
HAL Id: lirmm-00191938
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191938

Submitted on 26 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IUHM, a Hypermedia-Based Model for Integrating open
Services and Metadata

Jocelyne Nanard, Marc Nanard, Peter R. King

To cite this version:
Jocelyne Nanard, Marc Nanard, Peter R. King. IUHM, a Hypermedia-Based Model for Integrating
open Services and Metadata. ACM Conference Hypertext 2003, Nottingham,UK, pp.128-137. �lirmm-
00191938�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191938
https://hal.archives-ouvertes.fr

IUHM, a Hypermedia-based Model
for Integrating Open Services, Data and Metadata

Marc Nanard
LIRMM, CNRS/Univ. Montpellier
161 rue Ada, 34392 Montpellier

France
 Phone: (33) 467 41 85 17

mnanard@lirmm.fr

Jocelyne Nanard
LIRMM, CNRS/Univ. Montpellier
161 rue Ada, 34392 Montpellier

France
Phone: (33) 467 41 85 16

jnanard@lirmm.fr

Peter King
Computer Science Dept
University of Manitoba

Winnipeg, Canada
Phone: (1) 204 474 9935

prking@cs.umanitoba.ca

ABSTRACT
This paper discusses a new hypermedia-based model known as
IUHM. IUHM emerged as a result of the development of the
OPALES system, a collaborative environment for exploring and
indexing video archives in a digital library. A basic design
requirement of OPALES is that it must permit and support the
integration of new services throughout its life cycle. Thus, IUHM
depends heavily upon the notions of extensibility and openness.
Support for openness, extensibility and late binding of services is
provided in the IUHM model by a single reflexive mechanism.
This uniform mechanism is used for describing all relationships
between arbitrary system entities, including services, data and
metadata. The mechanism in question consists of a generic,
computable hypertext structure with typed links, known as the
Information Unit, and is the minimal structural scheme to which
all encapsulated entities comply.
We describe and justify the design of the Information Unit, as
well as the semantics of its four link types, namely role, type,
owner, relative. We further describe the minimal kernel of the
runtime layer responsible for the dynamic behaviour specified by
the IUHM compliant hypertext network. We discuss the
mechanisms involved in the dynamic binding of services and
service composition. We illustrate these notions by real-world
examples of the integration of metadata services within the
OPALES system.

Categories and Subject Descriptors

H.3.7 [Information Storage And Retrieval]: Digital libraries -
systems issues, user issues.

I.7.2 [Computing Methodologies]: Document preparation -
hypertext/hypermedia, languages and systems.

General Terms
Management, Design, Reliability, Human Factors, Languages.

Keywords
Hypertext structure, open hypermedia system, semantics,
metadata, service integration, structural computing.

1. INTRODUCTION
Historically speaking, it has been widely recognized that a
fundamental requirement of a hypermedia system is that it
provide for creating and manipulating relationships between
information items. During the past decade such relationships have
undergone a multi-stage evolution within the open hypermedia
community. Initial developments saw the provision of open link
services among third party applications [2], in which
interoperability issues were resolved by whatever ad hoc
approaches were appropriate at the various levels [15], [19]. Such
systems evolved first into open hypermedia systems [16],
including hypertext domains [14], and then into component-based
open hypermedia systems [14, 24]. This progression culminated
in architectures based on middleware structure services [21, 20],
and this ultimate stage has led to the emergence of a new field
known as structural computing [13], which affirms the pre-
eminence of structure over data.
It may be observed that the architectural models developed
throughout this evolution all approach the question of
interoperability by providing standard protocols and a standard
interface between the different levels of components. While this
approach has been entirely satisfactory as far as the hypermedia
community is concerned, the question of interoperability does not
disappear. Rather, questions surrounding interoperability are in
part replaced by the necessity to provide a uniform back-end
storage [23].
In this paper, we propose an alternative approach to the
integration of open hypermedia services. Unlike the approaches
just described, we accept heterogeneity and we do not seek a
standard protocol, or interface. Rather, we introduce a new
unifying scheme for integrating heterogeneous entities, including
such diverse entities as data, metadata, services, user-groups, and
ontologies. In so doing we apply the pattern hypermedia as
integration introduced in [4]. However, we go further, and
separate the structure of an entity from the semantic concerns
relating to that entity, and, in a similar fashion, we separate the
structure and semantics of a society of entities related by typed
relationships.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HT ’03, August 26-30, 2003, Nottingham, United Kingdom.
Copyright 2003 ACM 1-58113-704-4/03/0008…$5.00.

In order to achieve this goal, we introduce the Information Unit
Hypermedia Model (IUHM), a system integration model, which
draws its inspiration from hypertext structures. In this model, all

entities (data, metadata, service, ontology, etc.) are represented in
a uniform fashion, each entity being encapsulated as an
Information Unit (IU). The model associates a minimal set of
links with an IU. In particular, an IU has a type link and a role
link, and these two separate links provide the distinction between
structure and semantics in the manipulation of an information
unit. Additionally, an IU has an Owner link, which specifies
which entity may manipulate the Information Unit in question.
The IUHM framework is both open and reflexive. IUHM supports
structural computing in a manner similar to that described in [9,
13].
As a significant test bed, we have applied IUHM and its
underlying principle of uniform management of heterogeneous
entities to the development of the OPALES system [10]. OPALES
provides a portal to a set of diverse open digital library services.
OPALES is designed for the cooperative manipulation of shared
multimedia documents among multiple users and user-groups. In
particular, such documents may be enriched by multiple
annotation and indexation structures through private and public
workspaces. The various entities occurring in the OPALES
system and their interrelationships were modelled as an IUHM
network, thereby making OPALES and its functional core
reflexive, as described in section 2.3.
The remainder of this article is organized as follows. Section 2
establishes the three fundamental architectural requirements of
our framework, and section 3 discusses in detail IUHM, the
hypermedia model. Section 4 explains the architecture model
which we have used in OPALES for the integration of structural
computing services, and further indicates how this architecture
satisfies the requirements discussed in section 2. In section 5 we
illustrate the application of the model to part of the OPALES
system and in section 6, we discuss related work and conclude.

