Here are the promised mathematical details on which our assertions above are based.  Except Proposition 1, they 

are either straight forward or to be found in [Lambek99].   

 

1. 1 1a a a= =        (1 is the unit of the monoid) 

2. (ab)c a(bc)=        (multiplication is associative) 

3. a b→  and c d→  implies ac bd→     (order is compatible with multiplication).  

4. 1ab ba→ →  implies a b= �  and rb a=    (adjoints are unique)   

5. ( )ab b a=� � � , ( )r r rab b a=      (adjunction is quasi-distributive) 

6. a b→  implies b a→� � and r rb a→   (adjunction reverses the order). 

7. r ra a a= =� �      (no mixed adjoints) 

 

Properties 1. – 3. are in the definition of a monoid, the properties 4. - 7. can be easily derived from Definition 1.  

For example, to derive that rb b= � , use 1b b bb→ →� �  and 4. with a b= � .  Similarly, 5. follows from 4.  

Indeed, r r(ab)(b a )  = r ra(bb )a → 1 ra a = raa  Æ  1 → rb b = 1rb b → r rb (a a)b  = r r(b a )(ab) .  Hence, by 4., 

( )r r rab b a= .   

In free pregroups, important additional properties hold.  First of all, they are non-commutative and the iterated 

adjoints of basic types are all different.  The most important result is expressed in the Switching Lemma 

[Lambek99, Proposition 2], which we shall include here for completeness sake.  Recall that the elements of the 

partially ordered set generating the free pregroup are called basic types, their iterated left or iterated right 

adjoints are called simple types.  Strings of simple types are called types, the empty string being denoted 1.  

Lambek [loc.cit.] shows that this monoid of types is in fact the free pregroup generated by the basic types.  
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Hence, concatenation plays the role of multiplication and the empty string that of the unit.  It is convenient to use 

a uniform notation for the simple types, be they iterated left adjoints or iterated right adjoints:  Write 

 

 2 1 0 1 2a a a a a( ) ( ) ( ) ( ) ( )... , , , , ,...− −  

for 

 a a a a ar rr... , , , , ,...�� � . 

Then, by definition, every type has the form  

 1
1

k(n )(n )
k...a a  

where 1 k,...,a a  are basic types and 1 kn ,...,n  are integers.  The types form already a pregroup, if one defines 

adjoints by 

 1 11 1
1 1:k k(n ) (n )(n ) (n )

k k( ... ) ...a a a a− −=�  

 1
1

k(n )(n ) r
k( ... )a a : = 11 1

1
k(n ) (n )

k ...a a+ +  

and the order on types as the reflexive and transitive closure of the following three relations where c,d  are 

arbitrary types and ,a b  are basic: 

 

(Induced step) 

 (n) (n)c d c da b→ , if either n  is even and a b→  or n  is odd and b a→ . 

(Generalised contraction) 

 1(n) (n )c d cda b + → , if either n  is even and a b→  or n  is odd and b a→ . 

(Generalised expansion) 

 1(n ) (n)cd c da b+→ , if either n  is even and a b→  or n  is odd and b a→ . 

 

Notice that for every basic type b , one has the contractions 

 (n)b 1(n )b + → 1, whatever the integer n . 

 

Switching Lemma (Lambek) :  Let 1 na ,...,a  and 1 mb ,...,b  be simple types.  Then 1 na ...a →  1 mb ...b  if and only if 

there are a substring 
1 ki ia ...a  of 1 na ...a  and a substring 

1 ki ib ...b  of 1 mb ...b  such that  

 1 na ...a →  
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b , 1
p pi ia b , p k→ ≤ ≤ , 

where 
1 ki ia ...a  is obtained from 1 na ...a  by generalised contractions only, 1 mb ...b  is obtained from 

1 ki ib ...b  by 

generalised expansions only and finally 
1 ki ib ...b  is obtained from 

1 ki ia ...a  by induced steps only. 

 

Call a pair of simple types ( ,c d ) contractible, if 1(n) (n )c , da b += =  and either a → b and n  even or b a→  and 

n  odd. 
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Corollary (Lambek) :  For simple types 1 na ,...,a  and b , 1 na ...a b→  holds if and only if there is a simple type 

b' b→  such that one can obtain b'  from 1 na ...a  by repeatedly omitting pairs of contractible adjacent types. 

 

 

I) The first consequence is the decidability of the type checking problem, namely to decide whether a b→  

where a  is an arbitrary type and b  is simple.   

Indeed, given a string 1 na ...a  choose an index i  such that 1i i(a ,a )+  is contractible and omit 1i ia a + , start again 

with 1 i-1 i+2 na ...a a ..a  until an irreducible string is reached, i. e. a string without adjacent contractible types.  As 

different choices may lead to different irreducible substrings, the answer is yes, if at least one of the choices 

leads to a simple type b'  for which b' b→ .   

Hence, if a correct and complete typing has been provided for a language fragment, then the fragment itself is 

decidable.  Given a string of words in the dictionary of the fragment enumerate all possible strings of types 

corresponding to the words.  As every word has only finitely many types, there are only finitely many such 

strings.  Then test for each string, if it reduces to an appropriate basic type. 

