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Abstract

Sequential pattern mining is the one most concentrated and applied

in sequence mining research, it gives a frequency based view of the cor-

relations between elements contained in the sequences. However, when

we consider domain knowledge within the data mining process, the fre-

quency based criterion becomes less interesting since most of the frequent

sequences might have already been confirmed, and the most interesting

sequences might not be the sequences corresponding to existing knowl-

edge, but be the sequences contradicting existing knowledge that reflect

unexpected behaviors. In this paper we introduce the problem of finding

unexpected behaviors within the context of sequence mining. We first

give formal descriptions of belief base and unexpected sequences, we then

introduce unexpected sequential patterns and unexpectedness rules that

depict unexpected behaviors within the sequences. We also propose the

USER approach for mining unexpected sequential patterns and rules from

a sequence database with respect to a given belief base. Our experimental

results show that both of the quantity and the quality of the unexpected

sequences extracted by the USER approach are improved in comparison

with the frequent sequences extracted by general sequential pattern min-

ing approaches.

1 Introduction

To date, for the requirements of modern applications (marketing development,
bioinformatics, Internet navigation analysis, etc.), more and more data have
been stored in the form of sequence in databases. In order to find pertinent
correlations from those databases of sequences, [1] introduced the problem of
mining sequential patterns that finds maximal frequent sequences from a given
database of sequences with respect to a user specified minimum support thresh-
old. Though the correlations between sequential data are essential for decision
making, the unexpected sequential patterns that contradict the beliefs acquired
from domain knowledge are more and more concentrated. With such unexpected
sequential patterns, it becomes, for example, possible to respond network emer-
gencies, to determine system crashes, to position new commercial strategies,
and even to find the frauds.

For instance, in considering a database of retail transactions, we might find
by sequential pattern mining that customers typically purchase an iMac com-
puter, then an iPod player, and then an iPhone cell phone. Such a sequential
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pattern is too reasonable to be valuable to push commercial strategies since
it corresponds obviously to our existing knowledge of customer behaviors. On
the other hand, a transaction sequence such like customers purchase an iMac
computer then a Windows Mobile cell phone, can be more important because
it contradicts general behaviors known in this domain.

Note that our purpose is not to find rare sequences, but to find the sequences
contradicting existing knowledge. Though the extraction of semantical contra-
diction exists in the association rule mining [4], there does not exist any ap-
proach to find unexpected sequences corresponding to domain knowledge based
on semantics. In this paper, we propose the notion of the semantics based belief
system and its contradictions within the context of sequence mining, with which
we therefore define the unexpected sequences. Since the traditional sequential
patterns mining approaches do not find the ”antecedent-consequent” type rules,
we extend the notion of unexpected sequences to unexpectedness rules. For ex-
tracting such rules from a sequence database with beliefs, we propose the USER
(Unexpected Sequence Extracted Rules) approach.

The rest of this paper is organized as follows. Section 2 introduces the re-
lated research work. In Section 3 we present the USER approach for mining
unexpected sequential patterns and unexpectedness rules. We give formal de-
scriptions of belief base and unexpectedness of sequences, we then introduce
unexpected sequential patterns and unexpectedness rules depicting unexpected
behaviors within the sequences. We also show the algorithms USER. Section 4
shows our experimental results with real data and synthetic data. The conclu-
sion and our future research in unexpected sequence mining are listed in Section
5.

2 Related Work

In this section we introduce existing work related to unexpected sequence mining
including interestingness measures for data mining, unexpected association rule
mining and other approaches to unexpected sequence mining.

[2] summarized the measures of interestingness for data mining. Interesting-
ness measures can be classified as objective measures and subjective measures.
Objective measures typically depend on the structure of extracted patterns and
the criteria based on the approaches of probability and statistics (e.g. support
and confidence); subjective measures are generally user and knowledge oriented,
the criteria can be actionability, unexpectedness etc.. The belief driven unex-
pectedness is first introduced by [3] as a subjective measure where beliefs are
categorized to hard beliefs and soft beliefs. A hard belief is a constraint that
cannot be changed with new evidences, and any contradiction of a hard belief
implies the error in gathering new evidence. A soft belief is a constraint that
can be changed with new evidences by updating the degree of belief, and the
interestingness of new evidence is measured by the changes of degree of belief.

