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A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies
by Maximum Likelihood
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LIRMM, CNRS, 161 Rue Ada, 34392, Montpellier Cedex 5, France; E-mail: gascuel@lirmm.fr (O.G.)

Abstract.—The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models
necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximum-
likelihood principle, which clearly satisfies these requirements. The core of this method is a simple hill-climbing algorithm
that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast
distance-based method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment
of the topology and branch lengths, only a few iterations are sufficient to reach an optimum. We used extensive and realistic
computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing
maximum-likelihood programs and much higher than the performance of distance-based and parsimony approaches. The
reduction of computing time is dramatic in comparison with other maximum-likelihood packages, while the likelihood
maximization ability tends to be higher. For example, only 12 min were required on a standard personal computer to analyze
a data set consisting of 500 rbcL sequences with 1,428 base pairs from plant plastids, thus reaching a speed of the same order as
some popular distance-based and parsimony algorithms. This new method is implemented in the PHYML program, which
is freely available on our web page: http://www.lirmm.fr/w3ifa/MAAS/. [Algorithm; computer simulations; maximum
likelihood; phylogeny; rbcL; RDPII project.]

The size of homologous sequence data sets has in-
creased dramatically in recent years, and many of these
data sets now involve several hundreds of taxa. More-
over, current probabilistic sequence evolution models
(Swofford et al., 1996; Page and Holmes, 1998), notably
those including rate variation among sites (Uzzell and
Corbin, 1971; Jin and Nei, 1990; Yang, 1996), require an
increasing number of calculations. Therefore, the speed
of phylogeny reconstruction methods is becoming a sig-
nificant requirement and good compromises between
speed and accuracy must be found.

The maximum likelihood (ML) approach is especially
accurate for building molecular phylogenies. Felsenstein
(1981) brought this framework to nucleotide-based phy-
logenetic inference, and it was later also applied to
amino acid sequences (Kishino et al., 1990). Several vari-
ants were proposed, most notably the Bayesian meth-
ods (Rannala and Yang 1996; and see below), and the
discrete Fourier analysis of Hendy et al. (1994), for ex-
ample. Numerous computer studies (Huelsenbeck and
Hillis, 1993; Kuhner and Felsenstein, 1994; Huelsenbeck,
1995; Rosenberg and Kumar, 2001; Ranwez and Gascuel,
2002) have shown that ML programs can recover the cor-
rect tree from simulated data sets more frequently than
other methods can. Another important advantage of the
ML approach is the ability to compare different trees
and evolutionary models within a statistical framework
(see Whelan et al., 2001, for a review). However, like all
optimality criterion–based phylogenetic reconstruction
approaches, ML is hampered by computational difficul-
ties, making it impossible to obtain the optimal tree with
certainty from even moderate data sets (Swofford et al.,
1996). Therefore, all practical methods rely on heuristics
that obtain near-optimal trees in reasonable computing
time. Moreover, the computation problem is especially

difficult with ML, because the tree likelihood not only
depends on the tree topology but also on numerical pa-
rameters, including branch lengths. Even computing the
optimal values of these parameters on a single tree is
not an easy task, particularly because of possible local
optima (Chor et al., 2000).

The usual heuristic method, implemented in the pop-
ular PHYLIP (Felsenstein, 1993 ) and PAUP∗ (Swofford,
1999 ) packages, is based on hill climbing. It combines
stepwise insertion of taxa in a growing tree and topolog-
ical rearrangement. For each possible insertion position
and rearrangement, the branch lengths of the resulting
tree are optimized and the tree likelihood is computed.
When the rearrangement improves the current tree or
when the position insertion is the best among all pos-
sible positions, the corresponding tree becomes the new
current tree. Simple rearrangements are used during tree
growing, namely “nearest neighbor interchanges” (see
below), while more intense rearrangements can be used
once all taxa have been inserted. The procedure stops
when no rearrangement improves the current best tree.
Despite significant decreases in computing times, no-
tably in fastDNAml (Olsen et al., 1994 ), this heuristic
becomes impracticable with several hundreds of taxa.
This is mainly due to the two-level strategy, which sepa-
rates branch lengths and tree topology optimization. In-
deed, most calculations are done to optimize the branch
lengths and evaluate the likelihood of trees that are
finally rejected.