2. CONTEXT AND REQUIREMENTS
Many of the ideas to be discussed in this paper emerged as a
result of the development and subsequent use of the OPALES
system [10]. OPALES provides a collaborative user workspace
for exploring and indexing video archives held at l’Institut
National de l’Audiovisuel (INA), Paris. But OPALES is a digital
library system which goes beyond the provision of simply
indexed archival material: it provides semantic-based archival
access. A fundamental design requirement of OPALES was to
permit the addition of new services throughout its life cycle, and
accordingly the design of OPALES depends heavily upon the
concepts of extensibility and openness. We therefore developed
the IUHM model and the corresponding architectural framework
in which system development and maintenance, including the
addition of new services, could be accomplished without the need
to change either the overall system architecture or its data
structure.
In order to make the integration of multiple services as simple as
possible [1], the architecture must satisfy the following three
requirements: it must be open, it must support interoperability,
and it should be reflexive. In this section we first explain and
motivate these three requirements, and we then indicate how each
has been satisfied within the IUHM framework.

2.1 Openness
An open system is one in which the addition of services is both
free and easily accomplished, in contrast to a closed system in

which the available user services are fixed and pre-determined.
The users of multimedia digital libraries frequently suggest new
tools or new services which they would find helpful in the system.
The system must be open to support the incorporation of such
new services.
IUHM is an open architecture in this sense. More specifically,
IUHM is not itself a user service, but consists rather of an open
infrastructure. This infrastructure supports the integration of
arbitrary services by providing a consistent and unified access
method both for services and for data and metadata.

2.2 Interoperability
The term interoperability refers to commonality of access means
for services in all domains, as distinguished from the provision of
middleware components specifically related to particular
domains. The term has been used by a number of authors and a
number of approaches to interoperability are to be found in the
literature. FOHM [8] for example, takes the approach of
considering a limited number (three) of domains, and defining the
semantics of operations across those specific domains.
The approach to interoperability found in IUHM is rather
different. IUHM does not provide any explicit definition of
specific data structures to be shared by applications. Rather,
IUHM provides a unified mechanism which enables data and
services to be mapped and interconnected. The mechanism has
some similarity to an object-oriented approach, but there are
significant differences. In particular, IUHM provides for global,
large-scale system management, and makes use of hypertext
structure to depict the actual resulting system architecture.
Further, IUHM separates the data semantics from data structure
and enables these two aspects to be described separately.

2.3 Reflexivity
The term reflexivity refers to uniform treatment of both the system
and of all user-accessible items within the system. Reflexivity,
and the consequent avoidance of specificity in architectural
design, facilitate interoperability, as just described. Furthermore,
the high degree of unification inherent in a reflexive architecture
makes an open system simpler to design and to operate.
Reflexivity is more a design choice, a solution, than a constraint.
The reflexivity offered by IUHM provides common treatment of
all items in the system, whether such items be system primitive
notions, or higher level entities such as services, data, meta-data.
In particular, reflexivity implies that a user can handle all items in
such different domains in a uniform fashion, and therefore
reflexivity provides support for our approach to interoperability.

2.4. The IUHM approach
The approach used in IUHM to meet the three system
requirements just described is based on two main considerations.
Uniform hypermedia model. We rejected an approach which
adopts distinct models for describing hypermedia structures on the
one hand and services on the other. The use of such an approach
in our view, complicates the management of openness and
interoperability while maintaining homogeneous semantics [16],
[7], [23]. Therefore we have designed a single hypermedia model
IUHM, which makes use of a uniform reflexive data item known
as the Information Unit (IU). All system entities of whatever type
are encapsulated as IU instances. Such entities include primitive
notions, services (such as indexing), data (such as digital video

archives), meta-data (such as conceptual graphs and ontology
descriptions), collaboration issues (such as user groups
descriptions, viewpoints). The information unit represents a
hypertext node and the model includes a limited set of typed links
which are used to depict a specific system in the large as a
network of information units connected by structural and
semantic relationships. Accordingly, all data items have a similar
structure and are managed in a uniform manner. The IUHM
model expresses structural aspects and is presented in detail in
section 3.
Generic Functional Kernel. We have designed an open
component-based infrastructure which offers generic and
interoperable access and execution mechanisms. The
infrastructure is based upon a generic functional kernel, which
relies on IUHM. In order to bootstrap the reflexivity, any entity in
the functional kernel is handled as an information unit. The
infrastructure is open since it specifies no predefined data
structure, semantics or behaviour for items beyond the primitive
information units. The kernel provides the syntax rules that the IU
must conform to; the semantics of an IU are defined by its own
management rules, not by the structure of the data which it
transmits. The infrastructure components and its functional kernel
are described more fully in section 4.

3. THE INFORMATION UNIT
HYPERMEDIA MODEL
This section presents in detail IUHM, the Information Unit
Hypermedia Model. IUHM is not itself a model for hypermedia,
but is rather a system integration model based on a hypermedia
model, which uses structural computing techniques [9]. IUHM is
based on a particular node structure, known as the Information
unit, IU. We show how this structure unifies the notions of service
and data, so that every item in the system is handled according to
the same basic rules. Relationships between entities in the system
are expressed by means of a hypertext data structure enabling
structural computing. This structure facilitates the dynamic
construction of tailorable end-user systems. Further, it becomes
possible to edit the system structure in the same way as any
hypertext data structure. This reflexivity makes a system more
robust and easier to build and to customize, as we illustrate in
section 5 in the case of the OPALES system.

3.1 Information Units
The IU provides a mechanism for the explicit and efficient
management of semantic relationships between hypertext nodes.
This management is performed by means of a hypertext with
typed links structure [11] making use of what is known as
structural computing. In order to distinguish the link structure
which describes the system architecture from other links used for
user-level navigation, IUHM introduces the notion of descriptor.
Considered as a hypertext node, an information unit is structured
as two parts, its descriptor and its content. The descriptor part
provides answers to four questions concerning the IU, namely
how is it used, what is it for, to whom is it connected, and who can
access the IU. Accordingly, the descriptor comprises four link
fields, respectively

• type: the kind of data contained by the IU;

• role: the semantic purpose of the IU;

• relative: specification of relationships among IUs;

• owner: access rights on IUs;
Each of these four fields is implemented as a bi-directional typed
link to an IU which contains the corresponding type, role, etc.
Moreover, in accordance with the notion of to structural
computing, each of the type, role, owner, and relative of an IU, is
characterized not simply by the link or the destination IU, but
rather by the whole link structure in the vicinity of the IU. The
content of an IU stores the information itself. Figure 1 illustrates
the information unit, the four link-fields comprising the
descriptor, and the content; it should be noted that the descriptor
and the content may, if convenient, be physically disjoint, since
an IU is always accessed by its descriptor.

