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Abstract

Constraint programming is a technology which is now widely used to solve com-
binatorial problems in industrial applications. However, using it requires consid-
erable knowledge and expertise in the field of constraint reasoning. This paper
introduces a framework for automatically learning constraint networks from sets
of instances that are either acceptable solutions or non-desirable assignments of
the problem we would like to express. Such an approach has the potential to be of
assistance to a novice who is trying to articulate her constraints. By restricting the
language of constraints used to build the network, this could also assist an expert
to develop an efficient model of a given problem. This paper provides a theoretical
framework for a research agenda in the area of interactive constraint acquisition,
automated modelling and automated constraint programming.

1 Introduction
Over the last 30 years, considerable progress has been made in the field of Constraint
Programming (CP), providing a powerful paradigm for solving complex problems. Ap-
plications in many areas such as resource allocation, scheduling, planning and design
have been reported in the literature [10]. However, the use of CP still remains limited
to specialists in the field. Modelling a problem in the constraint formalism requires
significant expertise in constraint programming. This precludes novices from being
able to use CP on complex problems without the help of an expert. This has a negative
effect on the uptake of constraint technology in the real-world by non-experts [5].

In addition, in many practical applications humans find it difficult to articulate their
constraints. While the human user can recognize examples of where their constraints

∗The collaboration between LIRMM and the Cork Constraint Computation Centre is sup-
ported by a Ulysses Travel Grant from Enterprise Ireland, the Royal Irish Academy and CNRS
(Grant Number FR/2003/022). This work has also received support from Science Foundation
Ireland under Grant 00/PI.1/C075.
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should be satisfied or violated, they cannot articulate the constraints themselves. How-
ever, by presenting examples of what is acceptable, the human user can be assisted in
developing a model of the set of constraints she is trying to articulate. This can be re-
garded as an instance of constraint acquisition. One of the goals of our work is to assist
the, possibly novice, human user by providing semi-automatic methods for acquiring
the user’s constraints.

Furthermore, even if the user has sufficient experience in CP to encode her problem,
a poor model can negate the utility of a good solver based on state-of-the-art filtering
techniques. For example, in order to provide support for modelling, some solvers pro-
vide facilities for defining constraints extensionally (i.e., by enumerating the set of
allowed tuples). Such facilities considerably extend the expressiveness and ease-of-use
of the constraints language, thus facilitating the definition of complex relationships be-
tween variables. However, a disadvantage of modelling constraints extensionally is that
the constraints lose any useful semantics they may have which can have a negative im-
pact on the inference and propagation capabilities of a solver. As a result, the resolution
performance of the solver can be significantly deteriorated in the parts of the problem
where such constraints are used. Therefore, another goal of our work is to facilitate
the expert user who wishes to reformulate her problem (or a part of it that is suspected
of slowing down the resolution). Given sets of accepted/forbidden instantiations of the
(sub)problem (that can be generated automatically from the initial formulation), the ex-
pert will be able, for instance, to test whether an optimised constraint library associated
with her solver is able to model the (sub)problem in a way which lends itself to being
efficiently solved.

However, constraint acquisition is not only important in an interactive situation
involving a human user. Often we may wish to acquire a constraint model from a large
set of data. For example, given a large database of tuples defining buyer behaviour in
a variety of markets, for a variety of buyer profiles, for a variety of products, we may
wish to acquire a constraint network which describes the data in this database. While
the nature of the interaction with the source of training data is different, the constraint
acquisition problem is fundamentally the same.

The remainder of this paper is organised as follows. Section 2 presents an overview
of the related work in this area, Section 3 provides some preliminary definitions on
constraint networks. Section 4 briefly presents the machine learning techniques that
can be used for our problem. In Section 5, we formulate our problem as a learning
problem. Section 6 presents the technique in detail, and proves some properties of the
approach that are guaranteed. In Section 7, some of the issues that the approach raises
are presented, and their possible effects on the learning process are illustrated by some
preliminary experiments. Some concluding remarks are made in Section 8.

