
HAL Id: lirmm-00191954
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191954

Submitted on 26 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AUSMS: An Environment for Frequent
Sub-Substructures Extraction in a Semi-Structured

Object Collection
Pierre-Alain Laur, Maguelonne Teisseire, Pascal Poncelet

To cite this version:
Pierre-Alain Laur, Maguelonne Teisseire, Pascal Poncelet. AUSMS: An Environment for Frequent Sub-
Substructures Extraction in a Semi-Structured Object Collection. DEXA 2003 - 14th International
Conference on Database and Expert Systems Applications, Sep 2003, Prague, Czech Republic. pp.38-
45, �10.1007/978-3-540-45227-0_5�. �lirmm-00191954�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191954
https://hal.archives-ouvertes.fr

AUSMS: An environment for frequent sub-structures
extraction in a semi-structured object collection

P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2
1 LIRMM, 161 rue Ada, 34392 Montpellier cedex 5, France

{laur,teisseire}@lirmm.fr
2 EMA/LGI2P, Ecole des Mines d’Alès

Site EERIE, Parc Scientifique Georges Besse, 30035 Nîmes cedex 1, France
Pascal.Poncelet@ema.fr

Abstract. Mining knowledge from structured data has been extensively ad-
dressed in the few past years. However, most proposed approaches are inter-
ested in flat structures. With the growing popularity of the Web, the number of
semi-structured documents available is rapidly increasing. Structure of these
objects is irregular and it is judicious to assume that a query on documents
structure is almost as important as a query on data. Moreover, manipulated data
is not static since it is constantly being updated. The problem of maintaining
such sub-structures then becomes as much of a priority as researching them be-
cause, every time data is updated, found sub-structures could become invalid. In
this paper we propose a system, called A.U.S.M.S. (Automatic Update Schema
Mining System), which enables us to retrieve data, identify frequent sub-
structures and keep up-to-date extracted knowledge after sources evolutions.

1. Introduction

The search for knowledge in structured data has been extensively ad-
dressed in the few past years. Most of the proposed approaches concern
flat or highly structured structures. With the growing popularity of the
World Wide Web, the number of semi-structured documents available
is rapidly increasing. However in spite of this structural irregularity,
structural similarities among semi-structured objects can exist and it is
frequently noted that semi-structured objects which describe the same
type of information have similar structures. The analysis of such im-
plicit structures in semi-structured data can then provide significant in-
formation : to optimize requests evaluations, to obtain general informa-
tion on the contents, to facilitate data integration resulting from various
information sources, to improve storage, to facilitate index or views
and to contribute to semi-structured documents classification. Applica-
tions fields are very numerous and gather, for example: bio-informatics,

2 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

Web Content Mining and Web Usage Mining. Recently, new ap-
proaches were proposed to discover such sub-structures [4, 8, 11, 14,
15]. Unfortunately, handled data are not static because new updates are
constantly carried out. The problem of keeping such sub-structures up
to date becomes very significant. As updates are carried out, the previ-
ously found sub-structures can become invalid. In this article we are in-
terested in extraction of such sub-structures with a detailed attention for
their evolution. We propose a system, called AUSMS (Automatic Up-
date Schema Mining System), which allows collecting data, finding
frequent sub-structures, and maintaining extracted knowledge during
sources evolutions.
The article is organized in the following way. In section 2, we present
the problems of searching frequent sub-structures and data mainte-
nance. Section 3 presents the functional architecture of the system by
detailing the various stages. A related work is proposed in section 4.
Lastly, in section 5, we conclude.

2. Problem Statement

In this section, we give the formal definitions related to the problem of
searching frequent sub-structures in semi-structured objects.
The goal of our proposal is to discover structural similarities among a
set of semi-structured objects. Since in our context a cyclic graph can
be transformed into an acyclic graph [14], we consider in the following
a tree as an acyclic connected graph and a forest as a collection of trees
where each tree is a connected component of the forest (rooted tree).
Furthermore we consider that handled trees are ordered tree (a rooted
tree in which the children of each node are ordered). The order is given
according to the type of application and it follows either the lexico-
graphical order (set-of), or the imposed order (list-of). To express the
differences between orders in the following, we will respectively use
the notations "{}" to represent a "set of" and "< >" to represent a "list
of". Due to lack of space, we do not define formally the inclusion of a
structure in a tree. Nevertheless, we illustrate this notion by the follow-
ing example

Example: for example, let us consider figure 1 and the structure [ad-
dress: {city, street, zipcode}, category, name]. This structure is a sub-
structure of the tree [root:{address: {city, street, zipcode}, category,

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 3

3

name, nearby: {category, name, price}}]. However the structure [ad-
dress: {city, street, zipcode}, category, name, price] is not a sub-
structure of the tree since the element price is not on the same level in
the graph.

