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ABSTRACT

Analysis of several million expressed gene signa-
tures (tags) revealed an increasing number of
different sequences, largely exceeding that of
annotated genes in mammalian genomes. Serial
analysis of gene expression (SAGE) can reveal new
Poly(A) RNAs transcribed from previously unrecog-
nized chromosomal regions. However, conventional
SAGE tags are too short to identify unambiguously
unique sites in large genomes. Here, we design a
novel strategy with tags anchored on two different
restrictions sites of cDNAs. New transcripts are then
tentatively defined by the two SAGE tags in tandem
and by the spanning sequence read on the genome
between these tagged sites. Having developed
a new algorithm to locate these tag-delimited
genomic sequences (TDGS), we first validated its
capacity to recognize known genes and its ability to
reveal new transcripts with two SAGE libraries built
in parallel from a single RNA sample. Our algorithm
proves fast enough to experiment this strategy at a
large scale. We then collected and processed the
complete sets of human SAGE tags to predict yet
unknown transcripts. A cross-validation with tiling
arrays data shows that 47% of these TDGS overlap
transcriptional active regions. Our method provides
a new and complementary approach for complex
transcriptome annotation.

INTRODUCTION

Mammalian genome-wide analyses are revealing an
increasingly complex transcriptome (1). While predictions
concerning the number of human protein-coding genes
declined from4100 000 to530 000 since 2001, transcript

number estimations followed an opposite trend (2).
Attempts to assemble hundreds of ESTs into clusters
expected to map on the same locus, as in UniGene (3), did
not eliminate the discrepancy between the small number of
protein-coding genes and the large number of detected
transcripts. Massively parallel hybridization on already
known sequence probes, as in classical microarray
technologies, cannot explore the whole transcriptome
complexity. For this purpose, new generations of high
density arrays have been developed using probes which
span a genome region at regular intervals, either over-
lapping or spaced at defined distances (4,5).
Besides these new open strategies, methods based on

sequence signatures (tags) such as serial analysis of gene
expression (SAGE) also meet the requirements to provide
fresh information on unknown transcripts. SAGE tags are
extracted from the 30 most 4-nt ‘anchoring site’ of cDNAs.
The restriction enzyme that cuts cDNA at this topologi-
cally defined sites is usually NlaIII (CATG sites), but
Sau3A1 (GTAC sites) may be used as well (6). Starting
from this site, stretches of 14 or 21 nt (respectively in
conventional SAGE and in LongSAGE) are extracted
using Bsmf1 or Mme1 as ‘tagging’ enzymes (7,8). Tags
matching known mRNAs are readily identified and the
individual frequency of each tag measures the expression
level of its cognate mRNA. As the quality of analysis
depends on the number of sequenced tags, SAGE was
limited up to now by the cost and capacity of the Sanger
technique. However, with the advent of new DNA
sequencers, the flow rate of tag-based methods may
grow by an order of magnitude with a substantial
reduction of time and cost of analysis (9–12) and now it
becomes realistic to analyze in parallel larger collections
of tags.
In addition to the tags of well-annotated mRNAs,

SAGE experiments currently reveal tags unmatched to
known transcripts. Their high number cannot be
explained simply by sequencing errors or genetic diversity,
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and many of them are susceptible to reveal new
transcripts. The problem is to map these unmatched tags
directly on large genomes. For this purpose, we investi-
gated a new strategy, which consists in building two
SAGE libraries from the same biological sample, with
tags respectively anchored on the two adjacent CATG
and GATC sites located at the 30-end of each cDNA.
We developed a new algorithm for assembling these
tandem tag pairs on the genome sequence, defining tag-
delimited genomic sequences (TDGS). In a small-scale
experiment, we checked the rate of success of this strategy
on a sample of well-annotated mRNAs, and starting
from previously unmatched tags, we evaluated its ability
to reveal new transcripts. In a large-scale analysis,
we assembled a collection of TDGS based on the whole
set of publicly available human SAGE tags. We found
that a part of them mapped on transcription sites also
indicated by tiling arrays and in addition we detected
novel transcribed loci. In conjunction with other high-
throughput approaches, this tandem SAGE tags strategy
may help to complete the annotation of genomics regions
transcribed into polyadenylated [poly(A)] RNAs.