2 Related Work
Recently, researchers have become more interested in techniques for solving problems
where users have difficulties articulating constraints. In [9], the goal of Rossi and Sper-
duti is not exactly to help the user learning a constraint network, but to help her learn-
ing the valuations of the tuples in a semi-ring constraint network where the constraint
structures are already given. Freuder and Wallace have considered suggestion strate-
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gies for applications where a user cannot articulate all constraints in advance, but can
articulate additional constraints when confronted with something which is unaccept-
able [3]. Freuder and O’Sullivan have focused on generating constraints which model
tradeoffs between variables in problems which have become over-constrained during a
interactive configuration session [2]. Version spaces have been reported by O’Connell
et al for acquiring single constraints, with a focus on acquisition from humans where
dialog length is a critical factor [8]. The focus of their work was interactive acquisition
of constraints from users of differing abilities.

3 Preliminaries
Definition 1 (Constraint Network) A constraint network is defined as a triplet (X ,D, C)
where:

• X = {X1, . . . , Xn} is a set of variables.

• D = {DX1 , . . . , DXn} is the set of their domains: each variable Xi takes its
values in the domainDXi .

• C = (C1, . . . , Cm) is a sequence of constraints on X and D, where a constraint
Ci is defined by the sequence var(Ci) of variables it involves, and the relation
rel(Ci) specifying the allowed tuples on var(Ci).

We regard the constraints as a sequence to simplify the forthcoming notations.

Definition 2 (Instance) Let Y = {Y1, · · · , Yk} be a subset of X . An instanceeY on Y
is a tuple (v1, . . . , vk) ∈ DY1×· · ·×DYk

. This instance is partial if Y �= X , complete
otherwise (noted e). An instance eY on Y violatesthe constraint Ci iff var(Ci) ⊆ Y
and eY [var(Ci)] �∈ rel(Ci).

Definition 3 (Solution) A complete instance on the set X of variables is a solutionof
the constraint networkN = (X ,D, C) iff it does not violate any constraint. Otherwise
it is a non solution. Sol(N) denotes the set of solutions of N .

4 The Fundamental Problem
As a starting point, we assume that the user knows the set of variables of her problem
and their domains of possible values. She is also assumed to be able to classify an
instance as positive (a solution) or negative (non-solution). Therefore, the available
data are the setX of the variables of the problem, their domainsD, a subsetE + of the
solutions of the problem, and a setE− of non-solutions.

In addition to the “assisting the expert” perspective, the aim is to code the prob-
lem efficiently, using only efficient constraint relations between these variables; i.e. a
library of constraints with efficient propagation features is assumed to be given. Indi-
cations can also be given revealing the possible location of the constraints, by defining
variables between which constraints must be found (learned), or by restricting our-
selves to binary constraints only. These semantic and structural limitations define the
inductive bias:
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Definition 4 (Bias) Given a set X of variables and the setD of their domains, a biasB
on (X ,D) is a sequence (B1, . . . , Bm) of local biases, where a local biasBi is defined
by a sequence var(Bi) ⊆ X of variables, and a set L(Bi) of possible relations on
var(Bi).

The setL(Bi) of relations allowed on a set of variablesvar(Bi) can be any library
of constraints of arity|var(Bi)|.
Definition 5 (Membership of a Bias) Given a set X of variables and the set D of
their domains, a sequence of constraints C = (C1, . . . , Cm) belongsto the bias B =
(B1, . . . , Bm) on (X ,D) if ∀Ci ∈ C, var(Ci) = var(Bi) and rel(Ci) ∈ L(Bi). We
note C ∈ B.

The problem consists in looking for a sequence of constraintsC belonging to a
given biasB, and whose solution set is a superset ofE+ containing no element ofE−.

Definition 6 (Constraint Acquisition Problem) Given a set of variables X , their do-
mains D, two sets E+ and E− of instances on X , and a bias B on (X ,D), the con-
straint acquisition problemconsists in finding a sequence of constraints C such that:

C ∈ B,

∀e− ∈ E−, e− is a non solution of (X ,D, C), and,

∀e+ ∈ E+, e+ is a solution of (X ,D, C).