ItsType is “B”
ItsRole is “C”
ItsOwner is “D”
ItsRelative is “E”

Data

An information
unit “A”
Descriptor

Content
Owner

Role

Type

Relative

I.U. “B”

I.U. “C”

I.U. “D”

I.U. “E” I.U. “Z”

Some
links

ItsType is “B”
ItsRole is “C”
ItsOwner is “D”
ItsRelative is “E”

Data

An information
unit “A”
Descriptor

Content
Owner

Role

Type

Relative

I.U. “B”

I.U. “C”

I.U. “D”

I.U. “E” I.U. “Z”

Some
links

Figure 1. Hypertext Network of Information Units.

Fuller details of these four link-fields are given below, but for
now we note that a system developed using this approach is fully
specified by a hypertext IU network induced by these links. The
IU descriptor also includes data such as unique-identifier, name,
access rights, access counters, and the like.
There is no restriction on IU content data-structure. Such content
can be simply a piece of text or a XML document or even a piece
of code as in the case of a service IU. Hypertext links towards any
other IU may also be found in the content part; these links are not
specified in terms of the model and permit normal hypertext
navigation.

3.1.1 Types and Roles
IUHM makes an important distinction between the type and the
role links of an IU, a distinction not generally found in classical
object-oriented approaches.
This distinction enables a separation of technical aspects and
semantic nuance. The type of an IU characterises the data
structure of the IU content, regardless of its usage. More
precisely, the type link references the information unit which
models the technical aspects of all information units having that
type, thereby giving access to the primary level of software
capable of handling the content, as shown in the example of
figure 2, which is taken from the OPALES implementation.
The role of the IU characterizes its semantic behaviour
independent of its type, and references the information unit which
models the semantic behaviour of all information units sharing the
same role. Role and type are independent: two IUs may have the
same type, both are XML files say, but may contain quite
different kinds of information, and thus have different roles. As a
simple example, the role might be user group description and the
type xml.

Itstype is
« B »

Itstype is
«Predefined»

Data of A,
structured
as defined
by « B »

internal ref.
to the
Class

Loader

System Primitive IU
«CLASS»IU «A»

Set of IUs with
a type link to B

Descriptor Descriptor

Content

Itstype is
« CLASS »

Java Classes for
low level handling
data of type « B »

IU «B»
(The type of «A»)

Descriptor

Content Content

Built in Elements of the
system

functional core

This type is supposed
implemented in Java

Itstype is
« B »

Itstype is
«Predefined»

Data of A,
structured
as defined
by « B »

internal ref.
to the
Class

Loader

System Primitive IU
«CLASS»IU «A»

Set of IUs with
a type link to B

Descriptor Descriptor

Content

Itstype is
« CLASS »

Java Classes for
low level handling
data of type « B »

IU «B»
(The type of «A»)

Descriptor

Content Content

Built in Elements of the
system

functional core

This type is supposed
implemented in Java

Figure 2. Example: Hypertext Implementation of Information

Units in OPALES.

3.1.2 Primitive Information Units
As is the case in any reflexive framework, IUHM bootstraps from
a small set of primitive information units, including the primitive
notions used in the system. To this end primitive information
units, such as EMPTY, UNDEFINED, PREDEFINED, CLASS,
SYSTEM are defined as nodes within the structure. For example,
the role link of an IU whose role is as yet undefined, is not a
dandling role link, but references the primitive IU named
UNDEFINED whose owner is the SYSTEM, whose type is
PREDEFINED, and whose owner is ANYONE. In this fashion all
relationships between items in the system are fully described by
the hypertext network built out of these four links.
We now describe in greater detail the rationale for and the
mechanisms associated with each of the four links within the
descriptor of an IU. Section 5 illustrates a novel use of these basic
mechanisms in the development of general services for
collaborative annotation and indexing by interest groups.

3.2 Types and IU Content Manipulation
The type of an arbitrary IU a, say, is by definition the IU b, say,
which is referenced by the type link of a. Further, the IU b
provides in its content part the code necessary for handling the
content part of the IU a. The principle of reflexivity implies that
these two rules apply to all IUs within the system. We consider
two contrasting examples. First, in the extreme case, of a
primitive type, that is a type such as TXT or JPG which a system
can handle without added tools, the type link references the IU
PREDEFINED. In the more general case, the primitive IUs
CLASS and CODE denote, respectively, downloadable and
resident code segments. Thus, the Java classes of a service are
found in the content part of an IU whose type is CLASS and
whose role is SERVICE. As a direct consequence, the hypertext
network always provides the proper code for low level handling
of the data of any IU insofar as its type link references this code.
The approach is entirely reflexive, and indeed the IU named
CLASS has type CODE, since it corresponds to the built-in class-
loading feature.
This general approach provides a simple, extensible mechanism,
without putting constraints on the kinds of data that could be
handled by the system. IUHM compliance implies that any IU is
linked to its appropriate code. Adding a new data structure is as

simple as adding new data, and in both bases one stores the
classes which handle the entity in question in the IU content, and
characterises this IU by its role and type links. Furthermore, this
technique automatically adjusts the low-level processing of data
within a generic service. For instance a general service whose role
is to handle, say images, automatically uses the proper low level
code to handle the content part of a given IU since the code is
linked to the IU.

3.3 Managing IU Ownership
Regardless of its type or role, every IU has an owner, specified by
its owner link, which is responsible for its creation and
subsequent management. An IU owner may be, say, a user, a
group moderator, the system administrator or the system itself, all
of which are represented as IUs referenced, as appropriate, by IU
owner links. The primitive IUs ANYONE and SYSTEM are
included to support reflexivity. At one extreme, an IU whose
owner is the IU named ANYONE may be handled by all users. At
the other extreme, an IU which has the IU named SYSTEM as
owner, is hidden to any users, but available to the kernel. This
mechanism is used throughout the system, and indeed provides
the basis for the management of user and user-groups and
workspaces.

3.4 Roles and Objects
Roles permit a semantic structure to be induced on IUs, which is
independent of their type structure. Consider, as an illustration,
the annotation of, say, an item in a video library. An annotation
may be of a variety of types. One may create an audio annotation,
a graphical annotation, a textual annotation, or a more formal
annotation using conceptual graphs, or even use RDF. However,
the view of an annotation, as a metadata anchored into a
document is independent of the type of the annotation.
Accordingly if one considers the set of IUs which would be used
to represent the above list of annotation types, each IU would
have its distinct type, but Annotation would be used as their
common role.