Fig. 1. Examples of sub-structures

Let us now consider DB a tree database also named structures, i.e. a
forest where each tree T is composed of an identifier and a structure in-
cluded in the forest. Let supp (p) be the support value for a structure
corresponding to the number of occurrences of this structure in the da-
tabase DB, i.e. the support of a structure p is defined as the percentage
of all trees in the database which contain p. A tree of the database con-
tains p iff p is a sub-structure of this tree. In order to decide whether a
structure is frequent or not, a value of minimal support is specified by
the user (minSupp) so a structure is frequent if the condition supp
(p)≥minSupp holds. Being given a tree database DB, the problem of
searching regularities in semi-structured data thus consists in finding all
the maximum structures which are in DB and whose support is higher
than minSupp.

Let us now consider the data sources evolutions. Let db the database
increment where new information is added or removed. Let U=DB ∪
db, be the updated database holding all structures from DB and db. Let
LDB be the frequent sub-structures set in DB. The problem of keeping
of up to date discovered knowledge is to seek the frequent sub-
structures in U, noted LU, by respecting the same support value without
restarting mining algorithm from scratch.

4 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

 3. The A.U.S.M.S. System

The aim of A.U.S.M.S. (Automatic Update Schema Mining System) is
to propose an environment for knowledge discovery in semi-structured
data from information recovery until the update of extracted knowl-
edge. These general principles are illustrated in figure 2. The process
can be broken into three main phases. First, starting from rough semi-
structured data files, a pre-processing eliminates the irrelevant data and
performs the transformation into the database. In a second phase, a
knowledge extraction algorithm is used to find the frequent sub-
structures which are stored into a database. Then, evolution of data
sources is taken into account in order to update previously extracted
knowledge. Finally, a visualization tool is provided to the end user.

Fig. 2. General Architecture

In the following sections, we detail the extraction and the incremental
process as well as the visualization tool.

3.1 Knowledge Extraction

We showed in [7] that there was a bijection between the problems of
mining sub-structures such as we defined it and that of searching se-
quential patterns defined in [2]. To find the frequent structures we use a

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 5

5

level-wize algorithm largely inspired by [2]. Interested reader may refer
to [8]. In order to improve the candidate generation procedure as well
as the management of candidate elements, we use a bitmap representa-
tion inspired by [3]. This structure offers the advantage of considerably
reducing the storage space and the ability to easily generate candidates.
Moreover it is particularly adapted in the long structures search. During
the candidates search phase we also generate the negative border [10].
This is made up of all the structures which are not frequent but whose
sub-structures are frequent. This negative border will be used in the fol-
lowing phase to take into account the data sources evolutions.

Fig. 3. Example of a negative border

Example: Let us consider figure 3 representing a lattice associated with
a sample database. For a minimal support of 50 %, on level 1, only the
A1, A2 and B2 elements are frequent and can be used to create more
complex structures. We thus store in the negative border, the C3 and D2
elements. On level 2, only (A1) (A2), (A1) (B2), (A2 B2) are frequent, we
preserve in the negative border those of the preceding level elements
which were frequent.

3.3 Taking into account data source evolutions

The negative border obtained in the previous stage enables us to take
into account updates and to maintain extracted knowledge. Indeed, to

6 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

avoid applying the previous algorithm again at the time of each update,
we store in the negative border the minimal information required to
quickly compute the frequent sub-structures. The general principles are
as follows:

Update algorithm

Input: S Set of data sources, BN the negative border, BNLimit, LDB the set
of frequent structures, minSupp the minimal support specified by the user
Output: the updated sources S, BN updated and LDB updated
while t ∈ delay do
foreach s ∈ S do
if snew ≠sold then

 updateDeltaRelation (∆s, opmaj, t)
enddo

∆S ←

if Validate(∆S, BNLimit) then
 Update (LDB)
From a date specified by the user (delay), the data sources are com-
pared (as we maintain previous sources sold stands for the initial data
sources, i.e. during the last analysis, and snew represents the data being
analyzed, i.e. s). This operation is carried out in the AUSMS system by
an agent which acts either in a temporal way (fixed time difference
since last update), or in a direct way (user activation). The agent is in
charge of comparing the data sources and propagating the modifica-
tions. Thus, if the data source was modified, the updates are stored as a
∆s set which manages the history of the modifications (UpdateDeltaRe-
lation procedure). This procedure, inspired from the delta relations,
used in active rules, makes it possible to reflect the side effects of the
structure modifications [5].