In our approach two interestingness measures are involved. The first one is a
subjective measure that is the belief based criterion unexpectedness, that is used
for finding unexpected sequences. The second one is an objective measure that
is the statistical frequency based criteria support and confidence, that are used
for finding unexpected sequential patterns and unexpectedness rules. Note that
in our approach though a belief is rather a “hard belief”, we do not consider

2



the contradiction of a belief as errors in data.
Based on the proposition of [3], in the most recent approach to unexpected

association rule mining presented by [4], a belief is represented as a rule with
the form X → Y , and a rule A → B is unexpected to the belief X → Y if: (a)
B and Y logically contradict each other, denoted by B AND Y |= FALSE; (b)
the rule A∪X → B satisfies given support/confidence threshold values; (c) the
rule A∪X → Y does not satisfy given support/confidence threshold values. The
mining process is done by the a priori based algorithms that find the minimal
set of unexpected association rules with respect to a set of user defined beliefs.

[5] proposed a framework based on domain knowledge and beliefs for finding
unexpected sequence rules from frequent sequences. The author first intro-
duced the generalized sequence g1 ∗ g2 ∗ . . . ∗ gn so called “g-sequence” where
g1, g2, . . . , gn are elements of sequence and ∗ is a wildcard. The author then
proposed the sequence rule by splitting a g-sequence into two adjacent parts:
a premise part LHS and a conclusion part RHS, denoted as LHS ↪→ RHS.
A belief over g-sequence is a tuple 〈LHS, RHS, CL, C〉 where CL is a conjunc-
tion of constrains on the statistical frequency of LHS and C is a conjunction
of constraints involving elements of LHS and RHS. For example, as intro-
duced by [5], let belief 〈a ∗ b, c, CL, C〉 be a belief with CL = (support(a ∗ b) ≥
0.4 ∧ confidence(a, b) ≥ 0.8) and C = (confidence(a ∗ b, c) ≥ 0.9). This belief
states that the LHS of the sequence rule a∗b ↪→ c should appear in at least 40%
of sequences, the confidence of the belief given a should be at least 0.8 while the
RHS confidence should be at least 0.9. So that a sequence rule is expected if
it confirms to a belief in terms of statistics of content. Finally the unexpected
rules are grouped by the semantics of there unexpectedness and can be used for
creating new rules.

The approach of [5] is to find the sequences that do not satisfy given statis-
tical frequency constraints of each occurrences, it is different to our approach
to unexpected sequence mining.

3 The Approach USER

In this section we present our approach USER. We first introduce the prelimi-
nary concepts, including the widely considered formal model of sequence and the
occurrence relation that we propose for defining constraints within a sequence.
Based on this relation we give formal descriptions of the belief base consid-
ered in our approach, and with which we then formalize the unexpectedness
of sequences that states unexpected sequences. We further propose unexpected
sequential patterns within the framework of mining sequential patterns and pro-
pose unexpectedness rules including antecedent rules and consequent rules for
depicting the causality of unexpectedness. Finally we present the algorithm
USER for finding unexpected sequential patterns and unexpectedness rules.

3.1 Preliminary Concepts

Given a set of distinct attributes, an item i is an attribute. An itemset I is
an unordered collection of items, denoted as (i1i2 . . . im). A sequence s is an
ordered list of itemsets, denoted as 〈I1I2 . . . Ik〉. A sequence database D is a
large set of sequences.
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Given two sequences s = 〈I1I2 . . . Im〉 and s′ = 〈I′
1I

′
2 . . . I ′

n〉, if there exist
integers 1 ≤ i1 < i2 < . . . < im ≤ n such that I1 ⊆ I ′

i1
, I2 ⊆ I ′

i2
, . . . , Im ⊆ I ′

im
,

then the sequence s is a subsequence of the sequence s′, denoted as s * s′, and
we say that s is contained in s′. In a set of sequences, if sequence s is not a
subsequence of any other sequences, then we say that sequence s is maximal;
otherwise, if sequence s is contained in sequence s′, we say that sequence s′

supports sequence s. Given a sequence s = 〈I1I2 . . .Ik〉, a segment g * s is a
sequence that contains a number of contiguous itemsets 〈IiIi+1 . . .Ii+n〉 where
i ≤ 1 and i+n ≤ k. The support of a sequence is defined as the fraction of total
sequences in D that support this sequence.