New methods have thus been proposed. Strimmer and
von Haeseler (1996) and others have assembled four-
taxon (quartet) trees inferred by ML, in order to recon-
struct a complete tree. However, the results of this ap-
proach have not been very satisfactory to date (Ranwez
and Gascuel, 2001 ). Ota and Li (2000, 2001) described
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NJML, an algorithm that is a the continuation of that
of Adachi and Hasegawa (1996), combining neighbor
joining (NJ) and ML. NJML first builds a tree by the
fast distance-based NJ algorithm (Saitou and Nei, 1987);
the unreliable branches of this initial tree are then de-
tected using the bootstrap procedure (Felsenstein, 1985)
and resolved by computing the branch lengths and the
likelihood of alternative resolutions. In this way, NJML
avoids spending time on the well-supported parts the
tree. Ranwez and Gascuel (2002) proposed another com-
bination of distance-based and ML approaches, with the
computation speed of the former and topological ac-
curacy midway between both. This method relies on
triplets of taxa, sharing a divide-and-conquer strategy
with the quartet approach.

Stochastic optimization is another attractive strat-
egy. Markov chain Monte Carlo (MCMC) algorithms
are widely used by Bayesian methods (Li, 1996; Mau,
1996; Rannala and Yang, 1996; Simon and Larget, 2000;
Huelsenbeck and Ronquist, 2001). This approach has
several advantages. It generates a number of trees (in-
stead of a single one) and allows estimation of their
posterior probabilities, as well as that of various (e.g.,
clade) hypotheses. Moreover, these posteriors are based
on the integrated likelihood, i.e., the likelihood aver-
aged over branch lengths and model parameters val-
ues. In this way, Bayesian approaches take into account
sources of uncertainty due to numerical values that the
standard ML methods do not. Salter and Pearl (2001)
described a simulated annealing algorithm that is sub-
stantially faster than DNAML (Felsenstein, 1993 ) and
PAUP∗. This algorithm simultaneously perturbs branch
lengths and tree topology and then accelerates the com-
putations in comparison with standard hill climbing. The
genetic algorithms recently proposed by Lewis (1998)
and Lemmon and Milinkovitch (2002) are specially ef-
ficient. These algorithms navigate in the tree space, ran-
domly perturbing a population of trees by modifying
their branch lengths and topology, combining these trees
to obtain better trees, and selecting the best trees until
an optimum is reached. In this way, large phylogenies
containing hundreds of taxa are obtained in few hours
on a standard computer (Lemmon and Milinkovitch,
2002 ). Moreover, due to the fact that these approaches
build a number of trees, they permit approximation
of the posterior probabilities of trees or clades. Finally,
an efficient parallel implementation of the genetic opti-
mization approach has been described by Brauer et al.
(2002).

The hill-climbing principle is usually considered faster
than stochastic optimization and sufficient for numer-
ous combinatorial optimization problems (Aarts and
Lenstra, 1997), particularly when the function to be op-
timized is a simplification of the overall reality of the
problem at hand. This is clearly the case with phy-
logenetic reconstruction because we do not know the
real substitution process that occurred. Moreover, de-
spite the ever increasing size of databases, the length
of sequences used to build phylogenies is not limitless.
Sampling variations in the likelihood are inevitable, even

when the chosen evolutionary model fits the sequences
well.

Here, we present a new, simple hill-climbing algo-
rithm that avoids the limits of the previous ones. The
tree topology and branch lengths of a unique tree are
simultaneously and progressively modified so that the
tree likelihood increases at each step until an optimum
is reached. During this process, we can also adjust the
model parameters, such as the transition/transversion
ratio or the gamma shape parameter accounting for rate
variation among sites. This algorithm is implemented in
the PHYML package, which is faster than other exist-
ing ML programs, including MetaPIGA (Lemmon and
Milinkovitch, 2002). Here, we present this algorithm and
then compare PHYML with other packages using exten-
sive computer simulations and two large data sets com-
prising 218 and 500 taxa. It is shown that PHYML is at
least equivalent to other ML programs, both in terms of
topological accuracy and likelihood maximization, while
having a speed similar to that of some popular distance-
based and parsimony methods. Such a speed not only
makes possible the inference of very large trees, but also
greatly facilitates the building of multiple trees in boot-
strap analysis.

METHOD AND ALGORITHMS

The principle is to start from an initial tree constructed
by a fast distance-based algorithm and to improve it. We
first present how every branch can be adjusted indepen-
dently of the other branches, to maximize tree likelihood.
We then show how this process extends to tree swapping,
without much more computation. Branch-length opti-
mization and tree swapping define possible modifica-
tions of the current tree, and we explain how these mod-
ifications are selected and combined. Finally, we present
the whole method, including model parameter optimiza-
tion. For the sake of simplicity, the method is described
for nucleotide sequences, but it can also be applied to
proteins.