If the setsE+ andE−, called thetraining data, are provided by an interaction
with the user, then the acquisition problem can be regarded as the modelling phase for
the user’s problem. Otherwise, it can be regarded as an assistance to the expert for an
automatic reformulation of her problem.

We can point out that ifE+ ∪ E− = DX1 × · · · × DXn , andB is a bias on
(X ,D) containingn(n−1)/2 local biases such that for each pair of variables(X i, Xj),
∃Bi ∈ B with var(Bi) = (Xi, Xj), andL(Bi) = P(DXi×DXj ),1 then the constraint
acquisition problem answers the representability problem of a relationρ = E + with a
binary constraint network [7].

5 Constraint Acquisition as Concept Learning
Concept induction is a well known paradigm in Machine Learning. The underlying
problem can be described the following way: given a setH of hypotheses, two training
data sets (E+ of positive andE− of negative instances), find an hypothesish consistent
with this training data, i.e., which rejects all the negative instances and accepts all the
positive instances. The concept providing the training data is called the target concept.

In our context, this concept is the unknown network that we are looking for that
consistently captures all the information given by the user in the training set. So, in our
vocabulary:

• An hypothesish is a sequence of constraints,

1E being a set,P(E) is the set of subsets ofE.
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• H is the set of possible sequences of constraints belonging toB,

• The target concept is the sequence of constraintsC we are looking for,

• A positive instance is a solution of(X ,D, C), a negative one is a non-solution of
(X ,D, C).

There are many techniques from the field of Machine Learning, from decision trees
to neural networks or genetic algorithms. We propose here a method based on version
spaces [6], which has several nice properties amongst which the most interesting from
our perspective are: they provide two approximations of the target concept, an upper
bound and a lower bound; their computation is incremental with respect to the training
data; and the result does not depend on the order of the instances in the training set
(commutativity). This last property is essential in an interactive acquisition process.

We briefly present version spaces, which rely on the partial-order based on inclu-
sion in the setH of hypotheses.

Definition 7 (Generalisation relation≤G) Given (X ,D) a set of variables and their
domains, an hypothesis h1 is less general than or equal to an hypothesis h2 (noted
h1 ≤G h2) iff the set of solutions of (X ,D, h1) is a subset of this of (X ,D, h2).

A version space does not only provide one consistent hypothesis, but the whole
subset ofH consistent with the training data:

Definition 8 (Version Space) Given (X ,D) a set of variables and their domains, E+

andE− two training data sets , andH a set of hypotheses, the version spaceis the set:

V = {h ∈ H/E+ ⊆ Sol(X ,D, h), E− ∩ Sol(X ,D, h) = ∅}

Because of its nice property of incrementality with respect to the training data, a
version space is learned by incrementally processing the training instances ofE + and
E−. In addition, due to the≤G partial order, a version spaceV is completely char-
acterised by two boundaries: the specific boundaryS of maximally specific (minimal)
elements ofV (according to≤G), and the general boundaryG of maximally general
(maximal) elements.

Property 1 Given a version space V , and its boundaries S and G, ∀h ∈ V, ∃s ∈ S
and ∃g ∈ G/s ≤G h ≤G g.

In the general case,V is exponential in the size of the data. So, thanks to Property
1, the constraint acquisition problem is restricted to computing the boundsS andG of
the version space consistent with(E+, E−).

Given a set of hypothesesH on (X ,D), and the training data(E+, E−), if there
does not exist anyh ∈ H consistent with(E+, E−), then the version space acquisition
will finish in a state where there existss ∈ S andg ∈ G such thats �= g andg ≤G s.
This is called thecollapsing state of the version space.
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6 Learning the Constraint Version Space
In this section, we describe the process of learning the version space corresponding to
the constraint acquisition problem on(X ,D) with the two training sets(E+, E−) of
solutions and non-solutions, and biasB on(X ,D).

