
HAL Id: lirmm-00191952
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191952

Submitted on 26 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HDM: A Client/Server/Engine Architecture for Real
Time Web Usage Mining

Florent Masseglia, Maguelonne Teisseire, Pascal Poncelet

To cite this version:
Florent Masseglia, Maguelonne Teisseire, Pascal Poncelet. HDM: A Client/Server/Engine Architec-
ture for Real Time Web Usage Mining. Knowledge and Information Systems (KAIS), 2003, 5 (4),
pp.439-465. �10.1007/s10115-003-0097-6�. �lirmm-00191952�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191952
https://hal.archives-ouvertes.fr

HDM : a Client/Server/Engine Architecture for Real

Time Web Usage Mining

F. Masseglia(1;2) M. Teisseire(1) P. Poncelet(3)

(1)LIRMM UMR CNRS 5506 (2)Laboratoire PRiSM, Universit de Versailles

161, Rue Ada 45 Avenue des Etats-Unis

34392 Montpellier Cedex 5, France 78035 Versailles Cedex, France

(3)LGI2P - Ecole des Mines d'Ales - Site EERIE

Parc Scienti�que Georges Besse. 30035 Nimes Cedex 1, France

E-mail: fmassegli, teisseire, ponceletg@lirmm.fr

Abstract

The behaviour of a Web site's users may change so quickly that attempting to make predictions,

according to the frequent patterns coming from the analysis of an access log �le, becomes

challenging. In order for the obsolescence of the behavioural patterns to become as null as

possible, the ideal method would provide frequent patterns in real time, allowing the result to be

available immediately. We propose, in this paper, a method allowing to �nd frequent behavioural

patterns in real time, whatever the number of connected users is. Considering how fast the

frequent behaviour patterns can change since the last analysis of the access log �le, this result

thus provides completely adapted navigation schemas for users behaviour predictions. Based on

a distributed heuristic, our method also answers several tackled problems within the data mining

framework: Discovering \interesting zones" (a great number of frequent patterns concentrated

over a period of time, or the discovering of \super-frequent" patterns), discovering very long

sequential patterns and interactive data mining (\on the
y" modi�cation of the minimum support).

Keywords : real time, interactive data mining, zone mining, heuristic, distributed, long sequential

patterns.

1 Introduction

With the growing popularity of the World Wide Web (Web), large volumes of data such as addresses

of users or URLs which have been requested are automatically gathered by Web servers and collected

in access log �les. Analyzing a server access data can provide signi�cant and useful information

for performance enhancement, restructuring a Web site for increased e�ectiveness, and customer

targeting in electronic commerce.

Discovering for relationships and global patterns that exist in large access log �les is usually called

Web Usage Mining. In this domain, the involved techniques mainly focus on the users behavioural

patterns discovery from a Web server log �le in order to extract relationships within collected data

[14, 19, 5, 16, 6, 12]. These methods are designed to provide association rules or sequential patterns.

Although association rules methods make it possible to discover very useful correlation for marketing

needs, they are not optimal for analyzing a Web site users behaviours. Indeed, the absence of order

between the frequent items avoids any attempt to know how the frequent requests are organized.

To give a time order within the extracted patterns, the sequential patterns notion ([2, 17]) proposes

1

to re�ne the association rules problem. In this context, each fact is provided with a time stamp.

Extracting sequential patterns from an access log �le can provide the following kind of behaviours:

60 % of users who visited /jdk1.1.6/docs/api/Package-java.io.html and

/jdk1.1.6/docs/api/java.io.BufferedWriter.html, also visited, within the 2 following days, the

URL /jdk1.1.6/docs/relnotes/deprecatedlist.html

Once discovered, these patterns make up very useful knowledge for dynamically organizing a Web

server hypertext structure. In that context, the active user access pattern could be matched with one

or more sequential pattern discovered and navigational hints may be added to the pages accessed.

Indeed, the manager of a site for wich the previous pattern applies can decide that if a client

asked for the page /jdk1.1.6/docs/api/Package-java.io.html and then asks for the page

/jdk1.1.6/docs/api/java.io.BufferedWriter.html it would thus be smart to use the knowledge:

\this user might ask for the URL /jdk1.1.6/docs/relnotes/deprecatedlist.html with a con�-

dence rate of about 60%."

However, considering the increasing number of Web sites' visitors, and the speed at which users'

behaviour may change from one day to another, the result obtained by analyzing an access log �le

may lose its relevance, if it is exploited too late. In order to avoid the obsolescence of the result, we

propose a Heuristic based Distributed Miner (Hdm) designed to get frequent behaviour patterns,

answering the Web Usage Mining problem in real time.

In our opinion, extracting frequent behavioural patterns for the connected users, in real time and

thanks to our architecture, has the following advantages over the classic approaches:

� As a matter of fact we can observe that, at this time, classic Web usage mining methods propose

frequent behaviour patterns taking place over several days, weeks or even months (depending

on the access log time range). The consequence is that if a frequent behaviour pattern is hidden

among the large amount of data stored by the access log �le, and if this pattern is frequent only

when considering a speci�c time range and not the whole �le, then this frequent pattern won't be

exhibited. Let us consider the pattern F1 occuring in ten clients navigation sequences between

June 12 and June 14, and nowhere else, in an access log �le Log which takes place from May 01

to July 30. Let us consider that from June 12 to June 14, Log contains 15 clients, whereas it

contains 100 clients, when considered entirely. Finally let us consider that the user's minimum

support is 60%. With such a minimum support, when considering the entire Log �le, F1 won't

be found as a frequent pattern because it occurs in ten clients sequences, thus having a threshold

of 10%. Nevertheless, the owner of this Web site would surely be interested in knowing that

from June 12 to June 14, 60% of the clients had a behaviour corresponding to F1. A classic

access log analysis would not allow to �nd this pattern. This notion is presented and details are

given in section 7.

� Once the result of an access log �le analysis is obtained, the frequent behaviour patterns ex-

hibited are taken into account for behaviour predictions attempts. When several di�erent rules

correspond to a user's behaviour, they are both considered at the same level. Let us consider

that one of these rules has been found thanks to the navigations of users close to the connected

user, then this rule should supplant the other one, when trying to predict the connected user's

behaviour. The remaining question is to determine which users are close to another connected

user. In our opinion, one of the best answers is: the other connected users. Since we can extract

their frequent behaviour patterns in real time (thanks to our proposal), we are able to apply

that point of view.

� As for most web usage mining processes based on an access log �le analysis, the smaller the

2

number of clients is recorded in this �le, the faster will be the data mining process. Hdm is

designed to provide the result in real time, whatever the number of clients is.

� A large number of methods are designed to tackle a major problem in frequent itemsets (or

sequential patterns) mining: the size of the frequent patterns is so large, that most algorithms

will enumerate a too large number of solutions before saturating the computer memory. Hdm

is designed to face that problem too, providing a satisfying result, whatever the largest frequent

behaviour pattern length is.

� Finally, our proposal relies on the fact that, when a user is connected to a Web site, the computing

power available on the machine this user navigates with, remains unused, until one exploits the

architecture proposed in this paper. This computing power is insigni�cant when considered on its

own, but the same computing power multiplied per thousands (or even hundreds of thousands),

becomes strong enough in the condition of knowing how to use it.