 From the information contained as ∆s set, a comparison is carried out,
by the procedure Validate (∆S, BNLimit), with the elements contained in
the negative border which are likely to change quickly, i.e. those which
can become frequent or not, up to one element. This procedure also
takes into account the addition or the suppression of new sources which
of course generate a modification of the support value. If one of the
conditions is then verified the modifications are brought directly into
the negative border to update the set of the frequent structures (proce-
dure Update (LDB)). The first stage consists in deferring the modifica-

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 7

7

tions in the negative border as soon as structures are added or removed.
Indeed, such an operation causes the calculation of the support value to
be modified for the whole base. For each structure, we thus examine
the support value in the negative border and if this one is lower than the
support, the branches of the tree resulting from this structure are
pruned. Otherwise the other elements are re-examined and the negative
border is updated according to their frequency. When the operations
consist in adding or removing elements in existing structures, we ana-
lyze the negative border while starting with level 1 so as to verify how
frequently the elements appear. If elements become frequent the vari-
ous levels of the lattice are built recursively with those which were al-
ready frequent. If frequent elements become infrequent, the various
branches of the lattices resulting from the sub-structure are pruned. At
the end of this phase, the frequent elements are extracted and LDB is up-
dated as well as the negative border.

3.4 Visualization

Whereas previous modules are charged to provide and maintain fre-
quent sub-structures, this module makes it possible to visualize these
structures and offers a formalism to describe them.

Fig. 4. Examples of extracted structures

For that, we use, initially, GraphXML [6] which is a graph description
language in XML especially designed for drawing and display systems.
In the second place, for visualizing extracted sub-structure as well as

8 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

their implication in the date sources, we use the Graph Visualization
Framework which proposes a set of java classes to visualize and handle
the structures described by the GraphXML format.
We find at the left a frequent structure resulting from the frequent sub-
structures search with at least 85% of a history of ships database dis-
played via GVF. On the right-hand side we have the same description
within the GraphXML format.

4. Related work

Our approach is very close to that proposed in [13, 14] for the search
for structural association in semi-structured data. The authors propose a
very effective approach and solutions based on a new representation of
the search space. Moreover, by proposing optimizations based on prun-
ing strategies, they considerably improve candidates’ generation stage.
In the same way, an approach suggested in [11] is rather similar to the
previous approach and uses a particular tree called tag tree patterns. In
[4], authors propose an algorithm called Find-Freq-Trees which also
uses an approach based on a search by level as in the algorithm A-priori
[1] and extends the proposal in order to discover sub-structures in long
sequences. Finally in [15], author proposes two algorithms TreeMinerH
and TreeMinerV for the search for frequent trees in a forest. TreeMin-
erH takes again the principle of the course in width of A-priori by im-
proving candidates’ generation and counting using the classes of
equivalences, a structure of prefixed tree and "scope list". In Tre-
eMinerV, a tree is described by a vertical structure. In these two algo-
rithms, candidates’ generation and counting are carried out by set op-
erations on the "scope list"; the prefixed structure makes it possible to
reduce the number of transactions to be traversed in the database. In our
context, we are interested in the search for all the structures included in
the base whereas they are interested only in search of tree-expression
which are defined like trees going from the root to a final leaf of the
tree. With this definition, they cannot find regularities of the form
[identity : {address : <street, zipcode>}] which would be frequent but
would be included in a longer transaction which is, itself, not frequent.
According to the maintenance of the extracted frequent sub-structures,
there does not exist, to our knowledge, works in this field. We showed
that the search for sub-structures could approach that of sequential pat-

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 9

9

terns. In the continuation of our work, we will thus examine the work
carried out around this field. In [12], authors propose an algorithm
called ISM (Incremental Sequence Mining) which allows an update of
the frequent sequences. The suggested approach builds a lattice of se-
quence which contains all the frequent and negative border elements
[10]. When new information arrives, they are added to this lattice. The
problem of this approach is obviously the increasing size of the nega-
tive border which in our case is minimized, because based on bit vec-
tors. In [9], the ISE (Incremental Sequence Extraction) algorithm was
proposed for the search for frequent patterns, it generates candidates in
the entire database by attaching the sequences of the incremental data-
base to those of the original base. This approach avoids keeping the se-
quences contained in the negative border and the recalculation of these
sequences when the initial database has been updated. However, by not
preserving the negative border, it is necessary to more often traverse
the base to search for candidates. In [16] the algorithm proposed uses at
the same time the concepts of negative border of the original data base
and the concepts of suffixes and prefixes in the contrary of ISE. To
control the size of this negative border, they introduce a minimum sup-
port for these elements thus reducing its size. Moreover this algorithm
realizes an extension by prefix and suffix (using the negative border).
The problem of this algorithm lies in the choice of the value of the mi-
nimum support for the negative border.