 

Another consequence is the characterisation of conservative extensions :   

 

II) Proposition 1: (Conservativity of extensions) : Let B  be an ordered subset of 'B , i.e. B  is a subset of 'B  

and a → b  in B  if and only if a,b B∈  and a → b  in 'B .  Then the free pregroup 'P  generated by 'B  is 

conservative over the free pregroup P  generated by B .  That is to say, for all elements e, f  of P  such that 

e f→  holds in 'P , e f→  holds already in P . 

Proof:  Let e, f  be elements of P  such that e f→  holds in 'P .  First consider the special case where e f→  is 

a generalised contraction.  Then there are basic types a,b B∈  and an integer n  such that 1(n) (n )e c da b += , 

f cd=  and either a → b  in 'B  and n  is even or b → a  in 'B  and n  is odd.  By hypothesis, this implies 

a → b  in B  and n is even or b → a  in B  and n  is odd.  Therefore e f→  is a generalised contraction in 

P .  By a similar argument, one shows that a generalised expansion (induced step) in 'P  is also a generalised 

induced step in P .   

In the general case, there are simple types 1 na ,...,a  and 1 mb ,...,b of P  such that 1 ne a ...a= , 1 mf b ...b=  and 

1 na ...a →  1 mb ...b  in 'P .  Apply the Switching Lemma.  There is a substring 
1 ki ia ,...,a  of 1 na ,...,a  and a 

substring 
1 ki ib ,...,b  of 1 mb ,...,b  such that  

 1 na ...a →  
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b , 
p pi ia b→  in 'P , 1 p k≤ ≤ , 

1 ki ia ...a  is obtained from 1 na ...a  by repeated generalised contractions and 1 mb ...b  is obtained from 
1 ki ib ...b  by 

repeated generalised expansions.  Now for every generalised contraction c d→ , from c P∈  follows d P∈ .  

Indeed, d  is obtained from c  by omitting two simple types.  Similarly, for every generalised expansion c d→ , 

from d P∈  follows c P∈ .  Hence 
1 ki ia ...a  and 

1 ki ib ...b  are in P  and all the intermediary generalised 
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contractions, expansions and induced steps take place in P .  By the first part of the proof, this implies that 

1 na ...a →
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b , and 
p pi ia b→ , 1 p k≤ ≤ , already hold in .P  

 

The Proposition 1 simplifies the task of verifying that the typing is correct and complete.  One can 

proceed step by step, extend the fragment by adding new basic types and assigning new types to words.  Then to 

show that the typing is correct and complete with respect to the larger fragment, it suffices to consider the 

sequences of words with new types.  The only prerequisite is not to change the order between the old basic types.  

For example, suppose B B c' [ ]=  where c  is a new basic type.  We may declare a c→  and/or c b→  for some 

“old” basic types a,b B∈ . However, we must take care not to declare both a c→  and c b→ , unless a → b  

already holds in B .   Notice that this step by step approach is normally taken for granted.  The conservativity 

property says that this approach is safe.  This is not as trivial as one might think.  Obviously, a sequence of 

words which is a grammatically well-formed construct of the smaller fragment remains so in the larger fragment.  

Just use the typing and the reduction in the smaller pregroup P , which remains a reduction in the bigger one 

P' .  It is, however, not so obvious that a sequence of words which is not well-formed in the smaller fragment 

does not become well-formed in the bigger fragment, even if no new types are involved.  Indeed, suppose that a 

sequence of words gets assigned a type c  in the smaller fragment, but is not well-formed.  As the typing in P  is 

correct and complete with respect to the smaller fragment, we have ac →  where a  is the basic type 

corresponding to a the grammatical notion under investigation.  A priori, one cannot exclude that c d→  and 

ad → , where d  is a new type in P' .  But then, it would follow that ac →  in P' . From this we would have to 

conclude that the sequence of words is now well-formed, because its type reduces to a .  Conservativity 

guarantees that this cannot happen, as from  ac →  in P'  it would follow that ac →  in P , contradicting 

ac → . 

This property is used in fact continuously and most of the time without saying so.  We will do so in Section 3 

 

 

2. Algorithmic Properties 

The type checking problem for free pregroups is to decide by a general method whether 1 ... na a b→ for 

arbitrary simple types 1 , ..., na a  and any irreducible type  b , i.e. a string of simple types containing no 

contractible pair of adjacent simple types.  The Corollary to the Switching Lemma gives such a method: 

For deciding whether 1 ... na a b→  holds, it suffices to omit a contractible pair of adjacent types 1i ia a +  and repeat 

this procedure in all possible ways until the resulting string is irreducible.  If at least one of the resulting strings 

b'  satisfies b' b→ , the answer is yes, otherwise it is no.   

Any implementation of this decision procedure is called a type checking algorithm.  The decision 

procedure for free pregroups provides a solution to the problem whether a sequence of words belongs to a 

language fragment.  For each word in the sequence choose one of its types in the dictionary.  The sequence of 

words belongs to the fragment if and only if one of the strings of assigned types reduces to a specific basic type, 

say the type of a noun phrase or the type of a sentence.  An algorithm which provides associated strings of types 

for a string of words is called a type assignment algorithm.  To keep this paper in reasonable limits, we restrict 

ourselves to the efficiency of type checking algorithms. 
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The result of the reduction of a string of types to an irreducible one depends in general on the choice of 

the contracted pairs.  For example, a a aar�� �  reduces with two contractions to the empty string, namely by 

contracting the left most and the right most pair.  On the other hand, by contracting the central pair a a�  one 

obtains the irreducible string a ar�� .  The type checking problem for free pregroups can be replaced by the more 

specific one which checks if a string reduces to the empty string 1 , see Lemma 1 below.  The set of all strings 

1 ... na a  such that 1 1... na a →  can be characterised by a context free grammar.  However, this context free 

grammar has an infinite set of terminal symbols (the simple types and 1 ) and its set of rewrite rules is infinite.  