MATERIALS AND METHODS

External datasets

SAGE data were collected from publicly available
repositories [http://www.ncbi.nlm.nih.gov/projects/geo/
index.cgi: Platforms: GPL4, GPL6 and GPL1485,
http://www.prevent.m.u-tokyo.ac.jp/SAGE.html, CAGP
project (Sage genie): ftp://ftp1.nci.nih.gov/pub/SAGE/
HUMAN/]. The list of SAGE libraries is available
(Supplementary Table 1). Homo sapiens chromosome
sequences (HG17, NCBI build 35) were retrieved from
the UCSC Genome Bioinformatics site (http://genome.
ucsc.edu/). UniGene cluster-representative sequences were
taken from the Hs.seq.uniq. file, retrieved by FTP from
the National Center for Biotechnology Information site
(ftp://ftp.ncbi.nih.gov/repository/). We used the UniGene
built # 162 assembling 4.47 million sequences into 123 995
clusters and providing the same number of cluster-
representative sequences. Since SAGE may detect several
authentic transcripts from the same locus, we did not
use more recent UniGene releases in which transcripts
co-locating with known genes have been merged.
Alu sequences were taken from RepBase Update (http://
www.girinst.org/Repbase_Update.html) (13).

Macrophage SAGE libraries

Venous blood from healthy donors was obtained from the
Etablissement Français du Sang (Montpellier, France).
Monocytes, isolated by adherence to culture flasks, were
differentiated into499%Monocyte Derived Macrophages
(MDMs) as previously described (14). Total RNA
(50mg) from 8.106 MDMs was extracted with TrizolTM

(Invitrogen, Cergy Pontoise, France). Poly(A) mRNA was
selected by hybridization to oligo (dT) 25-coated magnetic
beads according to manufacturer’s instructions (Dynal,
Compiegne, France). CATG-tags were prepared using the
I-SAGE kit (Invitrogen, Cergy Pontoise, France) and

GATC-tags using a modified Sau3A1 SAGE procedure
(6). The sequences of 22 387 CATG-tags and 8221 GATC-
tags determined by the Centre National de Séquençage
(Evry, France) were analyzed for tag detection and
counting using the C+tag software (Skuld-Tech, France).

Computational analyses

The virtual SAGE analysis of UniGene cluster-
representative sequences was performed using the
Preditag software (Skuld-tech, Montpellier, France,
http://www.skuldtech.com) as described (15). For each
sequence, the tag expected to be observed in a SAGE
analysis, i.e., the one originating from the first anchoring
site starting from the 30-end of the sequence, was
registered as Rank 1 tag (R1). We also registered tags
from upstream anchoring sites (R2, R3, R4) susceptible to
reveal technical artifacts or alternative transcripts, and
tags read on the opposite strand (AS1 to AS4), which may
reveal antisense transcripts (16). We performed this
procedure for both CATG and GATC anchoring sites.
From the previous set, we selected high quality R1 tags
according to the following criteria: RefSeq annotation or
mention of a full-length mRNA, known chromosomal
location, absence of Alu sequence in the tagged site.
Hereafter, a tag will be referred to as a C-tag if anchored
on a CATG site (using NlaIII as anchoring enzyme) or as
a G-tag if anchored on a GATC site (using Sau3A1).

The algorithm used to assemble tag pairs on the genome
is depicted in Figure 1A. It takes as input two sets of
experimental tags, one of C-tags and one of G-tags, and
retrieves all combinations of successive 50G-30C and
50C-30G tag pairs on the genome. The algorithm follows
three rules. First, each transcript must possess both
restriction sites. Among RefSeq mRNAs, we found
4.6% lacking one of them. Second, both sites may be
found in any order, implying that two sets of oriented
pairs, 50G-30C and 50C-30G, must be generated. Third,
each tag is anchored on the most 30 restriction site.
Therefore, if a G-tag is located in 50 relatively to the most
30 C-tag of the transcript, there is no intervening G-tag
between them. This assertion holds for the processed
transcript but not for genomic DNA, since tags may be
located on distinct exons. Because 4-bp restriction sites are
frequent, scanning introns will necessarily detect false-
positive tags. To alleviate this problem, the genome is
scanned using actually observed experimental SAGE tags,
so that irrelevant sequences may be skipped over. Intronic
14-bp stretches will be registered only if they are
fortuitously identical to real tags (Figure 1C).