Branch-Length Optimization

Let e be the branch under consideration and l its cur-
rent length. U and V are the subtrees at the two extrem-
ities of e, with roots u and v (Fig. 1a). We assume that
these subtrees are fixed. We then define the conditional
likelihood L(i = h|U) as the probability of observing the
data at site i at the tips of U, given that node u has nu-
cleotide h. When U is reduced to taxon u, L(i = h|U) is
equal to 1 if site i of taxon u has nucleotide h, and 0 other-
wise. L(i = h|V) has the same meaning when V (and v)
replaces U (and u). We also assume, as usual, that the se-
quence substitution model is homogeneous, stationary,
and time reversible. The a priori probability of nucleotide
h is then denoted as πh , and Phh′ (l) is the probability for
the nucleotide h to become h′ in interval l. With this no-
tation, and assuming that all sites independently evolve
at the same rate, the likelihood of the whole tree is equal
to the product of the site likelihoods and may be written
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FIGURE 1. The three alternative topological configurations around an internal branch. W, X, Y, and Z are four subtrees, and lw , lx , ly, and lz

are the lengths of the four branches connected to the roots of W, X, Y, and Z, respectively. These lengths are the same in the three topological
configurations. U and V are the subtrees on the left and right, respectively, of the internal branch, and la , lb , and lc are the internal branch lengths
that maximize the likelihoods of the corresponding phylogenies.

(Adachi and Hasegawa, 1996) as

L =
∏

i

∑
h,h′∈{A,C,G,T}

πh L(i = h | U)L(i = h′ | V)Phh′ (l).

(1)

This equation is easily adapted to incorporate site-to-
site variation using a discrete rate (e.g., gamma) distri-
bution. The full likelihood of a given site is then ob-
tained by summing over rate categories the likelihoods
of the site according to each rate weighted by the prob-
ability that the site is drawn from each category (Yang,
1994 ). Equation 1 applies to both internal and external
branches. In the latter case, either U or V is reduced to
a single extant taxon. When the conditional likelihoods
L(i = h|U) and L(i = h|V) are known for every site, com-
putation of Equation 1 is fast and requires O(s) time,
where s denotes the sequence length, i.e., a time propor-
tional to s.

Because U and V are fixed, likelihood L in Equation 1
only depends on l, and we adjust l by maximizing L .
This optimization of one parameter function is achieved
using Brent’s (1973) method. This very simple method
does not require function derivatives and in our experi-
ments the computational speed was similar to that of the
Newton–Raphson method (Olsen et al., 1994; Felsenstein
and Churchill, 1996; Yang, 2000). The optimal length of
e is denoted as la , and the tree likelihood increases when
the current length l is changed into la . We denote as La the
likelihood of tree a when e has length la , while subtrees
U and V remain identical.

Tree Swapping

Let e now be an internal edge; e then defines four
subtrees (Fig. 1). When swapping these subtrees, which
corresponds to a nearest neighbor interchange, the ini-

tial configuration a is changed into b or c (Fig. 1). Con-
sider configuration b. Subtree U now contains subtrees
W and Y, and V contains subtrees X and Z. How-
ever, we assume that W, X, Y, and Z are unchanged
from configuration a , and branch lengths lW, lX, lY, and
lZ remain the same. The conditional likelihood of U
for any given site i (Felsenstein, 1981 ) is then equal
to

L(i = h | U) =
( ∑

g∈{A,C,G,T}
L(i = g | W)Phg(lW)

)

×
( ∑

g∈{A,C,G,T}
L(i = g | Y)Phg(lY)

)
, (2)

and the conditional likelihood of V is obtained by sym-
metry from X and Z. Once the conditional likelihoods
of U and V have been computed, we adjust the length
of e by Equation 1. We thus obtain the likelihood of con-
figuration b, denoted as Lb , and lb is the corresponding
branch length of e. Lc and lc are defined and obtained in
the same way for configuration c. When the conditional
likelihoods of W, X, Y, and Z are known, the computa-
tion of Equation 2 for all sites is fast and requires O(s).
So computing Lb and Lc has essentially the same cost as
computing La .

If Lb is larger than La and Lc , then configuration b is
more likely than the two other configurations. Moreover,
the larger the gap between Lb and La , the more confident
we are in the swap from the current configuration a to
configuration b. When Lb is larger than La and Lc , we
say that e defines b as a possible swap, with score S =
Lb − La . The same holds by symmetry when Lc is larger
than La and Lb .
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Selecting and Combining These Modifications

Changing l into la or performing a possible swap in-
creases the tree likelihood. However, edges are not in-
dependent, and when simultaneously modifying two
edges with values computed as described above we can-
not be sure that the tree likelihood will increase. The stan-
dard approach is to perform one modification at a time;
after each modification, the conditional likelihoods (and
even all branch lengths in case of branch swapping) are
updated. However, this process is slow because condi-
tional likelihood (and branch length) updating is time
consuming.