Indeed, it includes all the rules of the form 1( ) ( )a an nE E E E+
⇒  where a  is a basic type, n  an integer and E  a 

new, non-terminal symbol standing for a string which reduces to the empty one.  Hence the efficient algorithm of 

complexity K 3n  in [Earley] does not apply, because K  is a common bound for the set of terminal symbols and 

the set of rewrite rules.  If we are only interested in linguistic applications, we may restrict the set of strings by 

requiring that the intervening simple types belong to a given finite set.  However, our algorithm in Propostion 3 

not only is simpler than Earley’s but also implements the decision procedure for type checking in an arbitrary 

free pregroup.  Like Earley’s, it reads the string from left to right and has complexity 3n , but with a much lower 

constant.  For certain sets of strings, our algorithm can be simplified even further to one that is linear in the 

length n  of the string, see Proposition 4.  This linear algorithm is useful in linguistic applications.  The strings of 

types associated to a word of the language fragment very often satisfy the criterion which permits the use of the 

linear algorithm. 

 

 We begin with a criterion for subsets of free pregroups permitting linear type checking.  A triple of 

simple types ( a,b,c ) is said to be critical, if both (a,b)  and (b,c)  are contractible.  This is equivalent to saying 

that there are basic types , ,a b c  and an integer n  such that 1(n )a a −= , (n)b b= , 1(n )c c +=  and ( )b a(n) n→ , 

( ) ( )b cn n→ .  The latter is the case, exactly when either n  is even and ,b a b c→ →  or n  is odd and 

,a b c b→ → .  A string of simple types is linear, if it has no substring of length 3 which is a critical triple.  The 

typing of a language fragment is said to be linear, if all strings of types corresponding to strings of words in the 

dictionary are linear.  For example, ra aa�  is linear, but ra aa�  is not linear.  Or if a b→/ , then rcba aab�  is 

linear, but if a b→ , then rcba aab�  is not linear.   

 

Proposition 2:  Every linear type has a unique irreducible form.   

Proof:  Suppose 1 na ...a  is linear.  Use induction on n , the length of the string.  If 1n = , the property is obvious.  

For the induction step, notice that every substring of 1 na ...a  is again linear.  Moreover, whenever 1i ia a +  and 

1j ja a +  are both contractible, the indices 1 1i,i , j, j+ +  are all different.  Suppose 1 na ...a  has k  pairs of 

contractible adjacent types.  Omitting them in 1 na ...a  corresponds to k  simultaneous contractions.  They can be 

done in any order without changing the result.  If 0k = , then 1 na ...a  is irreducible.  Otherwise, the unique 

substring resulting from the k  contractions has length less than n  and we may conclude by induction 

hypothesis. 
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Lemma 1:  Suppose that 1 na ,...,a  and b  are simple types.  Then 1 na ...a b→  if and only if b�

1 na ...a 1→ . 

Proof:  Assume that b�

1 na ...a 1→  and use induction on the length n .  If 1n = , 1b a� 1→  must be generalised 

contraction.  From the definition of generalised contractions, it follows at once that 1a b→ .  Assume n 1> .  If  

1b a�  are contractible, we conclude as above.  Otherwise, the first generalised contraction transforming b�

1 na ...a  

to 1 must be in 1 na ...a .  Hence the result has the form b�

1 2ni ia ...a
−

 with b�

1 2ni ia ...a
−

1→ .  By induction 

hypothesis, 
1 2ni ia ...a

−
b→ .  As 1 na ...a →

1 2ni ia ...a
−

, the property follows.  As 1 na ...a b→  implies 

1 1nb a ...a b b→ →� � , we are done. 

 

It is easy to device a linear-time algorithm which reads a string from left to right and produces an irreducible 

form.  For linear strings, it will provide the only irreducible string obtainable by contractions.  In fact, this left to 

right algorithm is a closely linked to the more general one below which solves the type checking problem 

without restriction on the strings.   

 

Proposition 3 :  There is an algorithm which decides in at most 3n  steps whether 1 1... na a → . 