For assembling G–C tag pairs, the chromosome
sequence is read from the 50 to the 30-end. Each occurrence
of CATG is searched with a variation (17) of the Boyer–
Moore–Horspool algorithm (18). Then it is checked
whether CATG with the next 10 symbols matches a tag
of the experimental list. This is performed with a
hash table holding the variable parts of tags (the 10 nt
suffix). Once a C-tag is located, the sequence is scanned
again from 50 toward 30 and in the same way to find
the 30 most experimental G-tag preceding the C-tag.
The chromosomal co-ordinates of this G–C tag pair is
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Figure 1. (A) Schematics of search for tag-delimited genomic sequences (TDGS, double arrows). Upper part: procedure for assembling 50G- 30C
pairs. Starting from the previously identified C-tag (n� 1), the program searches the next site on which an experimental C-tag (n) can be positioned
(star 1). The genome sequence is then scanned for G-tags (x� 1, x) and stops (star 2) when the shortest G–C pair is found. In search of the next
pair (stars 3 and 4), the G-tag (z) potential tag sequence is skipped because it does not match any G-tag in the experimental dataset. Lower part
(B, C and D): illustration of the various causes of success and failure in assembling TDGS. Numerical values in B and C are taken from the study
of 489 well-annotated sequences identified in the macrophage SAGE libraries. Cases schematized in D are detailed (d) in Figures 3 and 4.

PAGE 3 OF 10 Nucleic Acids Research, 2007, Vol. 35, No. 17 e108



then recorded together with the sequence comprised
between the two tags, which we call a TDGS. The
search for the next pair resumes on the nucleotide position
following the C-tag anchoring site. G–C pairs are
assembled on both DNA strands and the search is iterated
for C–G pairs in a similar way. With the larger sets of
G-tags and C-tags (106 748 and 619 771 tags, respec-
tively), the search on the full set of human chromosomes
required52 h on a Pentium processor at 1.5GHz running
Linux with 256 megabytes of main memory. The program
is available at the following URL: http://www.lirmm.fr/
�rivals/GENOMICS.

Proximity between TDGS and tiling arrays data

We retrieved tiling arrays data from the UCSC Genome
Bioinformatics site (http://genome.ucsc.edu/). We used
transcriptional active regions (TARs) data from
Affymetrix Transcriptome Project Phase2, Affymetrix
Poly(A)+ RNA transfrags, Yale RNA TARs and Yale
Maskless Array synthesizer experiments (5,19). We
computed the number of TDGS that either strictly overlap
a TAR, or are in a 500-bp vicinity of a TAR.

RESULTS

Overall structure of SAGE data

We assembled two sets of 270 and 15 libraries built with
NlaIII and Sau3A1, respectively as anchoring enzymes,
associating local data and a large number of publicly
available SAGE human libraries (Supplementary Table 1).
This collection, assembling 13.7 million C-tags and
0.5 million G-tags, will be called UniSAGE hereafter.
The total number of distinct C-tags registered in
UniSAGE is 619 770, i.e. 59% of the number of all
possible 10-nt combinations (410), largely exceeding the
number of UniGene clusters and the small number of well-
annotated mRNAs. A salient feature is that individual tag
counts evenly decrease, from a large number of tags
observed only once to a small number of highly abundant
tags (Figure 2). Similar distributions are observed in
individual libraries and in the dataset obtained by
summing all UniSAGE tag counts. As illustrated in
Figure 2, most unidentified tags are observed at low
levels and tags matching RefSeq sequences are the most
abundant ones. Among the set of tags expressed at low
levels, distinguishing between biological and artifactual
ones prompts for novel approaches.