Our approach involves first independently computing
all modifications, i.e., the optimal lengths of all branches
and possible swaps around all internal branches, and
then simultaneously applying “most” of these modifica-
tions to the current tree. This latter step is performed as
follows:

1. The possible swaps are ranked according to their
scores S. When two possible swaps correspond to two
adjacent branches, they have one subtree in common
and only the best swap is conserved. We then apply
a proportion λ of the remaining swaps to the current
tree, starting from the higher values of S. However,
the best possible swap is always performed, even for
very low λ value.

2. For external branches and internal branches that do
not correspond to a possible swap (or that have not
been retained in the previous selection), we change the
current branch length l into l + λ(la − l), i.e., we apply
a proportion λ of the change that has been computed
using Equation 1.

3. Having λ = 1 would simultaneously apply all possi-
ble modifications, whereas λ = 0 would leave the cur-
rent tree unchanged. We start with a high λ value but
check that the tree likelihood increases. In the (rare)
cases where the likelihood decreases, λ is divided by
2, the tree is modified accordingly, and we again check
the likelihood. If the likelihood still decreases, λ is di-
vided by 2 again, and the process is repeated until
we get a tree with higher likelihood than the current
tree. When there are possible swaps and when λ be-
comes very small, the best swap is the only one to be
selected and all branch lengths (except the new one)
remain identical, resulting in a tree that is better than
the current tree, thus ensuring convergence. When no
more possible swaps remain, only branch lengths have
to be optimized, and our algorithm becomes close to
the global Newton–Raphson algorithm described by
Felsenstein and Churchill (1996). This algorithm uses
the first and second derivatives of the log-likelihood
function, assumes that the Hessian is diagonal, and
therefore independently computes the changes for ev-
ery branch. Moreover, it uses the same λ “safeguard”
to ensure convergence and was a source of inspira-
tion when we designed our algorithm. The main dif-
ferences between both algorithms are that we use the
Brent method and then do not compute the derivatives

and, most importantly, that our algorithm not only op-
timizes the branch lengths but also the tree topology.
When only branch length optimization is concerned,
both algorithms have similar convergence guarantees
and can be trapped in local optima, which fortunately
are very sparse with real data (Rogers and Swofford,
1999).

In practice, the backward movement by dividing λ
is rare. For example, with the first 1,000 data sets in our
simulation, λ is divided by 2 only 71 times and only
when there are possible swaps; with the 218-taxon
ribosomal data set, the backward movement occurs
only once. PHYML uses 0.75 as the initial λ value and
resets λ to this value after each refinement stage. The
initial λ value is not a sensitive parameter; nearly iden-
tical trees (but different run times) are obtained with
λ in the [0.1, 1.0] range.

Whole Method

We have seen in the previous sections how the possi-
ble modifications are computed and how they are com-
bined to refine the current tree. We detail here how these
components are incorporated into the complete method,
which is described step by step.

1. A pairwise evolutionary distance matrix is computed
from the sequences, by an algorithm analogous to
DNADIST (Felsenstein, 1993 ). This step necessitates
comparing all sequence pairs and then requiresO(n2s)
time, where n is the number of taxa.

2. An initial tree is built from this matrix, using BIONJ
(Gascuel, 1997). Tests with other distance-based meth-
ods led to identical results, so the main criterion at this
step is computational speed. BIONJ is just as fast as NJ
but is slightly more accurate and requires O(n3) time.

3. The conditional likelihoods L(i = h|U) are computed
for all sites and every subtree U, as well as the like-
lihood of the whole tree, using Equations 1 and 2,
respectively. These computations are achieved using
an algorithm similar to that of Adachi and Hasegawa
(1996), which requires O(ns) time.

4. The values of the free parameters of the substitution
model (i.e., the transition/transversion ratio(s) and
the gamma shape parameter measuring the variabil-
ity of substitution rates among sites) are adjusted to
increase the likelihood of the starting phylogeny. This
adjustment is achieved independently for each param-
eter using the golden section numerical optimization
method (Press et al., 1988 ). The parameter estimates
so obtained are dependent on the starting tree. How-
ever, this dependency is slight (Yang, 1996). Moreover,
the free parameters are periodically reestimated dur-
ing the refinement process (every four stages in the
current version of PHYML).