 

Proof:  We define a function Nlp  which maps a string S  of length n  and an integer { }1 1, ...,i n∈ +  to a subset 

of { }1, ...,i  and show that  

 1) S 1Æ  if and only if 0 1( , )Nlp S n∈ +  

 2) 1( , )Nlp S n +  can be calculated in at most 3n  steps 

We omit the parameter S  to simplify notation.  The intuitive idea of Nlp  is the following :  Process the string 

1 ... nS a a=  from left to right, looking for all possible contractions, reading the symbol ia  at stage 1i + .  This 

symbol could be a left “parenthesis” to a later pa , i.e. i pa a≤ � , or a “right parenthesis” to some earlier ja , i.e. 

r
i ja a≤ .  As it cannot be both in the same reduction, one has to keep track of more than one reduction, or at least 

of the indispensable information.  It turns out that the left parentheses ready for contraction at stage i  is all that 

is needed to continue the processing to stage 1i + .  Therefore at stage 1i + , ia  is declared an “open” left 

parenthesis (to be contracted with some right parenthesis which might come up later), i.e. the index i  is stored in 

1( )Nlp i + .  Notice that for this choice, ia  becomes the nearest open left parenthesis for 1ia + .  However, ia  

might also be a right parenthesis to the nearest left parenthesis in a reduction made up to stage i .  So, for each 

( )j Nlp i∈ , we check if  r
i ja a≤ .  If this is the case, ja  becomes “closed” and the open left parenthesis at stage 

j  become ready again for contraction at stage 1i + .  Hence, Nlp  has the following definition. 

 

Definition 2:   

 { }1 0( )Nlp =  
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 { }1
( ),

( ) ( )
r

i jj Nlp i a a
Nlp i i Nlp j

∈ ≤

+ = ∪ ○ , 1 i n≤ ≤  

The rest of the proof follows from the next 5 lemmas. 

 

Lemma 2 :  { }1 0( ) , ...,Nlp i i+ ⊆ . 

This follows immediately from the definition. 

 

Lemma 3 :  If 1( )k Nlp i∈ + , then 1k ia a 1+ ... Æ , i.e. ka  is ready for contraction with 1ia + . 

Indeed, use induction on i k− .  If i k= , then 1 ...k ia a+  is the empty string and 1 1Æ .  Assume 

0i k− >  and ( )k Nlp iŒ .  Then there is a ( )j Nlp iŒ  such that ( )k Nlp jŒ  and r
i ja a≤ .  By Lemma 2 and 

assumption, k j i< < , therefore j k i k− < −  and i j i k− < − .  Thus by induction hypothesis, 1 1...k ja a 1+ − Æ  

and 1 1...j ia a 1+ − Æ .  Finally, 1 1 1 1...k j j j i ia a a a a a+ − + −...

r
j i j ja a a a 1Æ Æ Æ . 

 

Lemma 4 :  If 1k ia a 1+ ... Æ , then 1( )k Nlp i∈ + .   

 Again proceed by induction on  i k− .  If i k= , then  1( )k Nlp i∈ +  by definition.  Let  0i k− >  and 

assume that  1k ia a 1+ ... Æ .  Then there is an index j  such that 1 1k j i+ ≤ ≤ −  such that 1 1...j ia a 1+ − Æ , r
i ja a≤  

and 1 1...k ja a 1+ − Æ .  By induction hypothesis, this implies that ( )j Nlp iŒ  and ( )k Nlp jŒ .  So, 1( )k Nlp i +Œ  

by definition. 

 

Lemma 5 :  0 1( )Nlp n∈ +  if and only if 1 ... na a 1Æ . 

Apply Lemma 3 and Lemma 4 to 0k = , i n= . 

 

Lemma 6 :  1( )Nlp i +  can be calculate from ( )Nlp i  in at most 2 1i +  steps.  The complexity of 1( )Nlp n +  is 

3n .   

Indeed, to calculate 1( )Nlp i +  we first copy i  into 1( )Nlp i +  and then must compare ia  with r
ja  for every 

( )j Nlp iŒ .  By Lemma 2, we make at most i  comparisons.  Each time the comparison succeeds, the elements 

of ( )Nlp j  are copied into 1( )Nlp i + .  But ( )Nlp j  has at most j  elements and j  is bounded by i .  On the 

whole, we have executed at most 2 1i +  steps, counting a comparison and recopying an element as one-step 

operation.  Finally, to calculate 1( )Nlp n + , we must calculate 1( ), ..., ( )Nlp Nlp n  one after the other, so we do 

at most 2 1( )n n +  steps.  Notice that the constant of 3n  is 1  in this estimate.   

 

Corollary 1:  If there is a bound K  such that ( )Nlp i K<  for all i , then the complexity of 1( )Nlp n +  is linear 

n .  
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Indeed, the number of steps from ( )Nlp i  to 1( )Nlp i +  is bounded by 2 1K + , hence 1( )Nlp n +  can be 

calculated in at most 2 1( )K n+  steps. 

  

Notice that Nlp  makes enough calculations to scan all possible reductions of the string.  In some 

situations, it might be enough to find just one reduction yielding an irreducible string.  The hope is that if there 

are fewer reductions to keep track of, it is more likely to find a bound for the set of “nearest left open 

parentheses”.  A slight modification of Nlp  produces such a reduction, which can be calculated in at most 4n  

steps.  The idea is to open a new left parenthesis, only if necessary.  Call the corresponding function Llp , the 

“lazy left parenthesis” function.  It is defined on { }1, ...,n , the string S  of length n  being given, and takes 

subsets of { }1, ...,n  as values.   

 

Definition 3:   

{ }1 0( )Llp =  

{ }
if

1
 else

( )
( ), ( )

( ) j Link i
Llp j Link i

Llp i
i

 ≠ ∅+ = 


∪
Œ  

where { }1( ) ( ) : , r
i jLink i j Llp i j a a= ≤ ≤Œ , 1 i n≤ ≤ . 