In this paper we consider the length of sequence as the number of itemsets
contained in the sequence, denoted as |s|. We also consider the empty sequence
and the concatenation of sequences. An empty sequence is denoted as ∅, we have
s = ∅ ⇐⇒ |s| = 0. The concatenation of sequences is denoted as the form s1 ·s2

that means a sequence with s1 appended by s2, and we have |s1 · s2| = |s1|+|s2|.
Without ambiguity, in the following, we use uppercased letters A, B, C . . .

for depicting individual items, the form like (ABC) for depicting individual
itemsets, and the form like 〈(A)(AC)(BC)〉 for depicting individual sequences.

Now we introduce the occurrence relation between subsequences which are
contained in a sequence. Let us consider a sequence s, where s1, s2 * s are
two subsequences of s and assume that s1 occurs before the occurrence of s2 in
s. The expression 〈op, n〉 represents the constraint on the length of sequences,
where op ∈ { /=, =, <,≤, >,≥} is an operator and n ∈ N is an integer. Let
|s′| |= 〈op, n〉 denotes that the length of sequence s satisfies 〈op, n〉, then, for
example, we have |〈(A)(B)(C)〉| |= 〈>, 2〉 and |〈(A)(B)〉| /|= 〈>, 2〉. The form
s1 0→〈op,n〉 s2 denotes when s1 and s2 occur in a sequence s, there must exist
a segment g between the occurrences of s1 and s2 whose length satisfies the
expression 〈op, n〉. For simplicity, the form s1 0→ s2 denotes that the occurrence
of s1 is directly followed by the occurrence of s2 in the sequence s. We thus
have

〈

s1 0→〈=,0〉 s2

〉

≡ 〈s1 0→ s2〉.
As the generalized case, the form s1 0→∗ s2 denotes that s2 occurs after the

occurrence of s1 in s, that is, ∃s′ such that |s′| ≥ 0 and 〈s1 0→ s′ 0→ s2〉 * s.

3.2 Belief Base and Unexpectedness of Sequences

We interpret the domain knowledge as causal relationships between the occur-
rences of elements in a sequence, that depend on two facts contained in the
sequence: the occurrence relation and the semantics.

Before we give the definition of the belief on sequences, we first introduce the
sequence rule between two sequences, denoted as LHS ⇒ RHS. We borrow the
terms from [5] so that we call the sequence LHS the premise and the sequence
RHS the conclusion. The semantics of a sequence rule LHS ⇒ RHS is that in
a sequence s, the occurrence of subsequence LHS * s implies the occurrence of
subsequence RHS * s such that LHS · RHS * s. For example, the sequence
rule 〈(iMac)〉 ⇒ 〈(iPhone)〉 can be that the purchase of an iMac computer
implies a purchase of iPhone cell phone later.

In our approach the sequence rules are given by domain experts against the
occurrence relation and semantics, so that we do not consider frequency factors
within such rules. In fact, we consider two constraints on such sequence rule:
an occurrence relation constraint on the occurrences of LHS and RHS, and a
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semantics constraint on RHS. Therefore, the belief on sequences can be defined
as follows.

Definition 1 (Belief). A belief b on sequences is a pair b = (p, C) such that
p : sα ⇒ sβ and C : {τ, η} where τ : 〈op n〉 ,op ∈ { /=, =, <,≤, >,≥}, n ∈ N and
η : sβ /∼ sγ. p and τ provide a rule on sequences sα 0→〈op n〉 sβ, and η specifies
that the occurrence of sβ cannot be replaced by an occurrence of sγ . The belief
b is denoted as [sα; sβ ; sγ ; τ ]. In the case where τ : 〈≥, 0〉 we denote *.

The rule p defines that, in an expected sequence s, the occurrence of subse-
quence sα should be followed by an occurrence of subsequence sβ. The occur-
rence relation constraint τ requires that, for an expected sequence s, there must
exist sequence s′ such that |s′| |= τ and 〈sα 0→ s′ 0→ sβ〉 * s. Furthermore, the
semantics constraint η ensures that, for an expected sequence s, there should
not exist a sequence s′ such that |s′| |= τ and 〈sα 0→ s′ 0→ sγ〉 * s.

Given a belief b, a sequence s is unexpected if s violates any constraint in-
troduced by b, and such a behavior interpreted by s is an unexpectedness.