Since our proposal is a heuristic based miner (summarized in [8]), our goal is to provide a result

having the following characteristics:

Let us consider U the set of connected users at time t. When considering NU , the navigation

sequences of the users belonging to U , we can observe that these users share some behavioural

patterns. Let us call realResult, the set of frequent behavioural patterns embedded in the navigation

sequences of the users belonging to U , at time t. This \snapshot" (e.g. the association of U , t,

NU , and realResult) of a particular category, will be the center of our study. realResult is the

result to obtain, e.g. the result that would be exhibited by an algorithmsequential pattern mining

algorithm which would explore the whole set of solutions by working on NU . Let us now consider

HDMresult the result obtained at time t, by running the method presented in this paper. We

want to minimize
Psize(HDMresult)

i=0 Si=Si 62 realResult (with Si standing for a frequent sequence in

HDMresult), as well as maximize
Psize(realResult)

i=0 Ri=Ri 2 HDMresult (with Ri standing for a

frequent sequence in realResult). In other words, we want to �nd most of the sequences occuring

in realResult while avoiding the proposed result to be larger than it should (otherwise the set of

all clients navigations would be considered as a good solution, which is obviously wrong). Finally,

if that goal is reached, Hdm will be able to �nd the frequent sequences on the users of U at time t,

as well as a classic log mining algorithm would do on the log �le limited to the users in U and to time t.

The rest of the paper is organized as follows. In section 2 we propose a presentation of the sequential

pattern mining problem in large databases. Section 3 summarizes their usage by Web Usage Mining

methods. Our contribution is presented in section 4. Section 5 gives performance evaluation and a

discussion about our method is presented in section 6. We conclude and give future work opportunities

in section 7.

2 De�nitions

In this section we de�ne the sequential pattern mining problem in large databases and give an

illustration. The sequential pattern mining de�nitions are those given by [1] and [2].

In [1], the association rules mining problem is de�ned as follows:

De�nition 1 Let I = fi1; i2; :::; img, be a set of m literals (items). Let D = ft1; t2; :::tng, be a set of n

transactions ; Associated with each transaction is a unique identi�er called its TID and an itemset I.

I is a k-itemset where k is the number of items in I. We say that a transaction T contains X, a set of

some items in I, if X � T . The support of an itemset I is the fraction of transactions in D containing

I: supp(I) = kft 2 D j I � tgk=kft 2 Dgk. An association rule is an implication of the form I1) I2,

3

where I1, I2 � I and I1 \ I2 = ;. The rule I1) I2 holds in the transaction set D with con�dence c

if c% of transactions in D that contain I1 also contain I2. The rule r : I1) I2 has support s in the

transaction set D if s% of transactions in D contain I1 [I2 (i.e. supp(r) = supp(I1 [I2)).

Given two parameters speci�ed by the user, minsupp and mincon�dence, the problem of association

rules mining in a database D aims at providing the set of frequent itemsets in D, i.e. all the item-

sets having support greater or equal to minsupp. Association rules having con�dence greater than

mincon�dence are then to be generated.

As this de�nition doesn't take time into consideration, the sequential patterns are de�ned in [2]:

De�nition 2 A sequence is an ordered list of itemsets denoted by < s1s2 : : : sn > where sj is an

itemset. The data-sequence of a customer c is the sequence in D corresponding to customer c. A

sequence < a1a2 : : : an > is a subsequence of another sequence < b1b2 : : : bm > if there exist integers

i1 < i2 < : : : < in such that a1 � bi1 ; a2 � bi2 ; : : : ; an � bin .

Example 1 Let C be a client and S=< (3) (4 5) (8) >, be the purchases of that client. S means that

\C bought the item 3, then he bought 4 and 5 at the same moment (i.e. in the same transaction) and

�nally bought item 8".

De�nition 3 The support for a sequence s, also called supp(s), is de�ned as the fraction of total

data-sequences that contain s. If supp(s) � minsupp, with a minimum support value minsupp given

by the user, s is considered as a frequent sequential pattern.

3 Access Log Files Analysis

In [12], we propose a Web Usage Mining method based on an Intrasite architecture. This section aims

at explaining that work, in order to present in a synthetic way, the techniques involved when �nding

frequent behaviours for a Web site users.

3.1 From Sequential Pattern Mining to Web Usage Mining

The general idea is similar to the principle proposed in [9]. It relies on three main steps. First of

all, starting from a rough data �le, a pre-processing is necessary to clean "useless" information. The

second step starts from transformed data and applies data mining algorithms to �nd frequent itemsets

or frequent sequential patterns. Finally, the third step aims at helping the user to analyze the results

by providing a visualization and request tool.

Raw data are collected in access log �les by Web servers. Each input in the log �le illustrates a request

from a client machine to the server (http daemon). Access log �les format can di�er, depending on

the system hosting the Web site. For the rest of this presentation we will focus on three �elds : client

address, the URL asked for by the user and the time and date for that request. We illustrate these

concepts with the access log �le format given by the CERN and the NCSA [4], where a log input

contains records made of 7 �elds, separated by spaces [15]:

host user authuser [date:time] ``request'' status bytes

Figure 1 is a sample, coming from one of the Lirmm1 (our institution's) access log �les:

Such an access log �le will then be processed in two steps. First of all, the access log �le is sorted by

address and by transaction. Then each "noninteresting" data is pruned out from the �le. During the

sorting process, and in order to allow the knowledge discovery process to be more eÆcient, URLs and

clients are mapped into integers. Each time and date is also translated into relative time, compared

to the earliest time in the log �le.

1Lirmm : Laboratoire d'Informatique, de Robotique et de Micro-electronique de Montpellier

4

193.49.105.224 - - [29/Nov/2000:18:02:26 +0200] "GET /index.html HTTP/1.0 " 200 1159

193.49.105.224 - - [29/Nov/2000:18:02:27 +0200] "GET /PtitLirmm.gif HTTP/1. 0" 200 1137

193.49.105.224 - - [29/Nov/2000:18:02:28 +0200] "GET /acceuil fr.html HTTP/1. 0" 200 1150

193.49.105.224 - - [29/Nov/2000:18:02:30 +0200] "GET /venir/venir.html HTTP/1.0" 200 1141

193.49.105.225 - - [29/Oct/2000:18:03:07 +0200] "GET /index.html HTTP/1.0" 200 1051

193.49.105.225 - - [16/Oct/2000:20:34:32 +0100] "GET /form/formation.html HTTP/1.0" 200 14617

193.49.105.225 - - [31/Oct/2000:01:17:40 +0200] "GET /form/formation.html#doct HTTP/1.0" 304 -

193.49.105.225 - - [31/Oct/2000:01:17:42 +0200] "GET /form/theses2000.html HTTP/1.0" 304 -

193.49.105.56 - - [22/Nov/2000:11:06:11 +0200] "GET /lirmm/bili/ HTTP/1.0" 200 4280

193.49.105.56 - - [22/Nov/2000:11:06:12 +0200] "GET /lirmm/bili/rev fr.html HTTP/1.0" 200 2002

193.49.105.56 - - [07/Dec/2000:11:44:15 +0200] "GET /ress/ressources.html HTTP/1.0" 200 5003

Figure 1: Access log �le example

De�nition 4 Let Log be a set of server access log entries.