 

One shows easily that 1( )Llp i +  is included in 1( )Nlp i +  and has exactly one element.  Moreover, ( )j Link iŒ  

means that ja  is contracted with ia  in the reduction defined by Llp .  More precisely, say that i  and j  are 

linked, if ( )j Link iŒ  or ( )i Link jŒ .  Then : 

 

Lemma 7 :  1) If 1( )k Llp i∈ + , then 1k ia a 1+ ... Æ  and whenever 1k m i+ ≤ ≤  there exists a p  such that m  and 

p  are linked and 1k p i+ ≤ ≤ .   

2) If ( )j Link iŒ , then j ia a 1... Æ .   

3) ( )m Link pŒ  implies for all i p>  and all ( )j Llp iŒ  that j p>  or j m< .   

4) Every index p  is linked to at most one index m . 

Proof: 1)  Proceed as in Lemma 3.  Assume 1( )k Llp i∈ +  and 1k m i+ ≤ ≤ .  If k i= , there is nothing to show.  

If k i< , then there is ( )j Link iŒ  such that ( )k Llp jŒ .  As ( ) ( )Link i Llp i⊆ , the induction hypothesis applies 

to i j−  and to j k− .  Remark that if  or  m j m i= = , then m  is indeed linked to some p  with 1k p i+ ≤ ≤ .  2) 

is an immediate consequence of 1).  3) Suppose ( )m Link pŒ , i p>  and ( )j Llp iŒ .  Use induction on i p− .  

In the case of 1i p= + , we have ( )j Llp mŒ , as ( )Link p ≠ ∅ .  Hence j m< .  If 1i p> + , then either 

1j i p= − >  or 1( )j Llp i −Œ  and therefore by induction hypothesis j p>  or j m< .  To see 4), remark first 

that an index p  cannot be linked to two different smaller indices, as ( )Link p  has at most one element.  By 3) 
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an index m  cannot be linked to two larger ones, say p  and i  with p i< .  And it also cannot be linked to a 

smaller and a larger one, as ( )m Link pŒ , ( )p Link iŒ  would also contradict 3).   

 

Finally, the next and last Lemma confirms that the unlinked elements of the string in increasing order form an 

irreducible substring.   

 

Lemma 8 :  Let Unlinked  = { }1 , ..., qi i be the set of unlinked indices in increasing order.  Then  the following 

holds  

I) every index less than 1i  (respectively between i
�

 and 1i +� , respectively larger than qi ) is linked to some index 

below 1i  (respectively between i
�

 and 1i +� , respectively larger than qi ).  II) ia
�

 and 
1ia

+�
 are not contractible.   

Proof:  The assertion I) follows from Lemma 7, 1) and 2).  To show II), assume 1i i +=
�

 and let ( )j Llp iŒ .  By 

choice of i , r
i ja a≤/ , i.e. ja  and ia  are not contractible.  Hence, it suffices to show that j i=

�
.  In view of 

Lemma 7, 1), it suffices to show that j  is not linked to any index.  If j  was linked to a smaller index, this 

would contradict Lemma 7, 3).  If j  was linked to an index greater than i , this would imply that i  is linked by 

Lemma 7, 1).  Finally, j  cannot be linked to a larger index which would be less than i , because of Lemma 7, 1) 

and 4).   

 

Proposition 4 :  The type checking problem of a linear fragment can be decided by a linear algorithm. 

Proof:  By Lemma 1, it suffices to find an algorithm which is linear in the length of the string and produces an 

irreducible form of the string.  For this it suffices to add a new step at stage 1i + : erase j  and i  from { }1, ...,n , 

whenever the test ( )j Link iŒ  succeeds.  Together with the two steps to calculate 1( )Llp i + , at most four 

operations are performed on the whole at stage 1i + . 

 

 

3.  French Noun phrases 

 By Proposition 1 on conservativity of extensions, the typing proposed below may be viewed as an 

extension of the typing in [Barg-Lamb].  To make things work, the new basic types have to be related to the old 

ones.  For example, we introduce the basic type ngn  to denote a complete noun phrase, depending on its gender 

g and number n.  We postulate gnn n→ , where n  is a type used in [loc.cit.] in the situations where the gender 

and number are of no importance. 

 The noun phrases analysed here are either names or a determiner followed by a noun.  After the noun or 

between it and the determiner may be adjectives.  A noun alone is in general an incomplete noun phrase, though 

French knows some noun phrases formed from a noun without a determiner.  As these are rather archaic and 

exceptional, we will not consider them in what follows.  The so-called prenominal adjectives precede the noun, 

the postnominal adjectives follow it.  A noun with correctly declined and correctly placed adjectives forms an 

incomplete noun phrase.  A determiner transforms an incomplete noun phrase into a complete noun phrase, 

which may be subject or object in a sentence.  The notion of determiner follows [Le bon usage], it includes the 
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indefinite article un, une, the definitive article, le, la, l’, les and its contracted forms with de namely du, des, the 

possessive and demonstrative pronouns such as well as the preposition de followed by an adverb of degree like 

beaucoup, peu 

 

 

3.1 Nouns and Adjectives 

Nouns are count-nouns like chat, pomme  and mass-nouns like eau, pain, vent etc, but also courage, 

beauté and so on.  Noun phrases inherit this distinction.  Nouns as well as adjectives vary in gender and number.  