Example 1. Given a belief b = [〈(A)(B)〉 ; 〈(C)(D)〉 ; 〈(E)(F )〉 ; < 2], the se-
quence s1 = 〈(A)(AB)(E)(C)(DE)〉 is expected to b since between the occur-
rence of 〈(A)(B)〉 and 〈(C)(D)〉 there exists 〈(E)〉 and |〈(C)〉| < 2; the sequence
s2 = 〈(A)(B)(E)(D)(C)(D)〉 is unexpected to b because of a contradiction of
the occurrence relation constraint; the sequence s3 = 〈(A)(B)(C)(CE)(F )〉 is
unexpected to b because of a contradiction of the semantics constraint; the
sequence s4 = 〈(A)(B)(E)(F )(C)(D)〉 is unexpected to b because of contradic-
tions of both of the occurrence relation constraint and the semantics constraint;
the sequence s5 = 〈(A)(C)(B)(E)〉 is not addressed by belief b. !

Now let us consider a belief [sα; sβ ; sγ ; ∗] where the occurrence relation con-
straint is ∗. Addressed by such a belief, a sequence s is unexpected if sα * s,
〈sα 0→∗ sβ〉 * s, and in such an unexpected sequence s the occurrence relation
constraint between sα and sβ is broken because there does not exist sβ after the
occurrence of sα in s at all. In this case the occurrence relation is not complete
because of the lack of sβ. So that we classify the contradictions of a belief into
three groups of unexpectedness in order to avoid such ambiguous statement on
formalizations.

Definition 2 (α−unexpectedness of sequence). Given a belief b = [sα; sβ; sγ ; ∗]
and a sequence s, if there exists sα such that sα * s and there does not ex-
ist sβ, sγ such that 〈sα 0→∗ sβ〉 * s or 〈sα 0→∗ sγ〉 * s, then s contains the
α−unexpectedness with respect to belief b, and s is an α−unexpected sequence.

In an α−unexpectedness of belief [sα; sβ; sγ ; ∗], the sequence sα is the pri-
mary factor, and sβ and sγ should not occur after the occurrences of sα.
Many real world problems can be handled by the α−unexpectedness. For ex-
ample, here we use a shorthand notation 〈X〉 for sequence 〈(X)〉, the belief
[〈Login〉 ; 〈Logout〉 ; ∅; ∗] states that a valid user session should contains a “Lo-
gout” action; the belief [〈Mac〉 ; 〈iPhone〉 ; 〈Windows Mobile〉 ; ∗] states that
we expect a customer who have purchased an iMac computer to purchase a
iPhone cell phone; and the belief [〈noun〉 ; 〈verb〉 ; 〈noun〉 ; ∗] states that a verb
is expected to appear after a noun in a sentence.
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Definition 3 (β−unexpectedness of sequence). Given a belief b = [sα; sβ; sγ ; τ ]
where the occurrence relation constraint τ is not ∗, and a sequence s, if there
exist sα, sβ such that 〈sα 0→∗ sβ〉 * s and there does not exist s′ such that
|s′| |= τ and 〈sα 0→ s′ 0→ sβ〉 * s, then s contains the β−unexpectedness with
respect to belief b, and s is a β−unexpected sequence.

In Example 1, the sequences s2 and s4 correspond to the β−unexpectedness
stated by the belief b.

Definition 4 (γ−unexpectedness of sequence). Given a belief b = [sα; sβ; sγ ; τ ]
and a sequence s, if there exist sα, sγ such that 〈sα 0→∗ sγ〉 * s and there
exists s′ such that |s′| |= τ and 〈sα 0→ s′ 0→ sγ〉 * s, then s contains the
γ−unexpectedness with respect to belief b, and s is an γ−unexpected sequence.

Without losing generality, we denote an unexpectedness as u so that u ∈
{α,β, γ}. In additional, we denote an unexpectedness u addressed by a belief b
as u 5 b. Given a belief b, a u−unexpected sequence s supports unexpectedness
u, that is, u is interpreted by s, denoted as s |= u. An unexpected sequence
can support at most two unexpectedness stated by a specific belief, that is,
s |= u ∈ {α, γ}, or s |= u ∈ {β, γ}. The following examples show the {α, γ} and
{β, γ} unexpectedness pairs.

Example 2. Let us consider again the instance illustrated in Section 1. Let
M depict iMac computer, P depict iPhone cell phone, W depict Windows
Mobile cell phone, a belief on the customer transaction database can be b =
[〈M〉 ; 〈P 〉 ; 〈W 〉 ; ∗]. This belief states that after a customer has purchased an
iMac computer, she/he is expected to purchase an iPhone cell phone later. A
customer transaction sequence s is unexpected if s shows that this customer
would purchase neither an iPhone cell phone nor a Windows Mobile cell phone
after purchasing an iMac computer (α 5 b), or shows that this customer pur-
chased an iMac computer and then purchased a Windows Mobile cell phone
(γ 5 b). It is easy to see that both of the α and the γ stated by b are interesting
to the store to send correct promotion information to customers. !