An entry g, g 2 Log, is a tuple g =< ipg; ([l
g
1 :URL; l

g
1:time] ::: [l

g
m:URL; l

g
m:time]) > such that for

1 � k � m, l
g
k:URL is the item asked for by the user g at time l

g
k:time and for all 1 � j < k; l

g
k:time >

l
g
j :time.

The structure of a log �le, as describe in de�nition 4, is close to the \Client-Time-Item" structure

used by sequential pattern algorithms. In order to perform a frequent behaviour extraction on a log

�le, for each g in the log �le, we �rst have to transform ipg into a client number and for each record

k in g, l
g
k:time is transformed into a time number and l

g
k:URL is transformed into an item number.

Figure 2 gives a �le example obtained after that pre-processing. To each client corresponds a series

of times and the URL asked for by the client at each time. For instance, the client 2 requested the

URL \60" at time d4.

Client d1 d2 d3 d4 d5

1 10 30 40 20 30

2 10 30 20 60 30

3 10 70 30 20 30

Figure 2: File obtained after a pre-processing

Figure 3: LeitmotiV while extracting sequential patterns

5

The goal is thus to �nd, according to de�nition 3 and thanks to a data mining step, the se-

quential patterns in that �le that can be considered as frequent. The result can be, for instance

< (10) (30) (20) (30) > (with the �le illustrated in �gure 2 and a minimum support

given by the user: 100%). Such a result, once mapped back into URLs, strengthens the discovery of

a frequent behaviour, common to n users (with n the threshold given for the data mining process)

and also gives the sequence of events composing that behaviour. Every step (data preprocessing, data

mining, result presentation and manipulation...) is provided by our LeitmotiV soft, illustrated by

�gure 3.

3.2 Dynamic hypertext links modi�cation

Jointly to the LeitmotiV system, we have developed a dynamic links generator using the rules com-

ing from association rule or sequential pattern mining processes [13]. The generator is intended for

recognizing a visitor according to his navigation through the pages of a server. When the navigation

matches a rule given by LeitmotiV, the hypertext organization is dynamically modi�ed. The fonctional

architecture for the technique presented is depicted in �gure 4.

Web Browser

Original site’s
Web pages

HTTP Daemon

Asking
for page PP

Applet sent to
the browser Receiving

modified page P

Asked
Page

Rules
Base

Correspondences
and
Link predictions

Web Server

Figure 4: A dynamic links modi�cation architecture, involving a web server and a web browser

Basically, the user's current behaviour can be compared to one or more sequential patterns and thus

navigational hints can be added to the pages proved to be relevant for this category of users.

The Web server (http daemon) reacts to a customer request by returning an applet responsible for the

connection to the visitor manager module in order to transmit visitor IP address and the required URL.

At this time the client manager module is a java application running on the Web server site and using

a client/server mechanism. When receiving an IP address and a required URL, the visitor manager

examines the customer behaviour by using the rule base through the correspondence module. The

latter checks if the customer behaviour, i.e. the client navigation, satis�es a rule previously extracted

by the data mining process. When an input satis�es a rule in the correspondence module, the required

page is modi�ed by the page manager which dynamically adds links towards the consequent of the

recognized rule. The applet then recovers the URL and displays the page in the navigator.

Example 2 Among the several rules obtained when analyzing a Lirmm access log �le, we noticed that

65% (con�dence) of visitors asked for the page "accueil" and then "presentation" before they came

back to "accueil". Then, such users asked for the page "formation" followed by "Ecole doctorale" and

then "DEA informatique". That behaviour is summarized in �gure 5.

6

Accueil

Présentation

For mati on

Ecol e Doct or al e

DEA I nf o

11

22

33

44

55

Figure 5: A navigation sequence example

Let us now consider a client, whose navigation sequence is <(accueil) (presentation) (accueil) (forma-

tion) >. The beginning of this sequence is recognized in the rule base and matches the previous rule

having a con�dence of 65%. If that con�dence is greater than the minimum con�dence speci�ed by

the user, a link to the page "DEA Info" is added to the URL "formation", beside the one linking to

"Ecole doctorale".

4 A better kind of knowledge

This section is devoted to the illustration of the kind of knowledge that can be found thanks to a

real time web usage mining method. Let us consider the access log �le illustrated at �gure 6. In that

�le are recorded the transactions of �ve clients over two months. The sessions2 are represented by

the grey boxes. Let us now consider that we want to know the frequent behaviour, at time t, of the

users that were connected at that same time (e.g. t). We thus want to perform a data mining process

over the users having a session s such that t 2 [begin(s)::end(s)]. For instance, the user c5 was in his

session number 3 at time t, and the user c3 was in his session number 4 at time t. The clients c1, c3

and c5 have this characteristic.

If we consider the notion of snapshot given in the introduction, we have:

� U=fc1, c3, c5g

� NU=the rectangles in hash lines

� t=t.

We thus want to know the frequent behaviours for the users c1, c3 and c5 at time t (e.g. considering

their transactions only before t (rectangles in hash lines)). The main interest of the result obtained

with such a set of sequences will be to provide a knowledge dedicated to the connected users, as

illustrated in the following exemple.

Example 3 Let us consider the access log �le given in �gure 7. This �le gives the URL's requested

by the users c1, c2, c3, and c4 from time 1 to 7. Let us consider a �rst data mining process, with a

support of 100%, on that log �le. The frequent behaviour found will thus be: < (a) (g) (r) >.

Let us now consider that we are at time 7, and we want to know the frequent behaviour of the users

connected at time 7. As we can observe, the user c3 has no request in the log �le at time 7, c3 is

thus not considered as connected at that time 7. The connected users are thus c1, c2, and c4. When

2A session begins when the user logs on to the web site and it ends when the user leaves the site. Several tools are

able to �nd the sessions in a log �le, but in this article we use that concept for this illustration only (we will see later

that our method does not need that concpet since the connected users will be accessed in real time and not thanks to a

session concept).

7

C1S1 C1S2 C1S3 C1S4 C1S5

C2S4 C2S5 C2S6 ...

C3S1 C3S2 C3S3 C3S4 C3S5

C4S5 C4S6 C4S7 C4S8 C4S9 ...

C5S1 C5S2 C5S3

C1

C2

C3

C4

C5

 0
1

−
01

−
20

02

01
−
31

−
20

02

ttt’

= a client session

Log file

January February

...

Figure 6: A log �le with the sessions of 5 clients over two months

1 2 3 4 5 6 7

c1 a v g p r w

c2 a b g n r o

c3 a v g r t w

c4 a v x g r u w

Figure 7: A log �le, considered at time 7

considering only these users, we can observe that the frequent behaviour (with the same support of

100%) will be: < (a) (v) (g) (r) (w) >. This frequent, obtained by mining only the connected users,

is thus more interesting because with the same support it is longer and more signi�cant.