Discrepancy between the numbers of tags and of known genes

Several sources of inflation make rare biological tags
indistinguishable from artifacts, including infidelities in
reverse transcription and PCR, or inaccuracies in single-
run sequencing. To estimate a global error rate, we
simulated 1-nt errors on R1 tags of widely expressed
genes. We sampled four proteins (EEF1A1 and three
ribosomal proteins) for which C-tag variants were
uniformly distributed at low level among libraries, thus
providing no evidence of them being shared with other
abundant transcripts. In each case, all 30 tags differing by

1 nt from the canonical tag were observed more than
once in UniSAGE. As a whole, these variants accounted
for 6–7% of R1 tag counts (mean 6.6%). Individual
variant frequencies varied depending on the substitution
position. However, as frequency distributions were similar
in the four samples, we could derive an empirical curve
fitting well with their mean distribution (R2=0.99).
Applying this model to the whole UniSAGE dataset, we
estimated the total number of 1-nt variants at nearly
160 000 C-tags. The lack of efficiency of the anchoring
enzyme may also generate additional tags generated from
upstream sites. R2 tags for widely expressed genes were
usually found at low levels. Wide differences from gene
to gene made problematic an estimation of their
mean frequency. However, tentatively assuming that all
transcripts counted at least 100 times in the sum of all
libraries generate R2 tags, we may estimate that some
15 000 R2 C-tags are probably registered in UniSAGE.
Genetic diversity also increases tag numbers. Single
nucleotide polymorphisms (SNPs) either modify tag
sequence or create new tags if the anchoring site itself
harbors SNPs. This problem has already been investigated
elsewhere, the analysis of 54 645 mRNAs from UniGene
built #163 revealed 8.6% of SNP-associated alternative
tags (20). Altogether, these multiple causes of inflation
explain far less than a half of the huge number of different
tags registered in UniSAGE. It thus seems unavoidable to
conclude that a large number of tags originate from
authentic transcripts.

Analysis of twin SAGE libraries

Causes of failure and rate of success in search of already
known genes. The algorithm illustrated in Figure 1A was
used to assemble a set of 8085 different C-tags and 4217
G-tags obtained from twin libraries built in parallel from
a unique macrophage RNA sample. The different C-tags
and G-tags were mapped as C–G and G–C tandem pairs
on the genome. To test the algorithm efficiency, we
sampled 489 gene sequences selected from the UniGene

Figure 2. Number of distinct C-tags (left y-axis, black square) in
five consecutive classes of occurrence, i.e. abundance, (x-axis) from 1 to
42048 counts summed up over UniSAGE, and percentage of tags
matching RefSeq annotated sequences (right y-axis, gray diamonds).
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collection for providing high quality R1 tag pairs
(Table 1A). We observed 393 positive cases (Figure 1B)
and 96 cases of discrepancy (Figure 1C and Table 1B)
between this test sample and the set of genomic pairs: 13
tag pairs were not detected on the chromosome indicated
by UniGene but elsewhere in the genome on a related
pseudo-gene, and 83 pairs were not found on the genome.
The major case of failure (52 pairs, 10.6%) was the
intrusion of another tag in the intervening intron, causing
abortion of the pairing process between tags located on
separate exons. For 25 pairs (5.1%), one of the tags was
undetectable in the genome because, being created by the
junction of two exons, it exists only in the processed
transcript. In three cases, one of the anchoring sites was
located at the end of the transcript, the full-length tag
being created by poly(A) tail extension. In three other
cases, the UniGene and genome sequences differed from
the genome by the presence of a SNP. The chromosomal
locations indicated by UniGene and found by genome
scanning were identical for 393 pairs, i.e. 80% of the
whole test collection. We found a unique chromosomal
location for 336 pairs (85.5% of these successfully
assembled tag pairs, 69% of the whole test sample) and
additional genome sites for 57 of them (Table 1A and B).