Example 3. Now let us consider a WebMail system, where a valid user login
process (depicted as I) should redirect the user session to the mailbox page (de-
picted as M). A belief can be [〈L〉 ; 〈M〉 ; 〈O〉 ; = 0] where O depicts the logout
page. A β−unexpectedness β 5 b that the login process does not redirect the
user session to the mailbox page should not happen if everything goes normally.
A γ−unexpectedness γ 5 b that the login process redirect the user session to
the logout page may be caused by service failures. !

Note a sequence is not restricted to support only one unexpectedness, but
an α−unexpectedness and a β−unexpectedness addressed by the same belief
cannot appear together, that is, α 5 b =⇒ β /5 b and β 5 b =⇒ α /5 b. Ad-
ditionally, it is not difficult to see that generally in a belief [sα; sβ; sγ ; τ ], sγ

should not be contained in sβ , otherwise all unexpected sequences that sup-
port β−unexpectedness are also expected sequences. We say that a belief
b = [sα; sβ ; sγ ; τ ] is consistent if sγ /* sβ . Without special descriptions, we
only consider consistent beliefs.

Given a set BH of consistent beliefs base B, if for any two beliefs bi, bj ∈ B
wherer bi = [sαi

; sβi
; sγi

; τi] and bj =
[

sαj
; sβj

; sγj
; τj

]

, we have sαi
= sαi

,
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τj = τj , sβi
/" sβj

and sγi
/" sγj

, we say that BH is homologous. Given a set
BH of homologous beliefs, a sequence s is a local unexpected sequence to b if s is
unexpected to at least one belief b ∈ BH , and s is a global unexpected sequence
to BH if s is unexpected to each belief b ∈ BH .

Example 4. Let B = {b1 = [〈(A)〉 ; 〈(B)〉 ; ∅; ∗] , b2 = [〈(A)〉 ; 〈(C)〉 ; ∅; ∗]}, then
b1 and b2 are homologous. Given two sequences s1 = 〈(A)(D)(B)〉 and s2 =
〈(A)(D)(D)〉, s1 is a local unexpected sequence to b2 but expected to b1, s2 is a
global unexpected sequence to B, and local unexpected sequence to both of b1

and b2. !

3.3 Unexpected Sequential Patterns and Rules

We consider the notion of unexpected sequential patterns within the framework
of mining sequential patterns, that is, an unexpected sequential pattern is a
maximal frequent sequence contained in a set of unexpected sequences stated
by a specific unexpectedness. Given a sequence database D and a belief base
B, we use the factor support for measuring the interestingness of an unexpected
sequence. For each unexpectedness u addressed by each belief b ∈ B, let Du be
the set of all unexpected sequences stated by u in D, the support is the fraction
of the total number of unexpected sequences in Du that support u, that is,

supp(su) =
|{s ∈ Du|su * s}|

|Du|
.

Definition 5 (Unexpected Sequential Pattern). Given a sequence database D
and an unexpectedness u, let Du be a subset of D such that for each sequence
s * D we have s |= u. An unexpected sequential pattern of unexpectedness u
is a maximal frequent sequence contained in Du whose support satisfies a user
defined minimum support threshold.

Unexpected sequential patterns reflect the occurrence dependencies between
elements of unexpected sequences stated by an unexpectedness u, so that an
unexpected sequential pattern is not required to have the same structure as the
unexpectedness u. Example 5 illustrates this property.

Example 5. Given a belief b = [〈A〉 ; 〈B〉 ; 〈C〉 ; = 1], let us consider three se-
quences unexpected to b that support β 5 b:

s1 = 〈(D)(AB)(CD)(D)(BC)(E)〉 ,

s2 = 〈(D)(AB)(D)(E)(BD)(E)〉 ,

s3 = 〈(C)(A)(E)(E)(B)(C)〉 .

With a minimum support value 0.5, the sequence 〈(D)(AB)(D)(B)(E)〉 is an
unexpected sequential pattern corresponding to β 5 b. !

Before we introduce unexpectedness rules, we first introduce the notion of
bordered unexpected sequence, which is helpful to identify different parts in an
unexpected sequence.