Discovering interesting periods

Let us now consider t0 the minimum time of transactions occuring in the sequences of the users in U

(t0 is illustrated in �gure 6). We can consider that the mining process on NU will provide a result

for a period taking place from t0 to t. Depending on the threshold of that result, on the number of

frequent sequences discovered, or any kind of characteristic for that result, we can decide whether

that result is interesting or not. Nevertheless, since this result may not be discovered if the �nal user

wants to analyze his log �le from Jan 01 to Jan 31, this result might keep undiscovered. It thus can

be interesting to know that from t0 to t there is some particular result to look at.

The problem is thus to �nd a way to know whether a period is interesting or not. A classic mining

process on an access log �le Log taking place from d1 to d2, would have to process that way:

foreach t 2 [d1::d2] build a temporary log called LogTmp and use a data mining process on LogTmp.

If Log takes place over a period of time of one month, and if the time unit is the second, then there

will be 2678400 possible choices for t. Enumerating all the possibilities in order to �nd an interesting

t will thus be a bad solution.

8

On the other hand, if we are able to maintain the result in real time, for each t, then the question of

mining interesting periods would be solved.

5 Metaheuristics and Data Mining

This section is not intended to be a presentation for meta heuristic methods. We mostly investigate

here the way such methods can be used for Data Mining issues, and try to identify their faults.

Sequential pattern mining can rely on two di�erent kinds of methods:

1. Algorithms, which explore the whole set of solutions, in order to provide a complete answer to

the problem.

2. Heuristics, which guarantee a reliable result, approaching (and in a large number of cases, equal

to) the global optimum with execution times largely reduced compared to algorithms described

in the �rst point.

n− frequents n− candidates

n=1

n=n+1

n− frequents
found

No more

frequents
found

Figure 8: Generating-Pruning method

Algorithms categorized in the �rst point are numerous and based on methods like "Generating-

Pruning" (cf �gure 8), or on memory based methods which need to store all or part of the database in

memory [11]. Unfortunately, when the problem becomes hard, such solutions might be unable to run

in reasonable time (exploring the whole set of solutions, even when avoiding analysis of some subsets,

is too CPU intensive).

Some methods then propose to provide a solution very similar (or even equal in numerous cases) to

the global optimum [3, 18, 10]. Such methods correspond to the ones described in the second point

and are intended to answer the two major diÆculties one may have to face:

1. The result size avoids any enumeration of subsets of the result (what is done by a Generating-

Pruning method).

2. The database size to analyze. When the database doesn't �t into the memory a memory based

method will surely not be adapted.

There is, however, a third case, which also avoids using methods providing the optimal solution, and

this case remains strongly related to the Web Usage Mining problems: fast growing data.

9

As a matter of fact, the behaviour of a Web site's clients may change quickly, while its access log �le is

still being analyzed. Since an incremental algorithm cannot be considered as a real time method (even

if executed as often as its execution time allows) we propose a stochastic algorithm for combinatorial

optimisation problems, applied to the discovery of frequent sequential patterns in the Web Usage

Mining framework. By \realtime", we mean that the result can be updated every t seconds, with t

the sum of :

� the time needed to contact a connected browser,

� the time needed to receive an answer of a connected browser,

� the time needed to compare x sequences to another sequence on the slowest distant machine.

We will give further details and a minimization of t, in a discussion about our architecture.

Population of
Frequent Sequences

Neighborhood Operators

Candidates
Population

DB
Valuated
Candidates

New Frequent
Sequences

New Population
Of Frequent
Sequences

++

11

22

33

44

55

66

77

Figure 9: A data mining process based on a GA-like method

Figure 9 illustrates a possible method for solving the sequential pattern mining problem in databases

using a meta heuristic.

This method is widely inspired from genetic algorithms (GA). Let us consider DB (step 4) as our

access log �le, using such a method for discovering frequent behavioural patterns from a Web site's

users collected navigations, is indeed possible. The starting point would be a population made of

frequent (most asked) items (URLs) (step 1). Then, neighborhood operators propose a solution made

of candidate sequences (steps 2 and 3) and those having the required threshold after a database scan

(step 4) might take part in a �ner solution (steps 5 and 6). Applying the neighborhood operators

once again to the new solution will allow to re�ne the results and this process is repeated until

no change enhances the solution (obviously, for Web Usage Mining, as data grows each time, each

10

change might enhance the solution and the solution will thus follow the clients behaviour on and on...).

That solution however presents an important issue: the number of scans to perform on the database

in order to evaluate each proposed solution is too large. A Generating-Pruning based method should

need k database scans (with k being the size of the largest frequent). A meta heuristic needs tens

(even hundreds) of validations upon the database. This involves the two criteria that any heuristic

has to face: exploration of the search space and exploitation of the proposed solutions.

For such a solution to be possible, the available computing power (needed to compare each can-

didate sequence with each sequence in the database) should increase at the same speed as the

database size. That's the point of the solution proposed in this paper, and actually implemented

at http://www.kdd-tools.com.

5.1 Computing Power

In order to avoid the problem related to the computing power, our proposal aims at evaluating each

candidates set (population obtained after processing neighborhood operators) by each database entry:

the connected machines. Each user connected to the Web site at any moment is using a browser and

thus provides a local computing power (the one allowing him to navigate on the site). This computing

power is available if one o�ers an appropriate architecture, designed to make the most of it. The

database illustrated in �gure 9, at step 4, can then be replaced by the set of all connected machines

making that database up.

Population of
Frequent Sequences

Neighborhood Operators

Candidates
population

Valuated
Candidates

New
Frequent Sequences

New
Population
Of Frequent
Sequences

11

22

33

55

66

77

Interface :
Java server

U1

U2

Un

Connected
Users

44

++

Figure 10: Our proposal, a client/server architecture where the client calculate at the server demand

This replacement is done by providing the heuristic with an interface, simulating a database scan by

contacting each connected machine (�g 10). Each machine contacted this way will then compare its

11

own navigation sequence with each candidate that belongs to the candidates set just received. This

comes down to comparing each data-sequence from the database (which groups all of the connected

machines) with each candidate sequence, but allowing a satisfactory cost, considering the time required

by a meta heuristic criterion. Let us consider the 4th step, in �gure 9 on the previous page, the time

complexity for this step was (likely) O(n �m � k � l), with:

� n the number of sequences in the access log �le (database size)

� m the number of candidate sequences (population size)

� k the average size of sequences in the database

� l the average size of candidate sequences to test.

We use an algorithm providing the longest sequence common to two sequences, with a time com-

plexity: O(firstSequenceLength � SecondSequenceLength) [7]. Our test for valuating candidates is

mostly a rewriting of this algorithm.

On the other hand, considering �gure 10, even if the time complexity remains the same, the calculations

are distributed. Each calculation has a complexity, expressed as the following: O(m � k � l) with k the

size of the navigation sequence on the contacted machine and l the average candidates size. The total

number of calls to this calculation remains n but whatever the number of connected machines is, the

delay3 for a population valuation is max(T1 + T2 + T3), with :

� T1 : the time spent to send candidates to a machine n

� T2 : the time spent to compare the sequence on n with the candidates

� T3 : the time spent to send results back from n to the server.