5. Conclusion

In this article, we proposed a functional architecture, AUSMS, of a sys-
tem of extraction and maintenance of knowledge in semi-structured ob-
jects databases. The originality of the approach lies in the implementa-
tion of effective algorithms to extract the frequent sub-structures in the
base from semi-structured objects but also in the taking into account of
the handled data. The tests which we carried out on bases resulting
from the Web show that the adopted approach is very useful to help the
end-user in the analysis of the various handled elements. It offers solu-
tions for the search of general information in the data sources, to con-
tribute to the interrogation of semi-structured databases and to help
building views and indexes.

10 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

6. References

[1] R. Agrawal, T. Imielinski, and A. swami, “Mining Association Rules between Sets of Items
in Large Databases”, Proceedings of SIGMOD’93, pp. 2076, May 1993.

[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns”, Proceedings of International Con-

ference on Data Engineering (ICDE'95), pp. 3-14, Tapei, Taiwan, March 1995.

[3] J. Ares, J. Gehrke, T. Yiu and J. Flannick, “Sequential Pattern Using Bitmap Representa-

tion”, Proceedings of PKDD’02, Edmonton, Canada, July 2002.

[4] T. Asai, K. Abe, and al., “Efficient substructure discovery from Large Semi-structured

Data”, Proceedings of the (ICDM’02) Conference, Washington DC, USA, April 2002.

[5] S. Chawathe, S. Abiteboul and J. Widom, “Representing and Querying Changes History in

Semistructured Data”, Proceedings of ICDE’98, Orlando, USA, February 1998.

[6] I. Herman and M.S. Marshall, “GraphXML An XML based graph interchange format”,

Centre for Mathematics and Computer Sciences (CWI), Technical Report Amsterdam, 2000.

[7] P.A. Laur, F. Masseglia and P. Poncelet, “A General Architecture for Finding Structural

Regularities on the Web”, Proceedings of the AIMSA'00 Conference, September 2000.

[8] P.A. Laur et P. Poncelet. “AUSMS : un environement pour l’extraction de sous-structures

fréquentes dans une collection d’objets semi-structurées (in french)”. Actes des Journées
d’Extraction et Gestion des Connaissances (EGC’03), Lyon, France, 2003.

 [9] F. Masseglia, P. Poncelet and M. Teisseire, “Incremental Mining of Sequential Patterns in

Large Database”, Actes des Journées BDA'00, Blois, France, Octobre 2000.

[10] H. Mannila and H. Toivonen. “On an Algorithm for Finding all Interesting Sequences”. In

Proceedings of the 13th European Meeting on Cybernetics and Systems Research, Vienna,
Austria, April 1996.

[11] T. Miyahara, T. Shoudai, T. Uchida, K. Takahashi and H. Ueda, “Discovery of Frequent

Tree Structured Patterns in Semistructured Web Documents”, Proceedings of PAKDD’01,
pp. 47-52, Hong Kong, China, April 2001.

[12] S. Parthasarathy and M. J. Zaki, “Incremental and Interactive Sequence Mining”, Proceed-

ings of the CIKM’99 Conference, pp. 251-258, Kansas City, USA, November 1999.

[13] K. Wang and H. Liu, ”Schema Discovery for Semi-structured Data”, Proceedings of the

KDD’97 Conference, pp. 271-274., Newport Beach, USA, August 1997.

[14] K. Wang and H. Liu, “Discovering Structural Association of Semistructured Data”, In

IEEE Transactions on Knowledge and Data Engineering , pp. 353-371, January 1999.

[15] M. Zaki, “Efficiently Mining Frequent Trees in a Forest”, Proceedings of SIGKDD’02,

Edmonton, Canada, July 2002.

[16] Q. Zheng, K. Xu, S. Ma and W. Lu, “The Algorithms of Updating Sequential Patterns”,

Proceedings of the International Conference on Data Mining (ICDM’02), April 2002.