We are given a belief b = [sα; sβ ; sγ ; τ ]. If α 5 b, for an unexpected sequence
s |= α, then there exist two segments g′, g * s that |g′| ≥ 0 and |g| ≥ 0
such that |g′ · sα · g| = |s|. We define the bordered unexpected sequence of α
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unexpectedness as the segment sb * s that sα ·g * sb and |sα · g| = |sb|. If β 5 b,
for an unexpected sequence s |= β, then there exist segment g * s where |g| ≥ 0
such that sα · g · sβ * s violates the belief b. We define the bordered unexpected
sequence of β−unexpectedness as the segment sb * s such that sα · g · sβ * sb

and |sα · g · sβ | = |sb|. If γ 5 b, for an unexpected sequence s |= γ, then there
exist segment g * s where |g| ≥ 0 such that sα · g · sγ * s violates the belief
b. We define the bordered unexpected sequence of γ−unexpectedness as the
segment sb * s that sα · g · sγ * sb and |sα · g · sγ | = |sb|.

Example 6. As shown in Example 5, the sequences s1, s2 and s3 are unexpected
to the belief b = [〈A〉 ; 〈B〉 ; 〈C〉 ; = 1]. We have sequences 〈(AB)(CD)(D)(BC)〉,
〈(AB)(D)(E)(BD)〉 and 〈(A)(E)(E)(B)〉 are bordered unexpected sequences
corresponding to s1, s2 and s3. !

An unexpected sequence s can therefore be represented as s = ga · sb ·
gc where sb is a bordered unexpected sequence corresponding to the specific
unexpectedness and ga, gc are two segments of s. We have |sb| > 0, |ga| ≥ 0
and |gc| ≥ 0. The segment ga * s is called the antecedent sequence and the
segment gc * s is called the consequent sequence. Given a set of unexpected
sequences that support unexpectedness u ∈ {α,β, γ}, we denote the set of all
antecedent sequences, including empty ones, as Da

u, and denote the set of all
consequent sequences, including empty ones, as Dc

u. The support of a sequence
sa contained in Da

u and sc contained Dc
u is the fraction of total sequences of Da

u

or of Dc
u that support sc or sc, that is,

supp(sa) =
|{s ∈ Da

u|sa * s}|

|Da
u|

and

supp(sc) =
|{s ∈ Dc

u|sc * s}|

|Dc
u|

.

A maximal frequent sequence contained in Da
u is a frequent antecedent se-

quence and a maximal frequent sequences contained in Dc
u is a frequent conse-

quent sequence.

Definition 6 (Antecedent Rule). Given a set Du of unexpected sequences sup-
porting unexpectedness u ∈ {α,β, γ}, let Da

u be the set of all antecedent sequences
contained in Du and let sa be a frequent antecedent sequence contained in Da

u

with respect to a user defined minimum support threshold σa, an antecedent rule
is the rule sa ⇒ u.

Antecedent rules reflect the elements in a sequence that anticipates an un-
expectedness addressed by a given belief. So that, with an antecedent rule, we
can state the causality of an unexpected behavior in sequences.

Definition 7 (Consequent Rule). Given a set Du of unexpected sequences sup-
porting unexpectedness u ∈ {α,β, γ}, let Dc

u be the set of all consequent se-
quences contained in Du and let sc be a frequent consequent sequence contained
in Dc

u with respect to a user defined minimum support threshold σc, an conse-
quent rule is the rule u ⇒ sc.
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Consequent rules reflect the elements in a sequence that are resulted by an
unexpectedness addressed by a given belief. With a consequent rule we can
state the influence of an unexpected behavior in sequences.

We characterize the antecedent rules and consequent rules on terms of sup-
port and confidence. The value of the support of an antecedent rule sa ⇒ u
equals the value of the support of sa and the value of support of a conse-
quent rule u ⇒ sc equals the value of the support of sc. So that we have
supp(sa ⇒ u) = supp(sa) and supp(u ⇒ sc) = supp(sc).

Given a sequence database D and an unexpectedness u that states antecedent
sequence set Da

u and consequent sequence set Dc
u, the confidence of an antecedent

rule is defined as:

conf(sa ⇒ u) =
|{s ∈ Da

u|sa * s}|

|{s ∈ D|sa * s}|
,

and the confidence of a consequent rule is defined as:

conf(u ⇒ sc) =
|{s ∈ Dc

u|sc * s}|

|{s ∈ D|s |= u}|
.

We have the value of the confidence of an consequent rule equals the value of
the support of the frequent consequent sequences involved.