One of the main di�erences with usual data mining algorithms comes from the fact that we only work

with the connected machines. All the machines corresponding to an entry in the access log �le are

not necessarily connected. This is one of the strengths of our method, which provides a result really

adapted to the connected users because the results are validated on their category: other connected

users. As we know, an access log �le may take place over several days, weeks or even months. The

frequent behaviour patterns coming from their analyze are long term behaviours, but such an analysis

cannot provide short term behaviours corresponding to the most recent population (or even actual

population).

5.2 Architecture

The method presented in the previous section, needs to be implemented as an architecture like the one

described in �gure 11. This architecture is implemented on the site ''http://www.kdd-tools.com''

and allowed us to test our proposal in a world wide experiment. When a machine accesses a page

on the HTTP server, the server sends back the requested page with an embedded Java applet. This

applet will then be responsible for contacting the Java server, in order to receive the calculations to

run. At the beginning of the site's life cycle, the �rst connected client is the calculating engine, on

which resides the stochastic algorithm. The engine will then regularly send to the server, the sequences

to be distributed to the client machines.

The �rst problem to solve aims at maintaining pages thresholds, depending on user's requests, in real

time. Example 4 gives an illustration of the method use for that purpose.

3A timeup has been implemented in our system, in case a machine cannot answer or the network has failures. This

timeup can be set, and is generally less than 5 seconds.

12

U1

U2

Un

Connected
Users

HTTP Server

Java Server

Engine
Contact

Users
Contact

....

Machine 1 (Server)

C++
Engine

Machine 2
(calculation)

Figure 11: Connection between the candidates generator and the clients via the Web server

Example 4 Let us consider that 2 users (U1 and U2) are already connected to the site. Their naviga-

tion sequences are < (1) (2) (1) (3) (5) > for U1 and < (1) (2) (3) (4) (5) > for U2. The

pages supports for this very moment are reported in the following table:

Item 1 2 3 4 5

Support 100% 100% 100% 50% 100%

This table is maintained by the Java server, and given regularly to the C++ engine which will use

the frequent pages in order to provide candidates. Let us now consider a third user (U3) connecting

to the Web site and asking for pages 1, 3 and then 2. Each requested page (if it does not appear in

the user's sequence yet) will be reported to the Java server, in order to maintain the support of each

page, depending on the number of connected users. Let us now consider that U3 asks for the page 3

again, this page is already in the navigation sequence of U3 so this action won't be reported to the Java

server. Finally, U3 asks for the page 7, this is a new page for U3 so the Java server is contacted. The

sequence of U3 is now < (1) (3) (2) (3) (7) > and the new pages supports are:

Item 1 2 3 4 5 7

Support 100% 100% 100% 33% 66% 33%

With a minimum support of 80%, the frequent behaviour pattern to �nd is < (1) (2) (3) >. We

don't consider 3 as occuring two times for U3 but only once, because of the de�nition of a frequent

item. In fact, considering several occurences of an item within a user's navigation sequence would

give a biased answer since a client having asked minSupport times the item n while no other client

asked for this item, would let the item n be frequent whereas it occurs in only one user's navigation

sequence.

The architecture given in �gure 12 does not only describe the way frequent pages are discovered in

real time, but also gives an illustration of the operations performed during a user's navigation on the

site:

13

Real Time
Web Usage Mining

NN

Applet

Java Server HTTP Server

33

11224455

Asked
Pages

Machine 1 (Server)

Client
Machine

Figure 12: Connection between the candidates generator and the clients via the Web server

1. The browser asks for a page (the one needed by the user) by contacting the HTTP server.

2. The server sends the requested page, which, once arrived in the browser, will contact the applet

in order to be added to the navigation sequence for this user (via a cookie).

3. if this page does not occur in the navigation sequence of the client, the applet, once contacted,

will tell the Java server about this new page occurrence (in order to know its threshold).

4. The applet also sends back the results for the candidates comparison asked for by the engine.

5. The server regularly contact the applet to send the calculations asked for by the engine.

Let us give some details about this last point. As the engine knows the pages thresholds, it will use

the frequent pages in order to propose candidates. These candidates, after being valuated by the

connected users' machines, will become frequent or not, and frequent patterns found will be used

with frequent pages in order to build new candidates and so on. The way such new candidates are

proposed is developed in section 5.3. The C++ engine is thus based on algorithm 1. The criteria is

based on the candidate (c) size, the support of the candidate and an evaluation of the possibilities

of accepting c even if it is a bad sequence. This feature allows Hdm to follow the users behaviour

patterns evolution since candidates are not valuated by a boolean function (e.g. \included or not")

but by a function measuring the size of the candidate's subset included, compared to the total size of

14

the candidate, as described in section 5.3.

function Hdm Engine

Input: JS the Java server needed by the architecture

Output: SP the sequential patterns corresponding to the frequent behaviour patterns.

while Web site is on-line do

pagesSupports=getPagesSupports(JS); // Maintaining the pages supports

candidates=getValuation(JS); // Getting distributed calculations result

for c 2 candidates do

if (support(c) > minSupport OR criteria) then

insert(c, SP);

endif

endfor

candidates=neighborhoodOperators(candidates, pagesSupport);

askForDistribution(JS, candidates);

endwhile

end function Hdm Engine

Algorithm 1: Hdm engine

From a network point of view, the communications required by this method remain weak since the

sequences are sent through a broadcast technique and an "on-the-
y" compression. This compression

has a ratio of 20%, meaning that a 300 sequences population would cost approximately 8Kb, but takes

only 1.5Kb on the bandwidth after being compressed.

5.3 Neighborhood operators and population valuation

The main idea of the Hdm algorithm, is to propose candidates population thanks to previous frequent

patterns and neighborhood operators, and then to send these candidates to the connected machines in

order to know their threshold (or at least their distance from a frequent sequence). These two phases

(neighborhood operators and candidates valuation) are explained in this section.

5.3.1 Neighborhood operators

The neighborhood operators we used were validated thanks to an experiment performed on local

databases (see section 6). We chose \Genetic-like" operators as well as operators based on sequential

patterns properties. We present here some of the most eÆcient operators for the problem presented

in this paper. When we talk about random sequence, we use a biased random such that sequences

having a high threshold may be chosen before sequences having a low threshold.

New frequent items

When a new frequent item is occuring (after being requested by one or more users) it is used to

generate all possible 2-candidate sequences with other frequent items. The candidates set generated

is thus added to the global candidates set. Due to the number of candidate sequences to test, this

operator only has a 15% ratio of accepted (e.g. frequent) sequences. This operator however remains

essential since the frequent 2-sequences obtained are a base for other operators.

Adding items

15

Adding Items
Input Output

Item : (c)
Seq : <(a) (b) (d)>

<(c) (a) (b) (d)>

<(a) (b) (c) (d)>
<(a) (b) (d) (c)>

...

Basic crossover
Input Output

 <(a) (b) (c)>

<(d) (e) (f)>

<(a) (b) (e) (f)>
<(d) (e) (b) (c)>

Enhanced crossover
Input Output

<(a) (b) (f)>

<(a) (c) (d) (e)>
<(a) (b) (c) (d) (e)>
<(a) (c) (b) (f)>

Figure 13: Some operators for �nding frequent navigation sequences.

This operator aims at choosing a random item among frequent items and adding this item to a

random sequence s, after each item in s. This operator generates length(s) + 1 candidate sequences.