ItsRoleIs
ItstypeIs

XML Data about
the owner,

e.g.:
user description

IU named « Smith »
describing the

owner of « myIU »

Descriptor
ItsRelativeIs
ItsOwnerIs

ItsRoleIs
ItstypeIs

Data
of

myIU

IU named
« my IU »

Descriptor

Content Content

ItsRelativeIs
ItsRoleIs

Parameters
characterizing
simple users

Descriptor

Content

IU named
« SimpleUser »

ItstypeIs

Tools for managing
user descriptions

IU
«user description»

System Primitive IU
named « CLASS »

predefined

Built-in
Role

Management
code

Descriptor

Content

System Primitive
IU named
« Role »

Semantic description
of the

simple user role

Some other
System Primitives

Functional core

ItstypeIs

ZZZ Tools

ItsRoleIs

Default param
for users

IU named
«USER »

IU named
«zzzz»

ItsRoleIs
ItstypeIs

XML Data about
the owner,

e.g.:
user description

IU named « Smith »
describing the

owner of « myIU »

Descriptor
ItsRelativeIs
ItsOwnerIs

ItsRoleIs
ItstypeIs

Data
of

myIU

IU named
« my IU »

Descriptor

Content Content

ItsRelativeIs
ItsRoleIs

Parameters
characterizing
simple users

Descriptor

Content

IU named
« SimpleUser »

ItstypeIs

Tools for managing
user descriptions

IU
«user description»

System Primitive IU
named « CLASS »

predefined

Built-in
Role

Management
code

Descriptor

Content

System Primitive
IU named
« Role »

Semantic description
of the

simple user role

Some other
System Primitives

Functional core

ItstypeIs

ZZZ Tools

ItsRoleIs

Default param
for users

IU named
«USER »

IU named
«zzzz»

Figure 3. Example: Roles, Types and Owner in OPALES.
Figure 3 contains an illustration of these concepts. The Owner
link of the IU myIU references a node describing the owner of
myIU, the IU named Smith. Such an owner node is semantically
characterized by its role link, which references an IU named,

here, SimpleUser whose role is to characterize the semantics of a
simple user, i.e. what a simple user may do. To change Smith into
an administrator it suffices to link its role to administrator.
The type link indicates simply that this data is described in XML,
and provides access to generic tools applicable to XML files. An
IU referenced by a role link is said to be a role, and its Role link
references the primitive IU ROLE.

3.5 The relative Relationship
The relative link of an IU permits the definition of an arbitrary,
directed relationship between an IU pair, and thus serves to
construct a free and rich structure over a set of IUs. The
relationship between two IUs designated by relative is often one
of dependency, delegation, or inclusion. There is no predefined
semantics for the relative link in IUHM; its interpretation is
usually delegated to the role. For instance, in OPALES, the IU
relative to an annotation IU is the annotated IU. The IU relative to
an IU referenced by a type link is the IU to which it delegates. An
analogous mechanism is used to implement role delegation and
role hierarchies.
One might ask why IUHM has a single relative link. On the one
hand, this restriction makes the model far simpler to handle. On
the other hand, multiple relative links are infrequent and are
simple to construct. Multiple links are implemented as a reference
to an IU whose content is a set of links. This approach has been
successfully used in the development of OPALES. For example,
an IU whose role is to be the answers to a query has a content
which links to the selected IUs. Such IUs are used for handling
persistent or temporary storage of answers. In the same manner,
an IU slides may be referenced by the content part of an IU
slideshow. We observe that this feature was requested by end-
users of OPALES, and is considered by them to be helpful.

4. ARCHITECTURE AND DYNAMIC
ASPECTS
The previous section discussed the static structural aspects of a
IUHM compliant hypertext network. This section focuses on the
dynamic aspects of open service integration in a IUHM network.
The reflexivity of IUHM means that the relatively simple
techniques may be used. We use the term functional core to
denote the minimal set of features to be implemented in a
hypertext engine making use of IUHM. In terms of the Dexter
Hypertext Reference Model [5], most of the functional core is
embedded in the run-time layer of the hypertext engine, and the
storage layer consists mainly of a IU server. The within-
component layer consists for the most part of services within
system components, although a service may be far more complex
than, say, a simple component presenter.
Whereas the infrastructure developed for managing a IUHM
network was developed independently of any IUHM compliant
system, the functional core of the OPALES system is taken as an
example to introduce these notions in a practical context.

4.1 Open Services
Let us first clarify the notion of open service in a hypermedia
system. The within-component layer of the Dexter model is
usually concerned with handling a single node data structure. A
service in our sense is a more powerful notion, encompassing not
only single-node processing, but also processing over multiple
nodes, including the entire hypertext network itself. Thus,

searching, annotating, and indexing are services, but so too are
more complex operations, such as organizing one’s bookmark
space, or preparing a virtual slideshow-like presentation by
transclusion [12] of anchored parts of hypertext nodes. Such a
complex service can be built as a composition of other services.
Moreover, the system is reflexive, and therefore processes which
involve services, including the system itself, are also regarded as
services.
This generality enables a hypertext system to be bootstrapped
from its functional core by integrating the services which
constitute the system. IUHM makes it possible both to store the
actual code of these services directly in the hypertext nodes, and
to specify the relationships needed by the functional core in order
to integrate these services in the system. Our experience in using
this approach in the development of OPALES has shown it to be
both useful and efficient.

4.2 Overall Architecture
In figure 4 we present the infrastructure model to which the
OPALES system complies.

Primitive
services

Video
server

Reflexivity

Basic
services

Added
service

Added
service

Added
service

Functional Core

…
(downloaded)

(resident)

Openness

IU
repository

IU server

Client side
Servers side

..Search
engines Other

Specific
bases

Primitive
services

Video
server

Reflexivity

Basic
services

Added
service

Added
service

Added
service

Functional Core

…
(downloaded)

(resident)

Openness

IU
repository

IU server

Client side
Servers side

..Search
engines Other

Specific
bases

Figure 4. The Infrastructure Model.
At its simplest level, the architecture may be regarded as a client-
server system in which the server side acts as the storage level of
the hypertext engine. An IU server handles the IUHM compliant
structure, and is responsible for the management of descriptors.
Contents, for their part, are located in specific servers as required,
including the IU server. For instance, in OPALES for reasons of
efficiency video archives are stored on a dedicated video server.
Conceptual graphs, which are used for semantically rich indexing,
are stored on a specific server close to a conceptual graph search
engine. Conversely, the content of a user private annotation is
stored on the IU server, which serves as a private workspace
repository for the OPALES users.
On the client side, the functional core, implements the runtime
layer, whose purpose is to support the integration of arbitrary
services, which are themselves described in terms of IUs. Thus,
the functional core mimics the behaviour of a mother-board bus,
providing a consistent and unified access both to services and to
data and metadata, and providing a generic interface for creating,
searching, accessing and updating IU descriptors and IU content.
The functional core administers the dialog with servers, so that
services reference data or other services in terms of IU, regardless
of their actual location. In this fashion the internal dialog is

expressed in terms of properties of IU descriptors in the IU
networks
The separation of descriptor and contents, at both the model and
the implementation levels enables very fast navigation within the
structure. Further, the reasoning done within the functional core
depends upon structural computing on the IUHM compliant
hypertext network.