5. The current tree is iteratively refined until conver-
gence, as described in the previous section. Each re-
finement stage involves (a) computing the possible
modifications of every branch, (b) applying a λ pro-
portion of these modifications to the current tree, and
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(c) checking that the tree likelihood increases and, if
necessary, returning to step b with a lower λ value.
Step a requires O(s) time per branch and then O(ns)
for the whole tree. Step b is fast, basically in O(n).
Step c performs likelihood computations as described
for step 3, i.e., requiring O(ns) time. Moreover, after
step c all conditional likelihoods have been updated,
and then a new refinement stage can start.

6. Tree refinement stops when there are no more possible
swaps and when the branch lengths are stable. The
current tree is then returned.

The time complexity of model parameter, topology,
and branch length optimization (steps 3–6) is then
O(pns), where p basically represents the number of re-
finement stages that have been performed. Even when
this analysis does not clarify some (bounded but signifi-
cant) parameters, e.g., the number of iterations required
by the Brent method to optimize branch lengths, it re-
veals why our method is so fast. With the 218-taxon
data set, p is equal to only 15, and in practice p is al-
ways much smaller than n (see Table 1). This explains
why our O(pns) ML optimization has computing time in
the same range as distance methods such as NJ, BIONJ,
and Weighbor, which requireO(n2s + n3) time, including
distance estimation.

RESULTS

Computer Simulations

We generated 5,000 random phylogenies, each com-
prising 40 taxa, using the standard speciation process
described by Kuhner and Felsenstein (1994). This pro-
cess makes the trees molecular clock-like, so we created
a deviation from this model by multiplying every branch
length by (1 + X), where X followed an exponential dis-
tribution with expectation µ. The µ value represents the
extent of deviation and was identical within each tree but
different from tree to tree and equal to 0.2/(0.001 + U),
where U was uniformly drawn from [0, 1]. The smaller
the U, the larger the µ and the larger the deviation from
the molecular clock. Tree length was rescaled by multi-
plying every branch length by (0.4 + 8.6V)/T , where T
is the total tree length and V was identical within each
tree but different from tree to tree and uniform in [0, 1].
This scaling made the tree length uniformly distributed
in the [0.4, 9.0] range.

Phylogenies generated in this way have a broad vari-
ety of deviations from the molecular clock and various
evolutionary rates. The branch length mean is equal to
0.06 substitutions/site, with the 5%, 25%, 50%, 75%, and
95% quantiles about equal to 0.0015, 0.01, 0.03, 0.07, and
0.20, respectively. The ratio of the length of the longest
to the length of the shortest lineages measures the devia-
tion from the molecular clock, with the perfect molecular
clock having a ratio of 1. The mean of this ratio, among the
5,000 phylogenies, is equal to 3.4, with the 5%, 25%, 50%,
75%, and 95% quantiles about equal to 1.3, 2.3, 3.2, 4.2,
and 6.4, respectively. These values come from an analy-
sis of substitution rates in various organisms (Page and

Holmes, 1998) and of numerous recently published phy-
logenies; they should then cover the features of almost
all real data sets, even when the extreme values, notably
the highest divergence rates, are likely rare.

Sequences 500 base pairs (bp) in length were generated
from these phylogenies using Seq-Gen (Rambaut and
Grassly, 1997 ) under the Kimura two-parameter (K2P)
model (Kimura, 1980 ), with a transition/transversion
ratio of 2.0. The 5,000 data sets (phylogenies and se-
quences) obtained in this way are available on our web
page.

These 5,000 data sets were generated without rate
heterogeneity across sites, even when this is clearly an
important parameter for accurate phylogeny estimation
from most sequence sets. Indeed, the ML programs we
tested (see below) deal with rate heterogeneity in a dif-
ferent way or simply do not take this parameter into
account, which makes comparison impossible. In fact,
PAUP∗ is the only program using the same discrete
gamma distribution (Yang, 1994) as PHYML. To compare
these two programs in this setting and to check the prop-
erties of PHYML, we then generated 1,000 other data
sets from the first 1,000 trees, with the same sequence
length and Kimura model, plus a four-category discrete
gamma distribution of parameter 1.0, which corresponds
to moderate heterogeneity (Yang, 1996).