Let us first define the concepts that will be used at the single constraint level. We
can project the generalisation relation≤G at the constraint level. To be completely
consistent with version space theory, we defineLH(Bi) = L(Bi)∪{⊥,�}, where⊥ is
the empty relation⊥, and� the universal relation. Note that without loss of generality,
the universal relation can be stated as belonging to any library of constraints. Thus,≤ g

is a partial order onLH(Bi) such that∀r1, r2 ∈ LH(Bi), r1 ≤g r2 ⇔ r1 ⊆ r2.
Given L1 ⊆ LH(Bi) andL2 ⊆ LH(Bi), we note thatL1 ≤g L2 iff ∀r1 ∈

L1, ∀r2 ∈ L2, r1 ≤g r2.

⊥

< > =

�= ≤ ≥

�

Figure 1:LH(Bi)

Example 1 Let L(Bi) = {<,≤,=,≥, >, �=} be a given local bias. Fig. 1 shows the
set(LH(Bi),≤g), which in this case is a lattice.

Restricting ourselves to each constraint individually, we introduce a local version
space for each local bias. Because≤g is, like≤G, a partial order, each local version
space inherits Property 1. Thus, each local version space is completely characterized
by its own local specific and general boundaries.

Definition 9 (Local boundaries) L(Si) (resp. L(Gi)) is the set of relations ofLH(Bi)
which appear in an element of S (resp. G):

L(Si) = {r ∈ LH(Bi)/∃s ∈ S : (var(Bi), r) ∈ s}
L(Gi) = {r ∈ LH(Bi)/∃g ∈ G : (var(Bi), r) ∈ g}

Si andGi are the corresponding sets of constraints:

Si = {(var(Bi), r)}, where r ∈ L(Si); Gi = {(var(Bi), r)}, where r ∈ L(Gi)

We are now ready to describe theCONACQalgorithm (Algorithm 1), which takes as
input two training setsE+, E−, and returns the corresponding version spaceV on the
biasB. We present step by step the different scenarios that can occur when a training
instance is processed.
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6.1 Instances from E+

A positive instancee+ must be a solution of all the networks(X ,D, h) for which
h ∈ V . So,

∀h ∈ V, ∀Ci ∈ h, e+[var(Ci)] ∈ rel(Ci)

Projecting onto the local version spaces of each local biasB i, we obtain the fol-
lowing property:

Property 2 (Projection property of S i’s) Each local specific boundary Si must ac-
cept all the positives instances. L(Si) is thus the set of maximally specific relations
(minimal w.r.t. ≤g) of L(Bi) that accept all E+:

L(Si) = min≤g{r ∈ LH(Bi)/∀e+ ∈ E+, e+[var(Bi)] ∈ r}

Corollary 1 The specific boundary S is the Cartesian product of the local specific
boundaries Si’s, i.e., the set of hypotheses, where each constraint takes its relation
from L(Si):

S =
¡

i∈1..m

Si

From Property 2, when a positive instancee+ is presented, each local biasBi can
be processed individually (line 2 of AlgorithmCONACQ). If the specific boundary of a
constraint already accepts this positive instance, it is skipped (line 3), else the boundary
goes up to the most specific relations of the local version space (i.e., the relations of
LH(Bi) betweenL(Si) andL(Gi)) that accepte+ (line 4). If no such relation exists,
this means that no hypothesis can accept this positive instance. Then, the algorithm
terminates since a collapsing state has been encountered (line 5).

6.2 Instances from E−

A negative instancee− must be a non solution for all the networks(X ,D, h) where
h ∈ V . So,

∀h ∈ V, ∃Ci ∈ h/e−[var(Ci)] �∈ rel(Ci)

Since at least one violated constraint is sufficient for an instance to be regarded as
negative, instead of all satisfied constraints necessary in the case of a positive instance,
G does not have the projection property exhibited byS: 2

L(Gi) �= max≤g{r ∈ LH(Bi)/∀e− ∈ E−, e−[var(Bi)] �∈ r}
We can only say that∀e− ∈ E−, ∃i/∀r ∈ L(Gi), e−[var(Bi)] �∈ r. However,

the cause of the rejection (which constraint(s) has been violated) may not be obvious.
Furthermore, storing only the local general boundariesG i’s is not sufficient to express
this uncertainty.