New transcripts detected by pairing unmatched
tags. We collected experimental tags considered as
unmatched tags because they match neither any R1 to
R4 tags, nor their antisense counterparts (AS1 to AS4),
nor any Alu sequences. Tags according to these criteria
were involved in 251 tag pairs. TDGS showed variable
length, from four nucleotides for two overlapping C- and
G-tags to 20 000 nt, with 50% of them not exceeding
2800 nt. We used the functions of the UCSC Genome
Browser (http://genome.ucsc.edu/) to get a representation

of these TDGS in their chromosomal context and
investigated in more details their properties. Although
Alu-matching tags had been removed, we still found
TDGS overlapping repeated elements. One G-tag has
generated tag pairs with 56 different C-tags. The annota-
tion revealed that this G-tag maps on a LINE repeat.
The 187 remaining sequences resulted from the assembly
of 136 C-tags and 118 G-tags, with all tags having at most
five matches in the genome. This suggests that requiring
a low multiplicity of matches for each tag should help
filtering out TDGS generated by abundant genomic
repeats. The 187 sequences were sorted by individual
inspection into three classes. Class 1 contains 14 sequences
matching well-annotated genes for which UniGene did
not provide the expected reference sequence. Class 2
(Figure 1D) contains 39 TDGS mapping in close vicinity
of a known locus. Class 3 (Figure 1D) collects 134 TDGS
(71.7%) mapping in genomic regions lacking indications
for transcription sites, or bearing an expressed sequence,
but in inverted orientation (e.g. antisense transcript).

Case studies. We successfully confirm by RT–PCR 50%
(14 out of 27) of a subset of tested cases (Supplementary
Table 2). An example of Class 1 sequence is provided by
TDGS # 227. We found it mapping within the locus of
Gelsolin (GSN: NM_198252), a well-known component
of the macrophage. An example of Class 2 sequence is
provided by TDGS # 20 located near the coding region
of CDH23 (Figure 3A). We confirmed by RT–PCR the
expression of this transcript in the macrophage: we
amplified the end of the 30cDNA using primers designed
on the genomic sequence. The analysis of the amplicon
sequence validated the existence of an alternative poly-
adenylation site. Class 3 contains antisense transcripts of
known genes. TDGS # 212 was found mapping in a

Table 1. Evaluation of the ability of our algorithm or LongSAGE tags to localize on the genome.

Panel A:

Total
analyzed

Not
found

Located

Unique 52 Sum

LongSAGE (Number of tags) 98 142 34 659 51 933 11 550 63 483
% 100% 35% 53% 12% 65%
Tandem—UniSAGE tags sets 11 998 3110 8189 699 8888
% 100% 26% 68% 6% 74%
Tandem—Macrophage twin libraries 489 96 336 57 393
% 100% 20% 69% 12% 80%

Panel B:

Tandem—Macrophage twin
libraries causes of localization
failure for known transcripts