Therefore we distinguish the types of noun phrases by indices g  and n , where 1g =  stands for masculine 

2g =  for feminine, whereas n  = 1 means singular and n  = 2 means plural.  Thus we use the symbol cgn  for a 

count-noun phrase  and similarly  mgn  for a mass-noun phrase.  The gender of a noun is given in the dictionary 

as well as its plural form.  Number and gender of noun and adjectives must agree in an noun phrase and 

constitute the number and gender of the noun phrase.   Many mass-nouns have no plural form,  for example riz .  

If it has one, we treat the plural form as count-noun. 

The formation of the noun phrase also has to take into account the dislike of French speakers of the 

hiatus where two consecutive vowels would clash.  For example, l’arbre, cet arbre, bel arbre, mon eau, but *le 

arbre, ce arbre, *beau arbre, *ma eau.1  Every type x  will have a copy 'x  used for words or sequences of 

words of which the first letter is a vowel.2  Thus we have basic types g nx , where x  stands for c, c', m  or m' .   

Adjectives are not only divided into prenominal adjectives and postnominal adjectives3, but they also 

must respect a certain order, if more than one precedes or follows the noun.  For example bon vin, vin blanc, 

beau petit chat, autre beau petit chat, vin blanc pétillant, bon petit vin blanc pétillant etc. but *vin bon, *blanc 

vin, *petit beau chat, *vin pétillant blanc etc.  If two adjectives should occupy the same position, they must be 

linked by a copula, for example film noir et blanc 4.  We assume that the classification of the adjectives into 

prenominal and postnominal hierarchy classes is known and can be looked up in the dictionary.  We use Arabic 

digits for the prenominal classes 1 2, , ...C C , Roman ones for the postnominal classes , , ...I IIC C , i.e. we have 

classes hC where { } { }1 2h , ,... I,II,...∈ ∪ .  The lower the number of its class, the closer the adjective will be to the 

noun.  Thus blanc belongs to IC , petit to 1C , pétillant to IIC .   This distribution into hierarchy classes 

necessitates the introduction of corresponding basic types for the incomplete noun phrases xhgn  where 

{ } { }1 2h , ,... I,II,...∈ ∪  or 0h =  for bare  nouns: 

 

We postulate 

h gn gnx x→ , for all h , x  = c, c', m  or m' . 

                                                 
1  This phenomenon  is even more pervasive in the spoken language where the otherwise silent terminal 
consonant of a word is pronounced, if the following word starts with a vowel.   
2   There are words whose first letter is a silent h which are assimilated to words starting with a vowel. 
3   Some adjectives may belong to both classes, especially if classic French or regional variations are also to be 
covered  
4 This can be done with the usual polymorphic typing of the copula.  To keep the paper in reasonable limits, we 
ignore this case. 
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The type 0 gnx  corresponds to a noun, it is given in the dictionary, for example 

 amande : 021c'  

 pain  : 011m  

 eau : 021m '  

The types xign , for { }1 2, , ...i Œ  correspond to incomplete noun phrases starting with an adjective in hierarchy 

class iC .  The types xkgn  for { }, , ...k I IIŒ  correspond to incomplete noun phrases starting with a noun and 

ending with an adjective in class kC .   This will be accomplished by assigning the types to adjectives as follows: 

  

 

Meta-Rule 1 (Special adjectives): The masculine form singular of a few special adjectives like beau, noubeau, 

vieux has a variant bel, nouvel, viel to be used if the next word starts with a vowel.5   The type of beau, bel etc. is 

therefore 

beau,…   : 211 11x xh
� , for 1 0, , , , ...h I II=  

vieux, …  :  111 11x xh
� , for 0, , , ...h I II=  

bel, …   :  211 11x x h'
� , 1 0, , , , ...h I II=  

viel,   :  111 11x x h'
� , for 0, , , ...h I II=  

where x c= , x m= . 

 

The types of the non special adjectives and  the feminine singular and the plural form of the special adjectives 

are described by the meta-rule below:  

  

                                                 
5   In the spoken language, every adjective ending in a silent consonant will have a variant form where the last 
letter is audible if the following word starts with a vowel. 
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Meta-Rule 2 (Adjectives):   

Let A be an adjective and gnA  its declined form of gender g  and number n . 

1) If A  belongs to the prenominal hierarchy class Ci ,  1 2, , ...i =  , then  

 

  gnA  : x yi gn hgn
� , 1 0, ..., , , , ...h i I II= − ,  

where  

 if A  starts with a consonant, either x c= and , 'y c c=  or x m=  and , 'y m m= ,  

if A  starts with a vowel, either 'x c= , , 'y c c=  or 'x m= , , 'y m m= .  

 

2) If A belongs to the postnominal hierarchy class kC ,  , , ...k I II= , then  

 gnA  : x xr
h gn i gn , where , ', , 'x c c m m= , 0 h k≤ < . 

 

 

Examples: 

vin   : 011m  

blanc   : 011 11
r

Ic c , 011 11m mr
I  

pétillant  : 011 11c cr
II , 11 11c cr

I II , 011 11m mr
II , 11 11m mr

I II , 

bon   :  211 011c c � , 211 11Ic c � , 211 11IIc c � , …, 211 011m m � , 211 11Im m � , 211 11IIm m � , … 

   

vin  blanc 

011m 011 11m mr
I    →  11mI  

 

vin    pétillant 

 011m  011 11m mr
II    →  11IIm  

vin   blanc       pétillant 

011m  011 11m mr
I  11 11m mr

I II  →  11IIm  

 

 bon          vin   blanc       pétillant 

 211 11IIm m �  011m  011 11m mr
I  11 11m mr

I II →  211 11IIm m �  11IIm  →  211m . 