2If this was not the case the constraint defined onrel(Bi) would be sufficient to reject all negative
instance ofE−.
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The traditional approach to version space learning involves storing the set of all pos-
sible global boundariesG. However, this can require exponential space and time [4].
In order to ensure our algorithm remains polynomial, we do not store this set, but en-
code each negative instancee− as a clause,Cl. Each constraint that could possibly be
involved in the rejection of a negative examplee− will be encoded as a meta-variable
in the clauseCl. Semantically, the clauseCl represents the disjunction of the possible
explanations for the rejection of this negative instance. In other words, it encodes a
disjunction of the constraints that could have been responsible for the inconsistency in
the instance.

When a negative instancee− is presented, a new clause, initially empty, is built by
processing each local biasBi one-by-one (lines 12-14). Those biases whose specific
boundary,L(Si), already accepts the negative instance,e−, are skipped (line 15). The
reason being thatSi is the maximally specific boundary of the local version space for
Bi and, by definition, we know that at each step of the learning process the constraint
defined onrel(Bi) cannot be involved in the rejection ofe−, since this has already
been deemed acceptable by at least one positive example.

For all the other constraints, a subset of which is responsible for the rejectione−,
we computeAi, the subset of maximally specific relations (w.r.t.≤g) betweenL(Si)
andL(Gi) which accepte−[var(Bi)], i.e. the least upper bound thatBi must not take
if it is proven to be a contributor to the rejection ofe− (line 16). Depending on this
set of relations we have two alternative courses of action to consider. Firstly, if the set
Ai is empty it means that all possible relations for the constraint defined onrel(B i)
already rejecte−. Therefore, every hypothesis in the version space is consistent with
e− so there is nothing to do fore−; we are then ready to process the next instance
(line 17). Secondly, ifAi is not empty, we add the meta-variable(L(Gi) <g Ai) to
the clauseCl (line 18). The semantic of this meta-variable is“if B i is involved in the
rejection of e−, then Gi must be made more specific than Ai”.

To rejecte−, a sequence of constraintsh must satisfy at least one meta-variable in
the clauseCl encodinge−. We will denote this ash |= Cl. The set of clauses, charac-
terizing all the setE−, is denoted asK. Below we will summarise the maintenance of
these clauses for clarity.

6.3 Maintenance of the set of clauses
i Maintenance of clauses when positive instances are added.

If a clauseCl contains the meta-variable(L(Gi) <g Ai) and if after the process-
ing of positive instances,L(Si) ∩ Ai becomes not empty, then the relations in
L(Si) ∩Ai are no longer a possible explanation for the rejection of the negative
instance denoted byCl. LetA′

i be the set of relations ofAi that are not inL(Si).
If A′

i is not empty, the new explanation becomes(L(G i) <g A
′
i). Otherwise the

meta-variable(L(Gi) <g Ai) is erased fromCl (lines 6-9).

ii Empty clause implies that the version space has collapsed.

When a clauseCl, encoding a negative instancee−, is empty, either during its
construction (line 19), or following the addition of some positive instances (line
10), it implies that there does not exist a possible explanation for rejecting the
negative instancee−, then the algorithm collapses.
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Algorithm 1: TheCONACQ Algorithm

K ← ∅
foreach Bi do L(Si) ← {⊥}; L(Gi) ← {�}
foreach training instance e do

1 if e ∈ E+ then
2 foreach Bi do
3 if ∃r ∈ L(Si)/e[var(Bi)] �∈ r then
4 L(Si) ← min≤g{r/Si ≤g r ≤g Gi ande[var(Bi)] ∈ r}
5 if L(Si) = ∅ then “collapsing”
6 foreach Cl/(L(Gi) <g Ai) ∈ Cl and Ai ∩ L(Si) �= ∅ do
7 Cl ← Cl \ (L(Gi) <g Ai)
8 A′

i ← Ai \ L(Si)
9 if A′

i �= ∅ then Cl ← Cl ∪ (L(Gi) <g A
′
i)