Total Found
elsewhere

Tag
intrusion
in intron

Tag at the
junction
of 2 exons

Tag in
Poly A tail

SNP
in tag

Number of transcripts 96 13 52 25 3 3
% 100% 14% 54% 26% 3% 3%

(Panel A) Values for both methods to localize tags or TDGS, using tags recognized as matching well-known gene transcripts (also call R1-tags) on
UniSAGE or Macrophage twin libraries data or tags with occurrence more than once for LongSAGE.
(Panel B) Evaluation of the ability of our algorithm or LongSAGE tags to localize on the genome. Causes of localization failure on Macrophage twin
libraries with the tandem algorithm.
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Figure 3. Characterization and annotation of validated TDGS. Alignments of the TDGS# 20 and # 212 to the UCSC human genome browser.
For RT–PCR validation, Macrophage poly(A)+ RNA were extracted from MDM and the cDNA were synthesized using mRNA and oligo-dT
primer. (A) TDGS# 20 corresponds to an example of Class 2 transcript localized near the coding region of CDH23. For PCR, a primer pair was
respectively designed in the 30-end of CDH23 and in the TDGS # 20. The existence of this new variant transcript was confirmed in macrophage
by sequencing. (B) TDGS # 212 is an example of class 3 transcript. Experiments without reverse transcription (A, C) and with DNAse treatment
(C, D) were performed to detect DNA contamination. For transcript validation, a first PCR was realized with primers pairs designed on TDGS
# 212 and a second one with primers respectively in the 30-end of EST EB10260 and TDGS #212. The 30-end of the transcript was validated
by 30RACE (30RACER kit, Invitrogen, France). The sequenced PCR products validated the existence of a transcript in inverted orientation relatively
to the Cathepsin B gene (CTSB, NM_0019082).
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region where the UCSC Browser indicated numerous
ESTs mapping in both orientations. RT–PCR and RACE
extension of macrophage poly(A)+RNA confirmed the
existence of a transcript in inverted orientation relatively
to the Cathepsin B gene (CTSB, NM_0019082,
Figure 3B). TDGS # 5, 6, and 54 illustrate a more
complex situation (Figure 4A). We registered TDGS # 5 in
our Class 1 because it maps on the site of a computer-
predicted sequence on chromosome 1, corresponding to
a full-length cDNA newly registered in GenBank as
CR601947. TDGS # 6, also in Class 1, shares its C-tag
with TDGS # 5, but its sequence is longer (821 nt instead
of 376) because its G-tag is located in 30 of the TDGS # 5
one. Apparently, TDGS # 5 and 6 correspond to two
alternative transcripts from the same locus on chromo-
some 1 (Figure 4B). In addition, TDGS # 54, registered
in Class 3, reveals another site, in a region of chromo-
some 14. TDGS # 5 and TDGS # 54 are delimited by
identical C- and G-tags, have exactly the same length
(376 nt) and the BLAST algorithm indicates 93% homo-
logy between the two sequences, which differ only by 20 nt.
To assess the transcription of this intervening region,
we checked it against a tiling array database. We found
(Figure 4C) that the sequence of chromosome 14 matched
a sequence registered in the Affymetrix dataset harbored
at UCSC genome site (Affy Txn Phase2) and annotated as
being expressed from the same site (5). Finally having
sequenced the PCR product, we could conclude that the
transcript originates from the chromosome 14 locus.

In silico experiment with the whole UniSAGE data set

The algorithm was used to assemble the whole set of
UniSAGE-registered C- and G-tags. We first tested its
efficiency on a sample of 11 998 gene sequences, selected
from the UniGene collection for providing high quality
R1 tag pairs (Table 1A). The algorithm failed to found
a chromosomal tag pair for 3110 of them (26%) and
succeeded in identifying 8888 gene sequences (74%).
Among them, 8189 (68%) were assigned to a unique
genome site. In comparison, when searching for the subset
of R1 LongSAGE tags (70 284 tags, 8% of all LongSAGE
tags), 71% identify a unique genomic location. With
the whole dataset of the LongSAGE tags (98 142 tags
observed more than once), this percentage drops to 53%
(Table 1A). Experimental tags considered as unmatched
were collected according to the same criteria as described
above. In UniSAGE, 321 498 C-tags and 49 103 G-tags
fall in this category. Working on the subset of tags found
at least three times in the sum of all libraries, the algorithm
assembled 93 859 potential tag pairs on the genome.
We evaluated the TDGS length of unmatched tags pairs
and compared them to well-annotated TDGS obtained
from high quality R1 tags pairs (Figure 5). Well-annotated
TDGS extend up to 6000 nt. Unmatched TDGS span
from 4 to 20 000 nt; however, more than 84% do not
exceed 6000 bases. Each tag being present several times
in the genome can be involved in several pairs. A direct
examination being unpractical in this case, we cross-
checked the set of TDGS with tiling arrays data. We
computed the proximity between each TDGS and

transcriptionally-active regions (TARs) from tiling
arrays and found 43 813 TDGS (47%) overlap a TAR,
and 65 808 (70%) are located5500 bp away from a TAR.