 

Similarly,  

petit chat,  petit chat noir: 111c  

 beau ( petit) chat (noir): 211c  

 

A comment on our use of indices is appropriate:  Notice that the types of *petite chat or *chat petit will 

not reduce to a simple type.  Types which differ “only” by the value of an index, say 011c  and 111c , are just as 
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different types as those which look “completely different”, say 11IIm  and  012c .  The use of indices is 

convenient, when defining the dictionary, i.e. when assigning types to the words of the language fragment.  Each 

index, better each position of the index in the subscript of a type symbol represents a “feature” of the concept, 

like gender, number, position of the adjective.  The fact that a (sequence of) word(s) starts with a vowel or 

consonant could also reasonably be called a feature.  For reasons of readability, this feature is expressed by the 

presence or absence of the symbol '  in the superscript, (prime).  The theory of pregroups does not include 

unification of features, but indices are a good device to find efficient type assignment algorithms .   

When checking whether bon vin is an incomplete noun phrase, we must try all possible type 

assignments of this sequence of two words until we hit one which reduces to the appropriate basic type.  Only 

one of the possible types for bon, namely 211 011m m � , will result in a string which reduces the type of bon vin to 

211m .  Notice that another type for bon must be used in bon vin blanc pétillant.  Type assignment can be made 

more efficient by keeping the variables as long as possible.  The Meta-rule describes types for bon as 211 11x xh
� , 

for 1 0, , , , ...h I II= , x c, m= .  This corresponds to eight or more types, depending on the number of hierarchy 

classes. As a first step, the improved type assignment algorithm would assign the string 211 11x xh
�

011m  to bon 

vin and at a second step make x m=  and 0h = .   Hence, a simple calculus of equality of “features” is part of an 

efficient type assignment algorithm. 

 

 

3.2. Determiners 

A determiner transforms an incomplete noun phrase into a complete noun phrase, which may be subject or object 

in a sentence.  The notion of determiner follows [Le bon usage], it includes the indefinite article un, une, the 

definitive article, le, la, l’, les and its contracted forms with de namely du, des, the possessive and demonstrative 

pronouns such as well as the preposition de followed by an adverb of degree like beaucoup, peu 

 

 The complete noun phrase formed with the possessive or demonstrative pronoun, definite or indefinite 

article can be subject or attribute or direct object.  It has type gnn  or n'gn  where the indices ,g n  represent 

gender and number.  If the latter do not matter, we use n  with n ngn → .  In view of Proposition 1 our work can 

be considered as an extension of the analysis given in [Barg-Lamb].  In some constructions with the preposition 

de, one needs to know if the complete noun phrase is formed with a mass-noun or a count-noun.  Therefore it is 

convenient to introduce a type y ngn gn→� , for  y c, m=  and y n'gn gn→� , for y = c', m' .  

 

General complete noun phrase  

Roughly speaking, names are complete noun phrases and so are nouns, with or without adjectives, when 

preceded by an article or a demonstrative or possessive pronoun. 

 

 Albert :  11c '�  

 Marie  :   21c�  



 17

 le      : 11 11n x � , ,x c m=  

les      : 2 2n x x cg g , = , 1 2g ,=  

ces, mes,…     : 2 2x x x cg g , =� , 1 2g ,=  

ce, mon, ton, son, notre, votre, leur  :  11 11x x �� , ,x c m=  

 la, cette, ma, ta, sa, notre, votre, leur : 21 21x x �� , ,x c m=  

 cette, mon, ton,  son, notre, votre, leur : 21 21x x' �� , ,x c m=  

l’      : 1 1x xg g'
�� , 1 2g ,= , ,x c m=  

cet      : 11 11x x' �� , ,x c m=  

ces, mes,…     : 2 2x x x cg g , =� , 1 2g ,=  

 un      : 11 11x' x �� , ,x c m=  

 une      : 21 21x' x �� , ,x c m=  

 

The difference between the types of le, les and the other determiners lies in the fact that prepositions like de, à 

contract with le, les to yield a new word: du, ( *de le ), des ( *de les ) etc.  

 

Example : 

 un  bon      vin      blanc 

 11 11m' m ��

211 11IIm m �  011m  011 11m mr
I            Æ 11 11m' m ��

211m  Æ 11 11m' m ��

11m   Æ 11m'�  Æ  11n'  

 

Notice that these determiners yield complete noun phrases which can be subject, object and attribute:  un bon vin 

blanc me plait, j’aime un bon vin blanc, c’est un bon vin blanc.   

 

 

Partitive complete noun phrase 

 French has complete noun phrases formed with the partitive article, du, de la, de l’, des.  Functioning as 

partitive 6, de transforms an incomplete noun phrase into a complete one.  This partitive noun phrase can be 

direct object of a verb (Il mange du pain), attribute (C’est du sable) or even subject (des enfants jouent dans la 

rue), i.e. the partitive article is understood as an indefinite article.  In everyday French however, one rarely uses a 

noun phrase with the partitive article in the singular as the subject of a sentence :*Du pain est sur la table, ?De 

l’eau s’est infiltrée dans les fondements, ?Du sable gêne l’engrenage are replaced by il y a du pain sur la table, 

il y a de l’eau qui s’est infiltrée…, il y a du sable qui gêne l’engrenage. 