10 if Cl = ∅ then “collapsing”
11 if Cl = {(L(Gi) <g Ai)} then

Gi ← max≤g{r/Si ≤g r ≤g Gi andr <g Ai} ; K ← K \ Cl

12 if e ∈ E− then
13 Cl ← ∅ ; reject← false
14 foreach Bi while ¬reject do
15 if ∃r ∈ L(Si)/e[var(Bi)] �∈ r then
16 Ai ← min≤g{r/Si ≤g r ≤g Gi ande[var(Bi)] ∈ r}
17 if Ai = ∅ then reject← true
18 else Cl ← Cl ∪ (L(Gi) <g Ai)

if ¬reject then
19 if Cl = ∅ then “collapsing”
20 if Cl = {(L(Gi) <g Ai)} then

Gi ← max≤g{r/Si ≤g r ≤g Gi andr <g Ai} ; K ← K \ Cl
21 else if � ∃Cl′/Cl′ ⊆ Cl then K ← K ∪ Cl
22 foreach Cl′′/Cl ⊂ Cl′′ do K ← K \ Cl′′

iii The one-meta-variable clauses.

The one-meta-variable clauses represent the only possible explanation for the
rejection of the coded negative instances. They must be reported on the local
version space then removed fromK. Let (L(G i) <g Ai) be a such clause:
L(Gi) must be made more specific thanAi.(lines 11 and 20).

iv Subsumption of negative instances.

A negative instancee−1 (encoded byCl1) subsumese−2 (encoded byCl2) iff
Cl1 ⊆ Cl2. Indeed, ifCl1 is satisfied, thenCl2 too. It is thus useless to store
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Cl2. Lines 21-22 of AlgorithmCONACQ maintain this minimality of the base of
clausesK.

A proof of Correctness of AlgorithmCONACQ can be found in [1]

Example 2 In Figure 2, we describe the learning process on a single constraintC 12 and
whereB12 is the bias of Figure 1. InitiallyL(S12) = {⊥}, andL(G12) = {�}. When
the positive instancee+1 = (1, 1) is received,L(S12) goes up inLH(B12) to the most
specific relations accepting this tuple (a), namely{=}. We know now that the final
relation of constraintC12 will be more general than or equal to “=”. When the negative
instancee−2 = (2, 1) is received, it is necessary to restrictL(G12) such that it will reject
this tuple (b). At this step:L(S12) = {=}, andL(G12) = {≤}. The negative instance
e−3 = (0, 3) forbids the relation “≤” (c). ThenL(S12) = L(G12) = {=}, that is a
local convergence.

(b)(c)

⊥

< > =

�= ≤ ≥

�

X1 X2

(a)

E X1 X2

e+1 1 1
e−2 2 1
e−3 0 3

Figure 2: A local example

Example 3 In Figure 3, we present an example of our algorithm using a constraint
network involving three variablesX1, X2 andX3. The biases used are{B12, B23},
wherevar(B12) = (X1, X2), var(B23) = (X2, X3) andLH(B12) = LH(B23),
which for the purposes of this example we will assume to be the same as that presented
asLH(Bi) in Figure 1. When processing the positive examplee+

1 = (2, 2, 5), due to
the projection property ofS, S12 and S23 go up (i.e.,L(S12) ← {=} andL(S23) ←
{<}) (a) and (b).

However, sinceG does not have this projection property: whene−2 = (1, 3, 2) is
received, eitherC12 must reject the tuple(1, 3) or C23 must reject(3, 2). Therefore,
we build the clauseCl = (rel(C12) <L

g {≤}) ∨ (rel(C23) <L
g {�=, }) to store these

alternatives (c) or (d). When the negative instancee−3 = (1, 1, 0) is received, we know
that the constraintC12 is not involved in its rejection, becausee−3 [var(C12)] = (1, 1)
is an allowed tuple ofL(S12) = {=}. The only explanation for the rejection ofe−3 is
Cl′ = (rel(C23) <L

g {�=, }) (d). Note thanCl′ subsumesCl (i.e.,Cl′ ⊆ Cl). The
explanation of the rejection ofe−3 (d) is also a valid one fore−2 : Cl becomes subsumed
by Cl′, and thus is discarded (the explanation (c) is discarded too). After these three
instances, theCONACQ result isL(S12) = {=}, L(G12) = {�},C23: L(S23) = {<}
andL(G23) = {≤}.
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X1 X2 X3