4.3 Mapping Services to Data
As described in section 3, the type of a IU provides access only to
the low level code for handling the IU. The functional core offers
four categories of functions:

• Get descriptor: delivers a set of IU descriptors
matching some selection criteria.

• Open: selects the relevant service to open an IU and triggers
opening of the IU.

• Select service: gets the best-fit service according to some
property.

• Primary access functions such as Get content.
The provision of such generic features by the functional core,
with respect to a IUHM compliant hypertext, avoids the need for
service code-segments to be hard-wired.
At a higher level, service selection derives from a dynamic
mechanism embedded within the functional core. Since services
are dynamic objects their run time presence in the functional core
must be registered. In order to facilitate the selection of an
appropriate service, such registration includes the set of
signatures, in terms of the types, the roles and the owners,
characterizing the IUs which the service can handle. This set is
referred to as the capacity of the service.
Once a service is loaded in the functional core and registered
along with its capacity, a service can be accessed in three ways:

• using its explicit name, or its unique identifier,

• using its IUHM descriptor properties as an abstract signature,

• using its dynamically registered capacity.
As an example, when opening an annotation in OPALES, that is
an IU role-linked to the IU annotation, the core dispatches the
service request to the most specific service currently able to
handle it, according to criteria within a set of services. Since the
annotation IU has a type, the selected annotation service may
dynamically access the data to be annotated by using code for
low-level handling of IU content data.

4.4 Generic Service Invocation
The mechanisms for adding and for using services are unified
within the functional core by virtue of the general IU access
management mechanism. One service can access a second service
as an IU and thus services may dialogue with each other in a
functional manner. A service can retrieve another service by name
or by any property which accesses the appropriate IU.
In order to initiate a dialog with another service, a service
requests the functional core to provide a reference to the other

service object in memory. This causes the service1 to be
downloaded from the server (if necessary), and to be launched.
Any service can request the processing of a given IU by a specific
service, using the open IU command and specifying the required
properties of its partner. Generic composition of services is easily
handled using this mechanism.
Consider as an example the service answer-presenter within a
search engine, which presents the answer to a given query. Rather
than itself opening the IU corresponding to the successful search,
answer-presenter may decide to give access to a second service
IU inspector to display information concerning the retrieved IU.
To achieve this, the search engine simply makes a request to
functional core to open the IU with a service whose role is
inspector. Since several services may have registered as inspector,
the core will assign the best match for the IU to be inspected. In
this way if an appropriate inspector has registered for handling the
selected IU type, such an inspector will open and inspect the IU.
It is not usually the concern of the caller to decide the specific
tool which will be used in any such case, although a caller may, if
required, set strong constraints on the selection of such a partner
service.

4.5 Service Composition
The mechanism described in the previous paragraph can be used
to construct complex services by integration of several other
virtual services. The IUHM architecture enables composite
services to be specified dynamically in terms of their functionality
rather than by hard wiring actual components.

Figure 5. Service integration: VideoExplorer, an annotation

editor, and a selector.
As an illustration, OPALES provides a service to annotate an
explored document, that is to link other documents to it. The
annotation service integrates three virtual services: an explorer
service, an annotation-editor service, and a selector service.
When an annotation is accessed, a relevant annotation editor is
selected with respect to the IUHM hypertext network which
depicts the IU properties. The appropriate editor is dynamically
assigned to the generic slot in the compound service. Similarly,
the annotated document IU which was bound to the annotation by

1 or its local delegate, if the service code runs on another server,

as is the case for OPALES conceptual graphs search engine.

the relative link, causes the assignment of the associated explorer
service. The anchorage of the annotation in the annotated
document causes the selector to display a list of other annotations
whose anchors intersect the current anchor, enabling the user to
browse other annotations pointing in the same vicinity. This is
operation illustrated in figure 5. The operation of this compound
service is simply to manage the co-operation between an explorer,
an editor and a selector service.
Since the assignment of IU to services is handled by the
functional core, service integration is specified in a functional
manner rather than in an ad hoc fashion. Deciding upon the
programming interface of a selected services is not the concern of
the IUHM system, whose function is rather to assert that the
loaded service is registered as an editor, and had the capacity, as
defined earlier, to handle the proposed content data structure.
A compound service can itself be virtual. As an illustration, a
slideshow service has recently been added to OPALES. Slideshow
and Slides are both IUs, and associated editors and explorers have
been created for their manipulation. In this way a compound
virtual service is derived from the annotation service, which
handles slideshow related IUs rather than annotations. The
slideshow overview explorer is automatically assigned to the
generic explorer slot and the slide editor to the generic editor slot.
As a consequence, the slideshow overview is automatically
presented to a selected slide, as its relative document, and the
selector provides direct indexing into the slide show.

4.6 Service Downloading
Service downloading is a feature which relies directly on the
general IU access management within the functional core.
By virtue of the reflexive nature of IUHM, the openIU command
works in exactly the same manner for services as for data. The
entire system is built up by using a simple bootstrap. A predefined
service service installer, which makes use of the Java run-time
class loading feature, is built-in to the functional core. The service
service installer is registered itself as a service handling IU with
role service and type class.
At session start up, the client requests the IU server to get the IU
descriptors of services that are visible to the current user.
Whenever the user decides to use a service, or when data
processing by another service requires it, if the service is not yet
loaded in the local cache, an open IU command is issued for the
service in question. The general mapping mechanism dispatches
this IU to the best fit, which is in this case the service installer.
The service installer gets the IU content from the server, stores it
locally as Java classes, and instantiates it. The loaded class must
declare its capacity, and is responsible for its own protocols. The
only interface specification is that the constructor of a service
class calls the methods for registering the service in the core.
Thus, there is no predefined constraints on what data or what
functionality may be supported by the system. The IUHM
architecture assures the correct mapping between data and tools
and the composition of services.