For instance, with the sequence < (a) (b) (d) > and the frequent item c, we will generate the

candidate sequences < (c) (a) (b) (d) >, < (a) (c) (b) (d) >, < (a) (b) (c) (d) > and �nally < (a)

(b) (d) (c) >. This operator has a 20% ratio of accepted sequences, but the sequences found are

necessary for the following operators.

Basic crossover

This operator (widely inspired from GA operators) uses two di�erent random sequences and proposes

two new candidates coming from their amalgamation. For instance, with the sequences < (a) (b) (c)

> and < (d) (e) (f) >, we propose the candidates < (a) (b) (e) (f) > and < (d) (e) (b) (c) >. This

operator has a good ratio (50%) thanks to frequent sequences embedded in the candidates generated

by previous operators.

Enhanced crossover

Encouraged by the result obtained when running the previous operator, we developed a new

operator, designed to be an enhancement of the basic crossover, and based on the frequent

sequences properties. This operator aims at chosing two random sequences, and the crossover

is not performed in the middle of each sequence, but at the end of the longest pre�x common

to the considered sequences. Let us consider two sequences < (a) (b) (f) > and < (a) (c) (d)

(e) >. The longest common pre�x of these two sequences is < (a) >. The crossover will then

start after the item following a, for each sequence. In our example, the two resulting candidate

sequences are, < (a) (b) (c) (d) (e) > and < (a) (c) (b) (f) >. This operator has a success ratio of 35%.

Final crossover

An ultimate crossover operator was designed in order to improve the previous ones. This operator

is based on the same principle as the enhanced crossover operator, but the second sequence is not

randomly chosen. Indeed, the second sequence is chosen as being the one having the longest common

16

pre�x with the �rst one. This operator has a ratio of 30%.

Sequences extension

This operator is based on the following idea: frequent sequences are extended with new pages re-

quested. The basic idea aims at adding new frequent items at the end of several random frequent

sequences. This operator has a success ratio of 60%.

Figure 13 gives an illustration of some operators described in this section.

5.3.2 Calculation performed by the client machine

function Client

Input: CS the candidate sequences to evaluate and N the navigation sequence of the client.

Output: P the set of percentages assigned to each sequence.

for S 2 CS do

if (S � N) then

P [S]=100+size(S);// S is included in N , S is rewarded.

endif

if (size(S)� 2) then

P [S]=0; // S has length 2 and is not included, it is not worth keeping it.

endif

//Otherwise, give S a mark, and give short sequences a better mark

P [S]=
size(LCS(S;N))�100

size(S) � size(S);

endfor

end function Client

Algorithm 2: Client algorithm

When the candidates generation is complete, the C++ engine sends the candidates set to the Java

server and this latter, through a broadcast technique, send it to the connected browsers. The

calculation asked to the connected browser, is performed in the Java applet, loaded when the user

logged on to the site, and compares each candidate to the navigation sequence of this user. The

comparison aims at returning a percentage, representing the distance between the candidate and the

navigation sequence. If the candidate is included in the sequence, the percentage should be 100% and

this percentage will decrease when the amount of interferences (di�erences between the candidate and

the navigation sequence) will increase. Furthermore, in order to obtain frequent sequences as long

as possible, we use an algorithm that rewards long sequences if they are included in the navigation

sequence. On the other hand, in order for the clients not to give a good mark to any long sequence,

the algorithm has to avoid long, not included, sequences. To take all these parameters into account,

the calculation performed by the client machine is described in algorithm 2.

6 Experiments

We show here our experiments, designed to evaluate the result quality of the presented heuris-

tic and also its ability to provide those results in real time. Before presenting our result, let

us notice that our architecture has been validated by a test on a real web site. This web site

(http://www.kdd-tools.com) has been built by our team, in order to be sure that the Java

components and the comunications will be working as expected. We thus asked to the research

17

jDj Number of customers (size of Database)

jCj Average number of transactions per Customer

jSj Average length of maximal potentially large Sequences

N Number of items

jLj Size of the log �le

Table 1: Parameters

Dataset D C S N L Server

F1 80K 18 53 2K 1,5 Gb IIS

F2 88K 32 58 2K 1,4 Gb IIS

L1 110K 14 41 30K 1 Gb Apache

L2 120K 15 43 30K 1,2 Gb Apache

Table 2: Synthetic datasets

members of the Lirmm to navigate through the web site for 15 minutes. This test has been repeated

3 times. The number of users connected during each test was about a hundred and each test was a

success in validating the stability of the architecture and the quality of the result. Indeed, the result

found by Hdm at the end of each test was exactly the same as the result found on the log �le with

a classic log analysis. As the users were asked to keep connected for 15 minutes (e.g. a session of 15

minutes) at the same time, that was the expected result. If the users had not connected to the site

simultaneously, the result found by Hdm would have been expected di�erent (e.g. corresponding to

the last connected population, so we would not have been able to check the quality of the proposed

frequent sequences in comparaison to the whole population in the log �le). Finally the experiment

has been conducted in a world wide way since numerous access have been recorded in the log �le for

machines located in di�erent countries (our server keeps connected at any time).

On the other hand, in order to validate Hdm behaviour and result, we had to test it on local databases,

where each data sequence was considered as a connected user. Our experiments were performed on

�les having charasteristics described in tables 1 and 2.

The �les F1 and F2 have been given by the web site http://www.first-invest.com, whereas the

�les L1 and L2 come from the Lirmm web site (http://www.lirmm.fr). FirstInvest is a �nancial

web site, generating log �les having size 1,5 Gb (approximately) every month. The Lirmm web site

is less accessed, so we had to take two log �les, covering a period of 5 months each, in order to get

�les having size 1 Gb. The number of items for the Lirmm access �les is large because numerous

pages use php and the parameters are writen in the log �les. FirstInvest uses a database to generate

some pages, so its number of pages is large too. In both cases, the number of frequent items generally

ranges from 50 to 70). The interesting point, when working on these two kind of �les is to observe

the behaviour of Hdm when analyzing populations having di�erent density and di�erent navigation

goals.

The experiments were performed on a 1,4 Ghz PC running Linux, with a local 60 Gb SCSI drive.

The meta-heuristic and its simulated distribution have been writen in C++.

For all those experiments we used an architecture simulator. This simulator had to be in contact

with the engine (the meta-heuristic) and to work with a local database as the server would do with

the connected users. To this end, the simulator considered each sequence in the database as a user

and performed a scan over the database, in order to send to the engine the results of the comparison

between the candidate set and each sequence in the database.

18

6.1 Quality measurement

In order to value the results provided by the Hdm algorithm, we measured, for each proposed solution,

the longest common sequence (LCS) between the sequences of the proposed solution and the real result

to get (obtained by calling on the same data, the PSP algorithm, developed at the Lirmm by our team).

Algorithm 3 is applied to each proposed population, in order to keep a trace of Hdm behaviour. The

goal of this algorithm is to provide the average quality of the sequences in the proposed solution.