(a) (b)

(c) (d)

⊥ ⊥

< > = < > =

�= ≤ ≥ �= ≤ ≥

� �

(L(G12) <g {≤}) ∨ (L(G23) <g {�=})
︸ ︷︷ ︸

Cl

(L(G23) <g {�=})
︸ ︷︷ ︸

Cl′

E X1 X2 X3

e+1 2 2 5
e−2 1 3 2
e−3 1 1 0

Figure 3: A global example

7 Experiments and Observations
We report here on some preliminary experiments to evaluate the learning capabilities of
our approach. Rather than focusing on techniques for minimising the number of inter-
actions, our focus here is on studying a number of properties of theCONACQ algorithm
which provide motivation for our research agenda.

We performed experiments with a simulated teacher, which plays the role of the
user, and a simulated learner that uses the algorithm presented earlier. The teacher
has the knowledge of a randomly generated (target) network, represented by the triple
< 50, 8, C >, defining a problem involving 50 variables with domains{1, ..8}, and
a numberC of constraints. Each constraint is randomly chosen from the bias{<,=
, >,≤, �=,≥}. The teacher provides the learner with solutions and non solutions. The
learner acquires a version space for the problem usingCONACQ algorithm.

7.1 Experiment 1: Effect of the order of the instances
In this following experiment, we assess aspects of the runtime characteristics of the
CONACQ algorithm. In particular, we study computing time and the size of the version
space, while varying the order in which examples are presented. Instances from a set
E of size 100 are given by the teacher to the learner based on a< 50, 8, 50 > network.
The setE contains 10 positive and 90 negative instances.

Table 1 presents the time needed by the learner to acquire the version space,V , for
the example set while varying the arrival time of the 10 positive instances. The positive
instances were presented at the beginning (a), middle (b), and end (c) of the interaction
between teacher and learner.

Table 1: Effect of the timing of the introduction of positive instances

Introduction time for positives 0 (a) 50 (b) 90 (c)
Computing time (in sec.) 3.3 5.1 8.6
log(|V |) 2,234 2,234 2,234

We observe that“the sooner, the better” seems to be the good strategy for the
introduction of positive instances. Indeed, the specific boundS rises quickly in the
space of hypotheses with positive instances, reducing the size of the version space.
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Because of that, the CPU time needed is also reduced when positive instances arrive at
the beginning. But we can see that the final size of the version space is not affected by
the order of the instances. This is due to the commutativity property of version spaces,
discussed in Section 5.

7.2 Experiment 2: Utility of partial instances
In some cases, the user can reject an instance while justifying it by a negative sub-
instance. For example, in a real-estate setting the customer (teacher) might reject an
apartment citing the reason that“this living-room is too small for me”. The estate agent
(learner) knows that the violation is due to the variables defining the living room, which
can being very helpful for handling negative examples. The utility of such justified
rejections can be measured by providing our learner with partial instances. In the
following experiment (Table 2), the teacher provides the learner with 90 partial negative
instances (after 10 complete positive ones) in the training data. We consider partial
instances involving 2, 5, 10 variables, and report the size of the version space and of
the set of clauses after 100 instances have been given.

Table 2: Effect of the partial instances

Nb of variables involved in instances ofE− 50 10 5 2
log(|V |) 2,234 2,233 2,225 2,144
|K| (104 meta-variables) 7.6 6.1 3.2 0

We observe that partial instances speed up the process of convergence of the version
space. The smaller these partial instances are, the more helpful they are. This opens
a promising way of helping the learning process: asking the user to justify why she
rejects some instances can assist in reducing the length of the dialog with the teacher.
This is a critical issue if we are learning in an interactive setting from a human user.