Example 7. Let us consider again Example 4. Assume a log file containing
10,000 user sessions of (T ime, IP, Request) that T ime identifies a time range,
IP identifies an IP range, and Request identifies the resources requested that
Request ∈ {Begin, End, Help, Login, Logout, Recall, ...}, where Recall depicts
the password recall page and Help depicts the online help page. In such a log
file, each user session is a sequence.

With the belief given in Example 4, assume that we found 100 sequences
support the β−unexpectedness, then we have supp(β) = 0.01. Let σa =
σc = 0.1, assume that we found that 80 sequences support the frequent an-
tecedent sequence 〈(t1, ip1, Begin)〉; 10 sequences support the frequent an-
tecedent sequence 〈(ip2, Begin)〉; 80 sequences support the frequent consequent
sequence 〈(t1, ip1, End)〉; 15 sequences support the frequent consequent se-
quence 〈(ip2, Recall)(ip2, End)〉; 10 sequences support the frequent consequent
sequence 〈(ip2, Help)(ip2, End)〉.

So that we have the antecedent rule 〈(t1, ip1, Begin)〉 |= β has support
value 0.8; the antecedent rule 〈(ip2, Begin)〉 |= β has support 0.1; the con-
sequent rule β |= 〈(t1, ip1, End)〉 has support 0.8; the consequent rule β |=
〈(ip2, Recall)(ip2, End)〉 has support 0.15. Furthermore, assume that the to-
tal number of sequences supporting 〈(t1, ip1, Begin)〉 and 〈(t1, ip1, End)〉 are
both 80, then we have that the confidence of rule 〈(t1, ip1, Begin)〉 |= β is 1;
the confidence of rule β |= 〈(t1, ip1, End)〉 is 0.8. Assume that the total num-
ber of sequences supporting 〈(ip2, Begin)〉 is 9000, then the confidence of rule
〈(ip2, Begin)〉 |= β is 1/900 which can be ignored. Obviously, in this example,
the connections from IP range 1 at time range 1 can be considered as attacks
and we have very strong rules to confirm this behavior. !

3.4 The Algorithm

We propose the algorithm USER for finding unexpected sequential patterns and
unexpectedness rules from a sequence database with respect to a user defined
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belief base. The algorithm first extracts all global unexpected sequences from
a sequence database for each unexpectedness addressed by the belief base, then
finds all unexpected sequential patterns and sequence rules from each set of
unexpected sequences with respect to user defined support/confidence threshold
values. We present the algorithm USER shown in Algorithm 1.

The algorithm accepts a sequence database D and a belief base B, the mini-
mum support values σu, σa and σc, the minimum confidence values δa and δc as
input, and produces the unexpected sequence set Du, the antecedent sequence
set Da

u and the consequent sequence set Dc
u for each unexpectedness u addressed

by the belief base B.

Algorithm 1 Algorithm USER
Input: A sequence database D and a belief base B, minimum support values

σu, σa, σc, and minimum confidence values δa, δc

Output: The set Pu of unexpected sequential patterns, the set Ra
u of an-

tecedent rules and Rc
u of consequent rules for each unexpectedness u ad-

dressed by belief base B
1: while s = getseq(S)
2: while sα = getnode(B, ∅)
3: if oα = find alpha(s, sα)
4: while τ = getnode(B, sα) begin
5: while sβ = getnode(B, tau)
6: if τ == ∗ begin
7: if oβ = matchf(s, sβ, tau, oα)
8: failed and continue
9: else begin

10: if oβ = matchf(s, sβ, tau, oα) begin
11: Dβ ← Dβ ∪ s
12: Da

β ← Da
β ∪ subseq(s, s.begin, oβ.begin)

13: Dc
β ← Dc

β ∪ subseq(s, oβ.end, s.end)
14: end
15: while sγ = getnode(B, sβ)
16: if oγ = matchf(s, sγ , tau, oα) begin
17: Dγ ← Dγ ∪ s
18: Da

γ ← Da
γ ∪ subseq(s, s.begin, oγ.begin)

19: Dc
γ ← Dc

γ ∪ subseq(s, oγ .end, s.end)
20: end
21: end
22: if τ == ∗ begin
23: Dα ← Dα ∪ s
24: Da

α ← Da
α ∪ subseq(s, s.begin, o.begin)

25: Dc
α ← Dc

α ∪ subseq(s, o.end, s.end)
26: end
27: end
28: for each set of D, find and output unexpected sequential patterns with σu