DISCUSSION

In the present work, we developed a new algorithm
associating pairs of gene expression signatures to localize
their position on the genome. This work was motivated by
studies on a large SAGE dataset (UniSAGE) showing a
discrepancy between the number of loci for well-annotated
genes and the large number of potential transcripts
suggested by the number of tags. Using the whole set of
presently available NlaII and Sau3A1 individual SAGE
tags (619 000 and 106 748, respectively), this algorithm,
efficient enough to process on a standard desktop
computer, predicted 93 859 potentially transcribed sites
in the human genome. This observation corroborates
independent evaluations based on the prediction of
functional transcription units and on the experimental
results of tiling arrays (21–24).
Genetic polymorphism and technical errors do

not account for all unmatched SAGE tags. Apart
from a non-specific natural transcription noise, they
may reveal genuine transcripts justifying more
thorough investigations. As an open method, SAGE
may indeed reveal transcripts never observed
before because they are expressed in rare physiological
conditions or in unique cell types, such as the terminally
differentiated macrophage studied in the present work.
Allowing retrospective comparisons of large datasets,
it enables to distinguish a uniformly distributed transcrip-
tion noise from the controlled expression of tissue-specific
transcripts. Its main limitation is to detect only Poly(A)
transcripts. Other wet-lab methods exist for other kinds
of RNA molecules (25,26).
The algorithm described here may used for assembling

any pair of tags irrespective of their length (14–21 bp)
or position (50 or 30) on the transcript. For instance, it could
be used in the context of the new method developed
to form paired-end ditags (PETs) in which the 50 and 30 tags
defining both ends of cDNAs are physically linked
and sequenced together (27); this method is valuable
for accurate transcript demarcation but it requires full-
length cDNAs, which may be difficult to synthesize.
Moreover, our algorithm could use data simultaneously
collected from different cDNAs tags technology [SAGE
and derivates technologies as Massively Parallel Signature
Sequencing (MPSS) (28)] However, the approach
investigated here, based on the current SAGE technology,
is technically less demanding, particularly with the new
DNA sequencers available today (see the Introduction
section).
While tags matching well-annotated mRNAs are easily

recognized, most tags are in any case difficult to locate
directly on the genome. Individual 14-bp tags cannot
be mapped unambiguously since large genomes
are statistically expected to contain multiple copies
of any 14-bp stretch. Theoretically, a 21-bp tag should
occur only once per genome if nucleotides were
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Figure 4. Characterization and annotation of validated TDGS. Alignments of the TDGS# 5, 6, 54 to the UCSC human genome browser. For
RT–PCR validation, Macrophage poly(A)+ RNA were extracted from MDM and the cDNA were synthesized using mRNA and oligo-dT primer.
(A and B) TDGS # 5 (376 bp) maps on chomosome 1, corresponding to the sequence of new full-length cDNA registered in GenBank as CR601947.
TDGS # 6, shares with TDGS # 5 the same C-tag (dotted boxes) but its sequence is longer (821 bp) because its G-tag is located in 30 of the TDGS
# 5 one. (A and C) In addition, TDGS # 54, reveals another site, in a region of chromosome 14. The same conditions as described in Figure 4 were
used to PCR validation. RT–PCR analysis followed by sequence checking confirm the existence of this new transcript. The sequence of
chromosome 14 matched a sequence registered in the Affymetrix dataset harbored at UCSC (Affy Txn Phase2)
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randomly distributed. However, the benefit of LongSAGE
is limited because extending sequence length increases the
rate of technical errors, the number of mismatches due to
genetic polymorphism and the risk of tags being split
in two exons. It must be stressed that among all 21-bp tags
sequenced up to now, 89% have been observed only once
and that only 8% of all tags correspond to well-known
genes. Even in the case of well-annotated mRNAs, 15%
of 21-bp tags cannot be mapped directly on the genome.
As a whole, we found 66% of LongSAGE tags unassigned
to the published human genome sequence, in agreement
with other groups who found 70% on a preliminary
draft version and 64.5% on a more recent release,
respectively (8,29).

The presence of repeated elements inserted in
the genome limits the possibility to locate tags on
a unique position. In the human genome, 71% of 21-bp
tags are observed only once instead of 99.83%
if nucleotides were distributed at random (8). In
the present work, we tested the algorithm with pairs
of 14-bp classical SAGE tags, thus requiring perfect
matches on 28 positions. For simplification, we put
aside individual tags matching Alu sequences inserted in
the 30 non-coding region of multiple human mRNAs.