4.7 Open Service Architecture
Since all entities, services, data, metadata, users, user groups, and
so on, are unified in terms of IUs, the same mechanisms are
available to index, describe, retrieve, or download any type of
entity. Whether an end-user is searching for a document, for a
service, for another user, or for a viewpoint [10], the search will

be conducted in the same manner, using the same tools. Similarly,
services operate in a functional manner, and may operate
recursively on themselves. Thus, one can index a service, describe
a service in an annotation, etc. It has long been recognized that
this property, known as uniform referents, is helpful to the user
and provides for a simpler user interaction scheme in such an
open environment [16] [3].
IUHM provides a minimal framework for supporting openness.
Openness usually requires strong protocols in order to ensure
consistency. Such protocols are not the primary concern of
IUHM, but the IUHM basic mechanisms provide support for
protocol checking. Constraints, protocols can be attached to any
IU in a same way that annotations may be attached to services and
to interface description by an end-user. IUHM provides structural
rules to manage an executable specification, the functional core of
the run-time layer provides tools and mechanisms to handle such
a specification, but neither IUHM nor the functional core
determines the semantics of how these rules will be used.

5. MODELING NEW SERVICES – AN
EXAMPLE
This section illustrates how flexibility on the end-user side is
supported by an IUHM compliant hypertext, and how a new
service may be added to a system.
We base our description upon an example taken from the existing
OPALES environment, and we discuss the addition of user group
management as a new service.
Digital libraries provide the opportunity to go beyond the
provision of simply indexed archival material and to permit
semantics-based archival access. OPALES permits the
development of generic, open services for the accumulation of
large amounts of individual annotation and indexing effort, and
for the creation of a community management mechanism, which
permits users to share elicited knowledge. The notion of
viewpoint has been introduced in OPALES to provide support for
such facilities. Viewpoints support the management of small
knowledge clusters specific to user communities. Viewpoints are
fully discussed in [10]. Here we discuss how viewpoints provide
generic and flexible services for semantic interoperability through
the management of interest groups, which share elicited
knowledge in the form of annotations.

5.1 Basic Annotation Mechanism
Figure 6 depicts a video archive, described by an IU whose owner
is the institution responsible for archiving the video, in this case
l'INA. The relative link references the archive category in which
the video is stored in the institution. The role of the IU is to be a
video archive while the type specifies the video format used and
designates the corresponding software. The contents of the IU is
the digital video on the archive video server.
A user who accesses this video archive IU may display and
explore the archive, since these functions are provided by the role
ARCHIVE, but the user cannot edit the archive unless she is the
owner, that is, the archivist. She may, however, annotate the
video archive, since the action annotate is supported by the role
ARCHIVE. When clicking on an annotate button, the explorer
creates a new IU with role ANNOTATION, anchored to the
current selection. In this way, the user gains access to the
annotating software provided by the type of the annotation.

Assuming that a video-segment was selected for annotation, this
segment becomes the relative of the annotation. The annotation
owner is the only user authorized to set the access rights on
annotation, and make it visible and editable by others. However,
other users who access this annotation may further annotate it,
since explore and annotate are actions supported in the annotation
role.

XMLSchema
for annotations
done from this

viewpoint

Descriptor

Content

ItsRelative is
ItsOwner is
ItsRole is
ItsType is

XML Data

Descriptor

Content

An annotation

MPEG II

ItsRelative is
ItsOwner is
ItsRole is
ItsType is

MPEG II Data

Descriptor

Content

Its Relative is
Its Type is
Its Role is

Specification
of annotation role

The group
moderator

« ANNOTATION »
as a generic role

ItsRelative is
ItsOwner is
ItsRole is
ItsType is

System
Primitive IU
« ROLE »

A video

A viewPoint

Smith

XML

ARCHIVE

« I.N.A. »

a domain

USER

INSTITUTION

Role is

Role is

Role is

System
Primitive IU

named
UNDEFINED

XMLSchema
for annotations
done from this

viewpoint

Descriptor

Content

ItsRelative is
ItsOwner is
ItsRole is
ItsType is

XML Data

Descriptor

Content

An annotation

MPEG II

ItsRelative is
ItsOwner is
ItsRole is
ItsType is

MPEG II Data

Descriptor

Content

Its Relative is
Its Type is
Its Role is

Specification
of annotation role

The group
moderator

« ANNOTATION »
as a generic role

ItsRelative is
ItsOwner is
ItsRole is
ItsType is

System
Primitive IU
« ROLE »

A video

A viewPoint

Smith

XML

ARCHIVE

« I.N.A. »

a domain

USER

INSTITUTION

Role is

Role is

Role is

System
Primitive IU

named
UNDEFINED

Figure 6. Annotations and Viewpoints.

5.2 Interest Group Driven Annotations
Suppose now that the user belongs to some specific interest
group, say she is an ethnologist, and that she wishes to annotate
the video as a member of this interest group. The role of
annotations created on the behalf on a given group is called the
viewpoint of this group. Viewpoint IUs form a specialization of
annotation IUs. This hierarchy is depicted by the relative link, see
figure 6.
A viewpoint IU represents an interest group as an
ANNOTATION role. When a user indicates in the environment
that he is authoring on behalf of some interest group, the
annotation service assigns the group viewpoint IU to the virtual
annotation role of the explorer service. In this way, when the user
creates an annotation the actual role of the created annotation IU
is the VIEWPOINT representing the interest group. Since any
annotation made on behalf of this group has the same viewpoint
as its annotation role, the editor dynamically chosen by the
functional core for creating or opening these annotations is
selected according to this viewpoint. Declaring such properties
enables an interest group to set and enforce its own rules and the
services to be used in this context. The templates for annotating,
the associated ontology and the like can be constrained to
conform to group standards.

5.3 Managing Viewpoints
A viewpoint is an IU like any other, and thus has an owner who
created it and has sole responsibility for editing it. The owner acts
as the moderator of the user group associated with the viewpoint
in question, and can set the rules for indexing. The owner of the
viewpoint gains access to the viewpoint editor service. The
viewpoint contents, as an annotation role IU, depicts the
semantics of the viewpoint and its associated tools and data.
Suppose now that the moderator wishes to use the default XML
editor registered for annotations, but with a specific indexing

template. In this case, the moderator just has to edit the XML
schema of the indexing template which has the viewpoint relative.
Conversely, if the moderator prefers to use a specific editor
instead of the default XML editor, she just has to adjust the
desired editor to make it register for this viewpoint role.