7.3 Experiment 3: Non-representable constraints and version space
collapse

We have seen that our algorithm learns a network expressed using a given bias. An
overly restrictive bias leads to version space collapse since it is unlikely to be capable
of expressing the target network. This happens because some of the constraints of the
target network are non-representable in the given bias. In the following experiment,
(Table 3), we analyse the effect on the speed of version space collapse by varying the
proportion of non-representable constraints in the target network. For each proportion
of non-representable constraints we learned 100 different< 50, 8, 50 > target net-
works. Non-representable constraints, generated randomly, were not members of our
bias{<,=, >,≤, �=,≥}. The table presents the number of times the version space col-
lapsed after 1,000 instances where presented. Note that the focus of this experiment is
related to automatic reformulation rather than interactive modelling.

We observe that the more non-representable constraints in the target network, the
faster the version space collapses. This is to be expected since version spaces are
sensitive to noise (errors) in the training data. However, an interesting observation was
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Table 3: Effect of non-representable constraints

Ratio of non representable constraints10% 25% 50%
% of collapsing 47 78 100

made during this analysis. On a number of constraint networks containing very few
non-representable constraints we observed that the version space did not collapse, even
after millions of instances were presented.This seems to violate Mitchell’s theorem
of representability [6]. However, what occured in these situations was that the non-
representable constraints in the targetbecome representable by propagation of other
constraints. As an example, consider three variablesX1, X2, andX3 linked by the
following constraints in the target network:X1 = X2, X2 = X3, and(X1 = X3) ∨
(X1 = X3 + 5). Obviously, the constraint betweenX1 andX3 is not representable in
the bias{<,=, >,≤, �=,≥}, and every network containing it is expected to cause the
version space to collapse. However, this is not the case in this example, because we can
restrict the constraint betweenX1 andX3 toX1 = X3 by transitivity. This transitive
closure constraint is representable.

It is worth noting that if we had used a technique that learned each constraint in the
network separately, the version space for our problem would have collapsed had we
attempted to acquire the constraint betweenX1 andX3.

7.4 Observation: Implicit constraints
The general phenomenon of constraints that can be inferred by other constraints can
have another effect, which is to prevent the version space from converging to the small-
est possible on each constraint taken separately. Consider again an example with three
variablesX1, X2 andX3, linked in the target network by the constraintsX1 = X2,
X2 = X3, andX1 = X3. Furthermore, consider what occurs at some point in the
learning process when the version space local to the constraint defined on(X 1, X3)
contains bothX1 = X3 andX1 ≤ X3. If the training data contains only complete
instances, it is impossible to converge to the constraintX1 = X3 because every neg-
ative instance that would permit us to discardX1 ≤ X3 from the version space (e.g.,
((X1, 1), (X2, 2), (X3, 2))) will also be rejected byX1 = X2 or byX2 = X3. Thus,
the boundaryG will never determine that culpability lies withX 1 ≤ X3.

Applying some levels of local consistency seems to be a promising approach to im-
proving the reduction of the version space, by adding implicit constraints to the learned
network. In the previous example, path-consistency would be enough to deduce that
the only candidate betweenX1 andX3 is the constraintX1 = X3. This phenomenon
can cause theV S to keep a size bigger than it should have.

8 Conclusion
We have proposed an original method to learn constraint networks from instances that
should or should not be solutions. The technique used is based on version spaces, a
machine learning paradigm that has good properties (e.g., incrementality, commuta-
tivity, wrt the training data) that will be essential in a process interacting with a user.
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Even if this paper is mainly a description of the general process of learning a constraint
network from instances, we can easily foresee the many applications it could have, in
assisting a novice in modelling her problem, or helping an expert to test whether a given
library of constraints with good computational properties can encode her problem.

We have presented preliminary experiments that show that our approach raises sev-
eral important issues, such as the speed of the learning process, or the question of the
implicit constraints. Based on these experiments, and the framework in general, we
have given an insight into some of the very interesting research issues which are raised
by our work.
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