Basically, if all the sequences in the proposed solution are in the real result and if each sequence in

the real result is in the proposed solution, then the proposed solution is considered as a result having

a quality of 100% (e.g. proposedSolution � realResult). if a sequence in the proposed solution is

only included (or not included at all) in a sequence of the real result, then the average quality will

decrease. The last instructions aim at decreasing the global quality if a sequence in the real result is

not in the proposed solution.

function qualityMeasurement

Input: proposedSolution, a solution to value. PSP realResults the real results to obtain (for

comparison).

Output: quality, the quality percentage for proposed results compared to real results.

sum=0;

for s1 2 proposedSolution do

localQuality=0;

for s2 2 PSP realResults do

if (s1==s2) then localQuality=100;

else localQuality=max(localQuality, (LCS(s1,s2)/size(s2))*100);

endfor

sum = sum+ localQuality;

endfor

quality=sum/size(proposedSolution);

for s 2 PSP realResults do

if (s 62 proposedSolution) then quality=max(0,quality-1);

endfor

return(quality);

end function qualityMeasurement

Algorithm 3: Quality measurement algorithm

6.2 Validating the result quality

Experiments on a stable behaviour:

The goal of this �rst experiment is to validate the Hdm algorithm, depending on the quality of the

result provided. For that purpose we worked with the architecture simulator described above on the

access log �les F1, F2, L1 and L2. Basically, this experiment aim at making the snapshot last as

long as necessary to validate the result quality. It comes down to test the architecture with a frozen

population of connected users. We could thus know how much candidate sequences the engine has to

test (starting from scratch) before providing a result having quality 100%.

Let us consider the �rst experiment, illustrated in Figure 14 (Log: F1). Each of the three graphs

corresponds to a di�erent size of the candidate set. Let us consider the graph corresponding to a

candidate set having length 200. The �rst proposed solution has a quality of 76%. This is a good

19

Log: F1 Log: F2

Figure 14: Results quality for each proposed solution

quality, because the engine already knows wich are the frequent items, and the frequent sequences

having length 2. This information is thus used to propose a �rst solution (based on a candidate set of

200 sequences). The engine then needs to propose 12 solution before providing a result quality of 100%.

The other graphs stand for a candidate set having length 150 and 100. The main reason for being

interested in varying the size of candidate set is that the bandwith will be the limit for this size. As

we can observe, for the logs F1 and F2, this size is rather important, since the di�erence of quality is

10% to 20% (as illustrated by the graphs). We thus provide a study about this di�erence, illustrated

by Figure 15. This graph is the result of a second experiment conducted on F1. For each size of the

candidate set, we report the number of iterations needed by the engine to provide a result having

quality 100%. As we can observe in �gure 14 and 15 for the log �le F1, with a candidate set having

size 200, the number of iterations is 12, with a candidate set having size 150, the number of iterations

is 14 and with a candidate set having size 100, the number of iterations is 18. this graph clearly

shows that the speed of the engine in terms of quality is depending on the number of sequences in

the candidate population.

Let us now consider the third experiment, illustrated by Figure 16. The goal of this experiment is the

same as the �rst, but the log �les are L1 and L2, provided by the Lirmm web site. We can observe that

the number of iterations before obtaining a 100% quality is larger (in comparison with F1 and F2).

This is mainly due to a di�erence between the behaviours of the users for these two sites. Indeed, the

access log �le of the Lirmm does not hide a lot of frequent navigations, so we had to use a relatively

weak support, and then the number of iterations before providing a result is thus larger. The size of

the candidate set is not really important, since there are no much frequent behaviours in these �les

(meaning that 100 or 200 candidates are both enough to have a superset of the frequent sequences).

We can observe, in �gure 16, that Hdm allows the results to degrade in order not to be trapped in a

local optimum (with the �le L1 and 100 candidates, from generation 15 to generation 18, the result

quality decreases from 95% to 87%).

6.3 Validating the real time aspect of the approach

Experiments on a variable behaviour:

The goal of the �rst set of experiments was to work on a frozen population of users. In order to validate

20

Log: F1

Figure 15: Results quality for proposed populations, with frequent patterns having length 12

the real time aspect of our approach, we will now work on a changing population. This test aims at

validating Hdm ability at adapting to the behaviours, depending on the quality of a result following

another one. To this end, we used two databases (DB1 and DB2) concealing distinct behaviours and

we used Hdm to �nd the frequent sequences. At �rst, only DB1 is considered to calculate the results,

but with each generation proposed by Hdm, x% sequences from DB1 are replaced by x% sequences

from DB2. This process is repeated until DB1 is entirely replaced by DB2. The test then consists

in estimating the quality of the results compared to those obtained by PSP on DB2, as soon as the

replacement is achieved. The results of this test are reported in �gure 17.

In this Figure, for the �rst graph, DB1 and DB2 are F1 and F2 (meaning that F1 has been replaced

by F2). Let us consider x, the number of sequences from DB1 replaced by sequences from DB2 at

each step (x thus stands for the speed at wich the population will change). As we could expect, the

faster DB1 is replaced by DB2, the worse the results get (for instance when F1 is replaced by F2 at

the rhythm 1% per generation, results quality at the end of the replacement process is 100%, but if

the rythm is 10%, the quality decreases to 53%). This comes from the fact that Hdm is not allowed

to test a suÆcient number of populations on DB2 (a rythm of 10% means that Hdm is allowed to test

only 10 populations on the database), and furthermore DB2 is not revealed until the very end of the

process. On the other hand, we can observe that with a progressive replacement (1% is indeed more

realistic), the quality of the result ranges between 97% and 100%.

7 Discussion

The method we proposed in this paper, provides results having the following advantages:

An immediate availability:

As they are calculated in real time, the results available at time t, are, by nature, a representation of

the behaviour corresponding to people connected at that same time t. The obtained results can then

be used immediately, in two di�erent ways:

21

Log: L1 Log: L2

Figure 16: Results quality for each proposed solution

� As a data mining process result, considered as reliable and in which one can trust to take

marketing or hypertext link modi�cation decisions.

� As a pre-processing result (which doesn't cost a lot) designed to prepare the ground for a complete

data mining process that can get help from these results in order to generate its candidates.

A new kind of knowledge:

Thanks to the concept of \snapshot", given in the introduction, we can obtain a better kind of

knowledge that can be discovered in a log �le. Section 4 gave an example about the hidden knowledge

that can be discovered thanks to our architecture. The question usually coming from the end user

is of the kind: \What is the frequent behaviour of my clients between June and August?". We are

then within the framework of a data mining problem. However, at this time, and to the best of

our knowledge, no method proposes to answer the question: \Is there a period for which my database

conceals more frequent behaviours? If yes, tell me which period it is". The given answer may take place

over a di�erent period than the one expected by the user, with, for instance, the following answer:

\The period from June 12 to Sept 2, conceals a frequent behaviour having a threshold of 72%". This

behaviour may not have been discovered if the data mining process kept the period speci�ed by the

user. These zones can be discovered in real time, while Hdm discovers behaviours, by recording

frequent patterns for population having particular characteristics, such as:

� At least one frequent pattern having a very high threshold.

� Average threshold of the actual frequent patterns population is higher than the previous popu-

lation threshold and the next population threshold (a top average threshold).

� The number of frequent patterns in the actual population is very high (heterogeneous frequent

behaviour patterns) or very low.