Topological Accuracy

Using these data sets, we compared PHYML with nu-
merous other packages: NJ, Weighbor 1.2 (Bruno et al.,
2000 ), DNAPARS 3.5 (Felsenstein, 1993 ), NJML+ (Ota
and Li, 2001 ), fastDNAml (Olsen et al., 1994 ), PAUP∗
4.0beta (Swofford, 1999), and MrBayes 2.01 (Huelsenbeck
and Ronquist, 2001 ). NJ and Weighbor are distance-
based methods and were combined with DNADIST
3.6 (Felsenstein, 1993 ), DNAPARS uses the parsimony
principle, and the other programs implement ML ap-
proaches. We did not test MetaPIGA (Lemmon and
Milinkovitch, 2002 ) at this stage because no batch ver-
sion allowing for multiple data sets was available. More-
over, for computing time reasons, PAUP∗ and MrBayes
were only run on the first 1,000 of the 5,000 data sets, and
only nearest neighbor interchanges were used in PAUP∗.
MrBayes was run with a random starting tree, 30,000 gen-
erations, a sampling frequency of 10, and the resulting
consensus phylogeny was built from the last 1,500 trees.
The options for NJML were bootstrap threshold = 90%
and composite mode for likelihood computation. Other
packages were used with default options, supplying the
simulation settings (e.g., the sequence length or the tran-
sition/transversion ratio) when required.

The topological accuracy of these various methods was
measured on the 5,000 data sets (without rate heterogene-
ity) by the standard Robinson and Foulds (1979) distance
between the inferred tree and the true tree. This dis-
tance corresponds to the proportion of internal branches
that are found in one tree and not in the other one. Its
value ranges from 0.0 (both topologies are identical) to
1.0 (they do not share any branch in common). The value
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FIGURE 2. Topological accuracies of various tree building methods as a function of the divergence between sequences. N = NJ; W = Weighbor,
L = NJML; D = DNAPARS; F = fastDNAml; P = PHYML. BIONJ (used to build the starting tree in PHYML) is midway between NJ and Weighbor.

of this distance was plotted against the maximum pair-
wise divergence in the data set under consideration, with
the (uncorrected) divergence between two sequences be-
ing simply the proportion of sites where both sequences
differ. The results are displayed in Figure 2, where the
5,000 original points corresponding to each method are
smoothed by averaging over a sliding window of length
1,000.

These results are in accordance with expectations and
with previously published simulations (Huelsenbeck
and Hillis, 1993; Kuhner and Felsenstein, 1994;
Huelsenbeck, 1995; Rosenberg and Kumar, 2001; Ranwez
and Gascuel, 2002). When the divergence rate is low,
phylogeny reconstruction is hard because there is not
enough information in the data to estimate the short in-
ternal edges. With a high divergence rate, saturation cor-
rupts the phylogenetic signal and reconstruction is again

hard. This explains why all methods perform better with
medium divergence rates. The best region for parsimony
corresponds to low rates, as expected since it assumes
that multiple substitutions are rare, while distance-based
methods (which account for multiple substitutions) tend
to perform better than parsimony when substitution
rates are high. The performance of NJML, which com-
bines distance-based and ML approaches, is midway
between both. However, the best approach is clearly
ML. Both fastDNAml and PHYML outperform all other
methods, and PHYML even tends to improve fastD-
NAml with high substitution rates. Indeed, PHYML and
fastDNAml are very close concerning likelihood op-
timization, except with high substitution rates, where
PHYML is slightly better (results not shown). Moreover,
for about 95% of the data sets, both programs infer trees
with likelihoods identical to or higher than the likelihood
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of the true tree, which indicates that there is little room
for accuracy improvement by further optimizing the tree
likelihood. This indication is confirmed by the average
accuracy of the various ML programs on the first 1,000
data sets, i.e., 0.086, 0.086, 0.081, and 0.081 for PAUP∗,
fastDNAml, MrBayes and PHYML, respectively. So we
do not expect to achieve major improvements on these
data sets by any ML method, including MetaPIGA.

For the 1,000 data sets incorporating rate heterogene-
ity, both PHYML and PAUP∗ were given the true value
(1.0) of the gamma distribution parameter. Adjusting this
parameter in PAUP∗ was (too) time consuming: about
1 hr 25 min for a single data set, instead of 4 min with-
out adjustment, and 43 sec for PHYML including adjust-
ment. Results confirm above findings: PHYML is slightly
more accurate than PAUP∗; their average topological ac-
curacies are 0.101 and 0.105, respectively.

Computing Times and Likelihood Optimization

We compared the computing time of the various
methods using 30 data sets comprising 40 taxa and
30 data sets with 100 taxa, both sets being generated
as described above (available on our web page). We
also used two large real data sets. The first set con-
tains 218 prokaryotic sequences with 4,182 bp from the
small ribosomal subunit and was downloaded from
the RDPII project web page (http://rdp.cme.msu.edu/
download/SSU rRNA/alignments). The second set in-
cludes 500 rbcL sequences with 1,428 bp from plant
plastids and was obtained from http://www.cis.
upenn.edu/∼krice/treezilla/record.nex.