5.4 Multi Viewpoint Search Service
One of the originality features of OPALES is the ability to
organize annotations into viewpoints and thereby to offer a multi
viewpoint search service. People who search in television
archives using OPALES can mix points of view within a
compound query. For instance one search a document about
China, say, using some criteria from a historical viewpoint, and
some other criteria from a medical viewpoint. Each viewpoint is
freely and independently managed by its own moderator.
Typically, the multi viewpoint search service is a dynamically
compound service, since each part of the query is expressed using
the specific editor associated with the selected viewpoint and with
the associated ontology. Selecting a viewpoint in this multi
viewpoint search service causes the functional core to
dynamically load the relevant query editor along with its context.
The compound service task is to combine appropriately the
elementary results produced by the specific tools. Adding a new
viewpoint does not imply any change in the multi viewpoint
search service, since the mapping of tools to data is done
dynamically by the functional core in accordance with the IUHM
structure.

6. CONCLUSION AND RELATED WORK
In this section, we summarize the main contributions made by
IUHM to the issues of openness, interoperability and reflexivity
for providing multiple open service integration for digital
libraries. We discuss these contributions in relation to other
published work. We conclude with some future directions for our
own research.

6.1 Summary
IUHM draws its inspiration from hypertext structures but is not
by itself a hypermedia model. It is rather a system integration
model based on hypertext structures. The IUHM framework
provides generic means to interpret IUHM compliant hypertext
structures. The main contributions of the IUHM framework are as
follows:

• The reflexivity of the IUHM model provides a generic and
homogeneous manipulation scheme by encapsulating any
system entity, data as well as services, using a single
mechanism, the Information Unit.

• The distinction between the type link and the role link
permits the separation of structural concerns from semantic
concerns.

• The functional core offers a generic execution mechanism as
a minimum run time layer for interpreting the IUHM
network according to user navigation, thus providing
interoperability and openness.

• IUHM provides structural rules to manage an executable
specification. The functional core of the run-time layer
provides tools and mechanisms to handle such a
specification, but neither IUHM nor the functional core
determines the semantics of how these rules will be used

The OPALES system was developed on top of the IUHM
infrastructure. Most of the OPALES client has been developed in
Java. The IU server is a set of servlets running on Apache
Tomcat, jointly with MySql. The video server, as well as the
Conceptual Graph tools and ontology management tools have
been written in C++. The java code of Opales client is about
60000 Java lines, the part of the functional kernel which
implements IUHM is about 3000 Java lines. About 120 general
purpose predefined IU are used by the functional kernel and about
80 by OPALES itself. Other IUs result from OPALES activity.
We have also illustrated in the article, the usefulness of the IUHM
mechanisms to model and implement asynchronous and implicit
collaboration services in OPALES. OPALES is currently in
experimental use on several video archive corpus. We are able to
test and evaluate different metadata services and research
services, as well as the collaboration service at La Maison des
Sciences de l’Homme (MSH) in Paris.

6.2 Discussion
Our work may be discussed under the following headings:

6.2.1 CB-OHS architecture
The architecture of current Component-Based Hypermedia
Systems (CB-OHS) for integrating multiple services [24] pre-
supposes a hypermedia model capable of offering a common
structure model to different hypermedia domain services and
more generally to structural and other computing services with a
common semantic interpretation [7]. The architecture is organized
in three levels: the level of services is distinguished from the level
of client applications and data, and the level of backend
hypermedia storage. This separation makes it necessary to provide
standard protocols to manage interoperability of access to services
or between services and the backend storage [23]. It appears
difficult to use a third party application as a secondary tool
associated to a service, say a third party editor application with a
metadata service to produce metadata. Furthermore cooperation
among services requires a common semantic interpretation by
such services of the generalized hypermedia model. FOHM [8].
was designed with this aim, but the approach used in IUHM and
OPALES is different. Our approach to the problem of
interoperability at any service level resembles the approach in
[22] for high-level specification of services. IUHM accepts
heterogeneity and provides a common encapsulation mechanism,
the IU, together with a common execution scheme. Furthermore,
the IUHM model does not impose a particular operational
semantics for services; such semantics may be defined by the
services themselves. The reflexivity of the IUHM model provides
a powerful means for composing services, which, together with
the generic execution mechanism of the functional core, provides
openness for the addition of an arbitrary new service and new
usage policy. The need to introduce a common execution service
is referred too in [18]. In contrast to the approach of [20],
OPALES does not need to distinguish between horizontal (intra
layer) and vertical (interlayer) interoperability of services or to
consider common semantics of abstraction translation To resolve
these issues, OPALES uses encapsulation, and distinguishes
structural interoperability and semantic interoperability by means
of the distinction between types and roles.
Discussion of openness of services in the OPALES infrastructure,
in the precise sense of [20] is beyond the scope of this paper.

6.2.2 Programming in the large
The description of component-based architecture is presently a
hot topic in software engineering.
At first sight, it may appear that the IUHM architecture we have
described has much in common with the object-oriented
approach. While there is some degree of similarity, the
differences between these two approaches are of far greater
significance. Both IUHM and the object-oriented approach
support late binding. However, in the case of an object-oriented
language such as Java, such binding is restricted to Java objects in
persistent storage, whereas in the IUHM model, such binding may
be applied to any type of object. This generality is, of course,
exactly what we mean by openness, and is at the heart of what we
have set out to do. It is precisely to provide such openness that
IUHM has the notion of a separate descriptor and expresses
thereby the relationships between data and services in terms of a
hypertext network, and in this regard, IUHM supports functional,
declarative programming. In contrast to the object-oriented
approach, IUHM provides dynamic assignment of data to services
at the level of programming in the large and supports persistent
storage of contents without constraints on their actual data
structure.

6.2.3 Hypertext models
IUHM is not a new hypertext model, and does not set out to be
sufficiently powerful to express any hypertext domain. Rather
IUHM provides an integrating structure based on a hypertext
navigational paradigm in order to specify functional policy of
interconnected data and services outside of these data or services.
In comparison to FOHM [8], IUHM offers mechanisms to control
the data as well as service border [9].

6.2.4 Annotation
Annotea [6] shares with OPALES the philosophy of defining a
simple model for integrating any type of annotation. However,
Annotea does not permit specification of the dynamic integration
of possibly associated services: Separate applications are in
charge of interpreting Annotea compliant annotation structures.