 

We introduce a new type gnn� , 1 2 1 2g , ; n ,= = , together with a super-type n�  such that gnn n→� � .  It is 

the type of a complete noun phrase which in general will not be used as subject.  The plural partitive article des 

                                                 
6  i.e. determining part of a mass or a group 
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transforms a plural count noun into a complete noun phrase.  The same holds for the singular partitives du, de la, 

de l’, when preceding a mass-noun phrase.  7 

Hence the types 

 des : 2 2n x x c cg g , , '=��   8  

 du : 11 11n m ��  

 de : 1 1n mg g
���    

 

Examples 

 (Je mange) des      pommes  

        22 22n c ��  22c   Æ  22n̂  

 

(Je mange) du      pain 

      11 11n̂ m �  11m Æ  11n̂  

 

(Il y a) de        l’air 

 11 1n m ���

11m� Æ  11n̂  

 

Two comments: The first concerns the use of a partitive complete noun phrase as the subject of a sentence.  

Compare 

(1)  Des gens vous demandent. 

(2)  *Des nombres pairs sont divisibles par deux. 

The first sentence is generally accepted, see [Le bon usage], [Carlier], [Kleiber], whereas the second is rejected.  

The obvious reason lies in the meaning of the two sentences.  The partitive article has the meaning of a 

existential quantifier, whereas the rejected sentence (2) would require a universal quantifier.  The latter can be 

rendered by the definite article les: 

 (3)  Les nombres pairs sont divisibles par deux. 

Our analysis assigns different types to the noun phrases des nombres pairs and les nombres pairs, namely 12n�  

and 12n .  By an appropriate typing of the French sentence structure, it will therefore be possible to accept (1) and 

(3) and to reject (2). 

 

Our second comment concerns the use of de instead of des if the noun is preceded by an adjective.  We have 

(i) des fleurs 

(ii) des jolies fleurs 

                                                 
7  The partitive article is also used to construct a postnominal complement to a noun phrase like le temps des cerises, le goût 
du pain, la forme de la pomme.  One would have to declare still more types for des, du, de which is beyond the scope of this 
paper. 
 
8  This implies that des jolies fleurs is accepted as a complete noun phrase.   
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(iii) de jolies fleurs 

Our typing up to this point does not recognize (iii).  This can easily be repaired by assigning to de new types, 

namely 

 de : 2 2n cg hg
�� , 1 2, , ...h =  

d’ : 2 2n c'g hg
�� , 1 2, , ...h =  

Notice that this typing accepts de jolies fleurs and d’autres fleurs as complete noun phrases, but not de fleurs.  

However, the latter will be analysed as a “quasi” complete noun phrase by assigning still more types to de as we 

shall explain next.. 

 

Adverbial determiners 

The preposition de preceded by adverbs of degree like assez, beaucoup, combien, peu also functions as a 

determiner, for example peu d’enfants, beaucoup de pain, combien de sable.  Hence, d’enfants, de pain, de sable 

may be considered as “almost” complete noun phrases.  

 Yet another type gnx�  will have to account for the “almost” complete noun phrases formed with de 

alone, without a subsequent definite article.  Then we declare following new types for de 

 de :   c cg n g n
�� ,  1 1g gm m �� ,   

 d’ :   gn gn'c c �� ,  1 1g g'm m �� ,   

 assez, beaucoup : gn gnn x �� , either x c=  and 2n =  or x m=  and 1n = . 

 

Examples : 

(Je mange) beaucoup   de     pain 

        11 11n m ��     11 11m m ��    11m  Æ  11n  

 

Beaucoup de      chats (arrivent) 

 12 12n c ��      12 12c c ��  12c      Æ  12n  

 

Anticipating on the analysis of the sentence structure, we have introduced two different types for the complete 

noun phrase, ngn  and ngn
� .  The subtypes xgn

�  of ngn  were needed to recognise the transformation of a complete 

noun phrase formed with a definite article (l’eau) into a complete “indefinite” noun phrase (de l’eau).   

 

 

4. Conclusion 

In Section 1, we have established the conditions for extending a language fragment without changing 

the completeness and correctness of the typing of the original fragment.  The results of Section 2 show how and 

when the efficient general type checking algorithm can be improved to a linear one; an important property in 

implementations.  Sections 1 and 2 combine to an argument that complexity, besides the actual grammar, could 

and should influence the typing of language fragments.  The criterion for linearity has already influenced our 
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typing in Section 3.  There we have also explained how each position of an index in the subscript corresponds to 

a “feature”, used to organise the dictionary in a succinct way.  Thus, meta-rules are not but part of the grammar, 

but help to organise the dictionary.   

Future work should take advantage of this succinct organisation of the dictionary to devise efficient type 

assignment algorithms.  Certainly, more criterions for language fragments which can be decided in linear time 

would be welcome.  We are convinced that pregroups are the tool for real time applications verifying grammars.  

Larger and larger fragments of natural languages need to be typed. 
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