Nevertheless, we still observed tags involved in multiple
pairs. These repeats inflate the number of TDGS
but cannot be rejected as erroneous since insertion
elements and pseudogenes may actually be transcribed.
Finally, we found 68% of TDGS matching a unique site,
close to the 71% observed for individual 21-bp tags.
Whatever the method, either based on physical hybridiza-
tion (as in tiling arrays) or in silico searches (in the present
case), it is obvious that insertion elements complicate
the interpretation of transcriptome data (30).
Using a test sample of experimental tags obtained from

twin macrophage libraries, we detected 187 potentially
new transcripts. Among them, 39 appeared as alternative
transcripts of known genes, while 134 potential sites were
found in intergenic regions or in antisense orientation of
known genes. The hypothesis that a newly detected TDGS
identifies a novel site is initially based on the presence of
the two experimental tags at both ends of the sequence. At
this stage, false-positive cases are unavoidable and
additional data are needed to confirm the expression of
the intervening sequence. The classical solution is to
design primers in the region defined by a TDGS, perform
RT–PCR, and sequence the resulting amplicon, as in
GLGI method (31). We confirmed by this the existence of
five new transcription variants of known genes and 10
novel transcripts, i.e., 50% of candidates. In other cases,
we did not detect amplicons or found complex patterns.
Among technical causes of failure, natural catabolic
products may inhibit amplification and primers may
be captured by irrelevant transcripts. Nevertheless,
it must be stressed that a positive rate of 50%
offers the possibility to identify thousands of new
biologically relevant transcription sites at the whole
genome scale.
Although individual validations provide definitive

evidence, the interest of high-throughput strategies is
lost in this time-consuming approach. Other strategies
may help to select rapidly the best candidates. The size
of TDGS is by itself informative and may be used to
classify them, assuming that the shorter ones have a higher
probability to match genuine transcripts. Another round
of selection can be based on comparisons with indepen-
dent datasets. The ENCODE project plans to use
tiling arrays as a major tool for human genome annota-
tion (32). Here, we showed the possibility to connect
efficiently both kinds of data, a task very difficult with
classical microarray and conventional SAGE data.
We found a 47% overlap between our TDGS collection
and TARs. This result shows that the tandem SAGE
strategy corroborates for a part the results of tiling arrays
and enables to reveal new transcripts having escaped from
other detection systems. As a whole, these results
emphasize the importance to combine independent
and complementary methods for thoroughly exploring
the transcribed part of the genome.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

Figure 5. Length of the TDGS assembled from the whole UniSAGE
data. Frequency of TDGS length (in base pairs) on well-known
annotated TDGS (R1 TDGS) (A) and on unkown TDGS (unmatched
TDGS) (B). Each point represents a TDGS (in gray) (�99 and 92.5%
TDGS are shown, respectively), and the curve (in black) is a power
regression curve.
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12. Quéré,R., Manchon,L., Pierrat,F., Ludewig,U., Nesch,G., Frey,B.,
Commes,T., Marti,J. and Piquemal,D. (2007) Rapid and Accurate
Pyrosequencing of Serial Analysis of Gene Expression Ditags.
Roche Application Note, 4, 2–8.

13. Jurka,J., Kapitonov,V.V., Pavlicek,A., Klonowski,P., Kohany,O.
and Walichiewicz,J. (2005) Repbase Update, a database of
eukaryotic repetitive elements. Cytogenet. Genome Res., 110,
462–467.

14. Woelk,C.H., Ottones,F., Plotkin,C.R., Du,P., Royer,C.D.,
Rought,S.E., Lozach,J., Sasik,R., Kornbluth,R.S. et al. (2004)
Interferon gene expression following HIV type 1 infection of
monocyte-derived macrophages. AIDS Res. Hum. Retroviruses, 20,
1210–1222.

15. Piquemal,D., Commes,T., Manchon,L., Lejeune,M., Ferraz,C.,
Pugnère,D., Demaille,J., Elalouf,J.M. and Marti,J. (2002)
Transcriptome analysis of monocytic leukemia cell differentiation.
Genomics, 80, 361–371.
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