The computing time was measured on a PC
Pentium IV 1.8 GHz (1 Go RAM) running with Linux.
Basically, all methods were run as described above,
while MetaPIGA was run by hand using one run and
four metapopulations, which is the default option to
build a single tree. To approximate posterior probabil-
ities, Lemmon and Milinkovitch (2002) used 10 runs and
10 metapopulations, which makes running times much
longer than those reported here. The speed of PHYML is
partly explained by the fact that it starts with a reason-
ably good distance-based tree. Therefore, we also tested
PAUP∗ and MetaPIGA using the option they give of start-

TABLE 1. Average run times for various methods. The computing times were measured on a 1.8-GHz (1 Go RAM) PC with Linux. For PHYML,
the number in parentheses is the average number of refinement stages.

Simulations Real data

Method 40 taxa (500 bp) 100 taxa (500 bp) 218 taxa (4,182 bp) 500 taxa (1,428 bp)

DNADIST+ NJ/BIONJ 0.3 sec 2.3 sec 50 sec 2 min, 19 sec
DNADIST+ Weighbor 1.5 sec 22 sec 4 min, 52 sec 58 min, 40 sec
DNAPARS 0.5 sec 6 sec 4 min, 4 sec 13 min, 12 sec
PAUP∗ 3 min, 21 sec 1 hr, 4 min
PAUP∗+ NJ 1 min, 10 sec 22 min 10 hr, 50 min
MrBayes 2 min, 6 sec 32 min, 37 sec
fastDNAml 1 min, 13 sec 26 min, 31 sec
NJML 15 sec 6 min, 4 sec
MetaPIGA 21 sec 3 min, 27 sec 4 hr, 45 min 9 hr, 4 min
MetaPIGA+ NJ 6 sec 23 sec 1 hr, 40 min 3 hr
PHYML 2.7 sec (6.4) 12 sec (8.3) 8 min, 13 sec (15) 11 min, 59 sec (13)

ing from the NJ tree, denoted here as PAUP∗+NJ and
MetaPIGA+NJ. In principle, the same approach can be
used to accelerate MCMC approaches, but we observed
that it does not fit well with MrBayes, providing no
significant gain in convergence time. Moreover, starting
with random trees is the recommended strategy for eval-
uating convergence of MCMCs and then obtaining re-
liable estimation of posterior probabilities. FastDNAml
and PAUP∗ were not run with the two larger data sets
because even the 218-taxon set required more than 2 days
of computations. PAUP∗+NJ did not output any tree
on the 500-taxon set for numerical reasons. With the
two larger data sets, we were not able to obtain any
result with NJML, seemingly for memory size reasons,
while MrBayes was stopped after 1,000,000 generations
without having reached stable likelihood values. With
the 100-taxon data sets, MrBayes was run with 200,000
generations and a consensus tree was built from the
last 10,000 trees. These parameters were chosen to con-
verge on stable likelihood values, but we did not ex-
plore a large range of settings, first preferring compu-
tation speed. In fact, this criterion was used for MrBayes
and for the other packages. So it is likely that other rel-
evant speed/performance compromises could be found
for any of these programs, and our results must there-
fore not be overinterpreted. Finally, the results (comput-
ing time, likelihood, inferred tree) of stochastic meth-
ods vary from one run to another, and the choice of
Linux/Windows also has an influence. MetaPIGA (writ-
ten in JAVA) is twice faster with Windows as with
Linux, while the speed of other programs remains nearly
identical.

The results are displayed in Table 1. PHYML is faster
than all other ML programs. For example, with 100
taxa PHYML requires 12 sec and fastDNAml requires
about 25 min. With 500 taxa, PHYML requires only
about 12 min and MetaPIGA requires more than 9 hr.
MetaPIGA+NJ is remarkably fast as well, being basi-
cally equivalent to PHYML with 40 and 100 taxa but
still requiring 3 hr for 500 taxa. PAUP∗+NJ is also much
faster than PAUP∗, which indicates that starting from a
distance-based tree, as with PHYML, makes a signif-
icant difference with respect to computing time (see
also results below concerning likelihood optimization).
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Finally, it appears from Table 1 that the computing time
of PHYML is in the same range as that of NJ, Weighbor,
and DNAPARS (Table 1).