Let us consider U , the set of connected users at time t, as given in the introduction. The result

obtained by Hdm on NU is the same than the result obtained by a classic sequences extraction

method applied to NU . The problem of the classic extraction method is that it would have to try all

the possible ways to obtain NU (e.g. generating as many log �les as there are time units in the log

time range). For instance, with a log �le starting the �rst of January and ending the 31st, the user

would apply the following method:

8i 2 (1::2678400) flogTmp rewriteLog(time = i) ; applyExtractingAlgorithm(logTmp)g.

22

Figure 17: Results quality after a complete replacement of DB1 by DB2

Where rewriteLog(time t) is a function searching for each user which has been connected to the site

at time t, and copy his navigation sequence (until t) to a temporary log. This temporary log would

then have to be processed by a data mining algorithm in order to decide whether the period given

by t is interesting or not. The time needed to obtain all the possible NU and all the corresponding

frequent sequences is obviously too long, whereas by using our method we can obtain and update

that \better knowledge" in real time.

The results are dedicated to the connected users:

Since the results are obtained in real time, the end user (i.e. the owner of the studied site) can use

the results in an immediate way. That allows to target and to consider behaviours for users connected

at this time, thanks to a global behaviour study over the users logged on.

An inexhaustible computing power:

Since Hdm uses the computing power available on the connected machines, the problem provides a

suÆcient computing power to solve it, and the more complicated the problem gets, the more that

computing power grows...

Interactive data mining:

At any moment, the Java server can accept a new user's support, and send it to Hdm immediately.

Hdm will then take this modi�cation into account when merging the results of clients calculations

and decide if a sequence is frequent or not. The next candidates population will then be proposed

according to this new support. Since Hdm runs continuously, as long as the site is on line, the support

can be modi�ed at any time.

Mining long frequent sequential patterns:

Since Hdm does not enumerate an exhaustive list of the subsets of the frequent patterns to �nd, it

does not depend on the size of the frequent sequences to �nd. We thus argue that our method can

23

�nd most (or even all) frequent patterns, whatever their size is. The experiments performed on local

databases, allowed us to validate this feature while using Hdm on an access log �le concealing frequent

patterns having size 40.

8 Conclusion and future work

In this paper, we proposed a real time method for Web Usage Mining designed to perform most

calculations on the machines navigating on the Web site. Since the execution times of our method

do not have to be evaluated, we centered our performance study on the quality of the result

provided. Our experiments showed that the approach allows to �nd all the frequent sequences in

most cases. With an aim of showing the feasibility of our approach, we presented the architecture of

a Web site, designed to extract frequent behaviour patterns from users navigations. The main idea,

based on the available computing power provided by connected browers, has been evaluated during

several test sessions, performed at the Lirmm. These tests, of about 15 minutes each, grouping a

hundred users, allowed to �nd all the frequent sequential patterns exhibited after an access log analysis.

This method gives some future work opportunities, focusing on results quality.

We are working on adapting the candidates population, depending on the connected users. In a

connected users categorization objective, it seems possible to maintain several populations at the

same time (possibly managed by several engines, running simultaneously) and then to chose which

population to send to which user, depending on di�erent criteria:

� The time slots: depending on the slot, connected users may come from di�erent countries. So,

maintaining several candidates populations corresponding to users coming from the US, France

or Japan, may allow to keep in memory the best behaviours for those categories of users and

thus avoid rebuilding the population since we can get them evolving from their previous state.

� In order to extend that point of view, we can say that di�erent categories of users will be exhibited

from the extracted behaviours. Each behaviour can thus be re�ned if we send candidates trying

to extend it, to only clients who correspond to this behaviour. That second point of view can be

considered as an automation of the �rst one, since we don't chose the criteria that distinguish

the users and we would let the data mining process make the distinction by itself.

Finally we are working on studying new neighborhood operators, in order to improve the heuristic side

of the proposed approach.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items in Large

Databases. In Proceedings of the 1993 ACM SIGMOD Conference, pages 207{216, Washington

DC, USA, May 1993.

[2] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proceedings of the 11th International

Conference on Data Engineering (ICDE'95), Tapei, Taiwan, March 1995.

[3] R.J. Bayardo. EÆciently Mining Long Patterns from Databases. In Proceedings of the 1998 ACM

SIGMOD Conference, pages 85{93, Almaden, USA, 1998.

[4] World Wide Web Consortium. httpd-log �les. In http://lists.w3.org/Archives, 1998.

[5] R. Cooley, B. Mobasher, and J. Srivastava. Web Mining: Information and Pattern Discovery on

the World Wide Web. In Proceedings of the 9th IEEE International Conference on Tools with

Arti�cial Intelligence (ICTAI'97), November 1997.

24

[6] R.W. Cooley. Web Usage Mining: Discovery and Application of Interesting Patterns from Web

Data. Technical report, University of Minnesota, 2000.

[7] T. Cormen, C. Leiserson, and R. Rivest. Introduction a l'Algorithmique. ed. Dunod.

[8] P. Poncelet F. Masseglia, M. Teisseire. Real Time Web Usage Mining: a Heuristic based Dis-

tributed Miner. In Proceedings of the 2nd International Conference on Web Information Systems

Engineering (WISE'2001), Kyoto, Japan, December 2001.

[9] U.M. Fayad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in Knowl-

edge Discovery and Data Mining. AAAI Press, Menlo Park, CA, 1996.

[10] D. Gunopulos, H. Manila, and S. Saluja. Discovering all Most Speci�c Sentences by Randomized

Algorithms Extended Abstract. Technical report, Academy of Finland, 1997.

[11] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. In Pro-

ceedings of the 2000 ACM SIGMOD Conference, 2000.

[12] F. Masseglia, P. Poncelet, and R. Cicchetti. An EÆcient Algorithm for Web Usage Mining.

Networking and Information Systems Journal, 2(5-6), December 1999.

[13] F. Masseglia, P. Poncelet, and M. Teisseire. Usinf Data Mining Techniques on Web Access Logs

to Dynamically Improve Hypertext Structure. ACM SigWeb Letters, 8:13{19, October 1999.

[14] B. Mobasher, N. Jain, E. Han, and J. Srivastava. Web Mining: Pattern Discovery from World

Wide Web Transactions. Technical Report TR-96-050, Department of Computer Science, Uni-

versity of Minnesota, 1996.

[15] C. Neuss and J. Vromas. Applications CGI en Perl pour les Webmasters. Thomson Publishing,

1996.

[16] M. Spiliopoulou and L.C. Faulstich. WUM: A Tool for Web Utilization Analysis. In Proceedings

of the EDBT Workshop WebDB'98, Valencia, Spain, March 1998.

[17] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Performance Im-

provements. In Proceedings of the 5th International Conference on Extending Database Technology

(EDBT'96), pages 3{17, Avignon, France, September 1996.

[18] H. Toivonen. Sampling Large Databases for Association Rules. In Proceedings of the 22nd

International Conference on Very Large Databases (VLDB'96), September 1996.

[19] O. Za��ane, M .Xin, and J. Han. Discovering Web Access Patterns and Trends by Applying OLAP

and Data Mining Technology on Web Logs. In Proceedings on Advances in Digital Libraries

Conference (ADL'98), Santa Barbara, CA, April 1998.

25