6.2.5 Web services
Web services [25] is a new philosophy of the Web to offer
reusable services which must be registered, in a similar fashion to
OPALES, thus offering service invocation mechanisms. In
contrast to OPALES, applications are fully responsible for the
definition of accessed services. There is no means of functionally
defining access control.

6.3 Future Work
The success of integrating various services in OPALES suggests
that our approach is promising. We intend to work on larger scale
experimentation of service modelling in terms of IUHM and to
consider how patterns for designing services might emerge.

7. ACKNOWLEDGMENTS
This work has been possible owing to the OPALES consortium
under a PRIAMM grant from the French Ministry of Industry. We
especially thank the INA and MSH teams. The work of Dr. King
is supported by a research grant from the Natural Sciences and
Engineering Research Council of Canada.

8. REFERENCES
[1] Anderson, K.M., Och, C., King, R., Osborne, R.M.

Integrating Infrastructure: enabling large-scale client
integration, Proc. ACM Conf. Hypertext’2000, ACM
Press (2000), 57-66.

[2] Davis, H.C., Knight, S., Hall, W. Light hypermedia
link services, a study of third party application
integration, Proc. ECHT’94, ACM Press, 1994, 41-50.

[3] Earley, J. Towards an understanding of data structures,
CACM, vol. 4, n° 10, Oct. 1971, 617–627.

[4] Gr∅ nbak, K. & Trigg, R. From Web to workplace:
designing Open Hypermedia Systems, MIT Press,
1999.

[5] Halasz, F. & Schwartz, M. The Dexter hypertext
reference model , NIST Hypertext Standardisation
Workshop, Gaithersburg, 1990, also in CACM, Vol. 37
(2), (version without specification in Z), 1994, 30-39.

[6] Kahan, J., Koivunen, M.R., Prud’Hommeaux, E., &
Swick R.R. Annotea: An Open RDF Infrastructure for
Shared Web Annotations, in Proc. of the WWW10 Int.
Conference, Hong Kong, (2001).

[7] Millard, D.E., Davis, H.C. Navigating spaces: the
semantics of cross domain interoperability, Proc. 2nd
Int. Workshop on Structural Computing, Springer-
Verlag, LNCS 1903, 2000.

[8] Millard, D.E., Moreau, L., Davis, H.C., & Reich, S.
FOHM: a fundamental open hypertext model for
investigating interoperability between hypertext
domains, Proc. Hypertext’2000, ACM Press, 2000, 93-
102.

[9] Millard, D.E. Discussions at the data border: from
generalized hypertext to structural computing, Journal
of Network and Computer Application, Special issue
on Structural Computing, Jan. 2003.

[10] Nanard M., Nanard J. Cumulating and Sharing End-
Users Knowledge to Improve Video Indexing in a
Video Digital Library, ACM / IEEE Joint Conf. on
Digital Libraries, ACM Press, 2001.

[11] Nanard, J., & Nanard, M. Using types to incorporate
knowledge in hypertext, Proc. ACM Conf.
Hypertext’91, ACM Press, 1991.

[12] Nelson, H. The heart of connection: hypermedia
unified by transclusion, CACM, Vol. 38, n°8, 1995,
31-33.

[13] Nürnberg, P.J., Leggett, J.J., & Schneider, E.R. As we
should have thought, Proc. ACM Conf. Hypertext’97,
ACM Press, 1997, 96-101.

[14] Nürnberg, P.J., Leggett, J.J., & Wiil, U.K. An agenda
for open hypermedia research, Proc. ACM. Conf.
Hypertext’98, ACM Press, 1998, 198-206.

[15] Osterbye, K., Wiil, U.K. The flag taxonomy of open
hypermedia systems, Proc. ACM Conf. Hypertext’96,
ACM Press, 1996, 129-139.

[16] Reich, S., Wiil, U.K., Nürnberg, P.J., Davis, H.C.,
Gronbæk, K., Anderson, K.M., Millard, D.E., &
Haake, J.M. Addressing interoperability in open
hypermedia: the design of the open hypermedia
protocol, The New Review of Hypermedia and
Multimedia, 1999, 207-248.

[17] Ross, D. T. Uniform Referents: An Essential Property for
a Software Engineering Language, in J. T. Tou, ed.,
Software Engineering, Academic Press, 1970.

[18] Rubart, J., Wang, W., & Haake, J.M. Arguments for
open execution services.

[19] Wiil, U.K., Osterbye, K. Using the Flag taxonomy to
study hypermedia systems interoperability, in Proc.
Hypertext’98, ACM Press, 1998, 188-197.

[20] Wiil, U.K., Hicks, D.L., & Nürnberg, P.J: Multiple
open services: a new approach to service provision in
open hypermedia systems, Proc. Hypertext’2001,
ACM Press, 2001, 83-92:

[21] Wiil, U.K., Nürnberg, P.J. Evolving hypermedia
middleware services: lessons and observations, Proc.
ACM Symposium on Applied Computing, (SAC’99),
ACM Press, 1999, 427-436.

[22] Wiil, U.K. Development Tools in Component-Based
Structural Computing Environments, OHS7 workshop,

[23] Wiil, U.K. Toward a proposal for a standard
component-based open hypermedia system storage
interface, Proc. OHS6 and SC2, LNCS 1903, Springer
Verlag, 2000.

[24] Wiil, U.K., Nürnberg, P.J., Hicks, D.L., Reich, S. A
development environment for building component-
based open hypermedia systems, Proc. ACM Conf.
Hypertext’2000, ACM Press.

[25] W3C, Web services, http://www.w3.org/2002/ws/

	INTRODUCTION
	CONTEXT AND REQUIREMENTS
	Openness
	Interoperability
	Reflexivity
	2.4. The IUHM approach

	THE INFORMATION UNIT HYPERMEDIA MODEL
	Information Units
	Types and Roles
	Primitive Information Units

	Types and IU Content Manipulation
	Managing IU Ownership
	Roles and Objects
	The relative Relationship

	ARCHITECTURE AND DYNAMIC ASPECTS
	Open Services
	Overall Architecture
	Mapping Services to Data
	Generic Service Invocation
	Service Composition
	Service Downloading
	Open Service Architecture

	MODELING NEW SERVICES – AN EXAMPLE
	Basic Annotation Mechanism
	Interest Group Driven Annotations
	Managing Viewpoints
	Multi Viewpoint Search Service

	CONCLUSION AND RELATED WORK
	Summary
	Discussion
	CB-OHS architecture
	Programming in the large
	Hypertext models
	Annotation
	Web services

	Future Work

	ACKNOWLEDGMENTS
	REFERENCES