We also checked that the speed of PHYML is not offset
by lower performance in optimizing the tree likelihood.
For a fair comparison, the branch lengths of trees inferred
by the various ML packages were reoptimized using the
same Newton-Raphson procedure, and the tree likeli-
hood was recomputed. Because all the methods used
the same Kimura model to infer trees and because the
branch lengths of the inferred trees were reoptimized
by the same procedure, the results of the various meth-
ods were then fully comparable. Therefore, we sorted
the (ML) methods with respect to their log-likelihood
values and computed the mean of their rank by averag-
ing over the 30 data sets analyzed. For the 40-taxon data
sets, the mean ranks were 4.2, 4.2, 3.9, 3.0, 2.9, and 2.8
for MetaPIGA, NJML, MrBayes, PAUP∗, PHYML, and
fastDNAml, respectively, and with 100 taxa, the results
were 4.8, 4.6, 4.1, 2.8, 2.5, and 2.4, respectively. Using this
comparison method, PHYML is the second best program
with 40 taxa and the best with 100 taxa, but these results
illustrate the fact no method is systematically better than
the others. Results for MetaPIGA+NJ and PAUP∗+NJ
were very close to those for MetaPIGA and PAUP∗
alone, with PAUP∗+NJ being even slightly better than
PAUP∗.

We also computed the average log likelihood of every
method for the 30 data sets corresponding to each tree
size. The results basically confirmed the above ordering
but with lower contrast. For 40 taxa, log likelihood val-
ues were −6196.745 for NJML, −6193.817 for MetaPIGA,
−6193.688 for fastDNAml and PAUP∗, −6193.626 for
MrBayes, and −6193.569 for PHYML. PHYML is then
best, and NJML is clearly last, although it was better
than MetaPIGA when considering average ranking. This
poor ranking is due to the fact that in a few cases NJML
performs poorly and is far behind the other programs,
which likely explains its relatively weak results regard-
ing topological accuracy. While MrBayes performs rela-
tively poorly when ranks are compared (see above), the
trees that are inferred with this method are generally very
likely even if they are not the most likely trees. This re-
sult could be explained by the fact that MrBayes tends to
maximize the integrated likelihood, while we used the
standard likelihood in our comparisons. MrBayes has
then little chance to find the best tree regarding the stan-
dard likelihood, but because of its extensive search of the
tree space it always finds good trees. Finally, it is worth
noting that the ordering with average log likelihood is
the same as that with topological accuracy on the first
1,000 data sets (see above).

For the large real data sets, PAUP∗+NJ, MetaPIGA
and PHYML were run with the Hasegawa–Kishino–
Yano (HKY; Hasegawa et al., 1985) model, and the
three programs adjusted the transition/transversion ra-
tio. We did not account for rate heterogeneity because
this is dealt with in a very different way by MetaPIGA
and PHYML. With the 218-taxon set, the log likeli-
hoods (after branch length reoptimization) were 156,881,

−156,860, and −156,727, for PAUP∗+NJ, PHYML, and
MetaPIGA, respectively, and those for the 500-taxon set
were −100,631 and −100,208 for MetaPIGA and PHYML,
respectively. MetaPIGA is then best with the 218-taxon
set, and PHYML is best with the 500-taxon set. These
findings illustrate (again) the fact that no method is
systematically better than the others and seem to in-
dicate that further improvements could to be made
for such very large sets, possibly by combining both
approaches.

Therefore, it appears from the above results that
PHYML is not only fast but also finds trees with high
likelihood, being at least as good on average as the other
methods we tested.

CONCLUSION

PHYML is freely available on our web page. The cur-
rent version implements several models of nucleotide
sequence evolution: JC69 (Jukes and Cantor, 1969 ), F81
(Felsenstein, 1981), K2P (Kimura, 1980), F84 (Felsenstein,
1993), HKY (Hasegawa et al., 1985) and TN93 (Tamura
and Nei, 1993). The Dayhoff (Dayhoff et al., 1978) and JTT
(Jones et al., 1992) models for proteins are also available
and run quickly, requiring about 3 min to analyze a data
set comprising 50 mammalian sequences and 1,729 sites
(F. Delsuc, pers. com.). A discrete gamma distribution
(Yang, 1994) can be used to account for variable substi-
tution rates among sites. The parameters of these models
can be either user defined or fitted to the data by likeli-
hood maximization. PHYML can also be used to refine a
user-supplied tree.

In regard to its simplicity, the performance of our al-
gorithm is quite surprising. It is not only much faster
than the standard approach but also slightly better in
terms of topological accuracy and likelihood maximiza-
tion. In fact, it seems that adjusting the branch lengths
and the tree topology together appears to keep the pro-
gram from getting trapped too early in local optima. The
algorithm does not follow the slope corresponding to a
unique branch or a unique swap but moves in a direction
that improves the whole tree and, by striding this way,
avoids getting lost in local irregularities of the likelihood
landscape. However, testing more intense topological re-
arrangements or introducing some randomness in the
search are interesting directions for future research.
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