29: for each group of Da and Dc, find and output rules with σa, σc and δa, δc

For each sequence s ∈ D, a belief b = [sα; sβ ; sγ ; τ ] and an unexpectedness
u 5 b, the fact s |= u can be determined by different cases. To generalize the
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problem, let us first consider the occurrence of sequence s′ in sequence s where
s′ * s. According to our formal model of sequence, if s′ * s, then there exist at
least one occurrence of s′ in s. However, an itemset Ii ∈ s′ might be redundant
in such an occurrence. Given a sequence s and two subsequences s′, s′′ * s
where s′ = 〈I′

1 . . . I ′
n′〉 and s′′ = 〈I′′

1 . . . I ′′
n′′〉, if we have s′ * s′′ and |s′| < |s′′|,

then s′′ is a redundant occurrence of s′ in s; otherwise if we have |s′| = |s′′|,
then s′′ is an irredundant occurrence of s′ in s.

In our current approach we find the first irredundant occurrence of sα and
find any occurrence of sβ or of sγ with respect to the occurrence relation after
the occurrence of sα.

For α−unexpectedness, the function matchi finds the first irredundant oc-
currence of sα * s and then ensures that 〈sα 0→∗ sβ〉 /* s and 〈sα 0→∗ sγ〉 /* s
by the function match. For β and γ unexpectedness, we need to find a seg-
ment gu * s with occurrence relation constraint between the occurrences of sα

and sβ , or of sα and sγ , that is, to find a sequence s′ such that |s′| /|= τ and
〈sα 0→ s′ 0→ sβ〉 * s, or such that |s′| |= τ and 〈sα 0→ s′ 0→ sγ〉 * s. So that
after the function matchi finding the first irredundant occurrence of sα * s,
the function matchf finds the first occurrence of sβ * s or sγ * s by using the
occurrence of sα and the occurrence relation constraint τ as additional param-
eters.

For each u 5 b where b ∈ B, this algorithm first finds unexpected sequential
patterns from the unexpected sequence set Du with respect to σu, then finds
sequential patterns from the sequence sets Da

u and Dc
u with respect to σa and

σc. Finally the algorithm generates antecedent rules and consequent rules for
each unexpectedness u with respect to δa and δc.

We use general purposed sequential pattern mining approach for finding
maximal frequent sequences with a minimum support value. Many efficient
approaches have been proposed and developed for sequential pattern mining,
such as the PSP approach proposed by [6], the SPADE approach proposed by
[7] and the PrefixSpan approach proposed by [8].

4 Experiments

To evaluate our approach we have performed two groups of experiments. The
first group of experiments are performed to extract unexpected sequential pat-
terns and unexpectedness rules from a large log file of a real Web server, where
the belief base is defined by domain experts. The second group of experiments
are considered as scalability tests against various dense synthetic data files gen-
erated by the IBM Quest Synthetic Data Generator1, where we use a set of
random generated beliefs as the belief bases.

All experiments have been performed on a Sun Fire V880 system with 8
1.2GHz UltraSPARC III processors and 32GB main memory running Solaris 10
operating system.

We analyzed a large log file, that contains 2,271,955 access records from a
real Web server, with the USER approach. The log file has been preprocessed to
be a sequence database that contains 67,228 sequences corresponding to 27,552
distinct items.

1http : //www.almaden.ibm.com/cs/quest/
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N.B. U.S. U.P. U.R.
5 48 4 3
10 240 11 19
15 591 15 23
20 673 22 30

N.B. : Number of Beliefs
U.S. : Number of Unexpected Sessions
U.P. : Number of Unexpected Sequential Patterns
U.R. : Number of Unexpectedness Rules

Table 1: Experimental results to real data from a Web server.

Table 1 shows our three classes of experiments on real data with different
beliefs.

The scalability of the USER approach has been tested first with a fixed belief
number of 20 by increasing the size of sequence database from 10,000 sequences
to 500,000 sequences, and then with a fixed sequence database size of 100,000
sequences by increasing the number of beliefs from 5 to 25.

Figure 1: Time for extracting all unexpected sequences stated by 20 beliefs.

Figure 1 shows that, when the belief number is fixed, the extracting time
of all unexpected sequences increases linearly with the increasing of the size of
sequence database.

Figure 2 shows that, when the size of sequence database is fixed, the number
of all unexpected sequences extracted increases, but not linearly, when the num-
ber of beliefs increases. This is a would result since the number of unexpected
sequences depends on the structure of beliefs. In this test the last 10 beliefs
address much less unexpected sequences than others.

Figure 3 shows the increment of extracting time of all unexpected sequences
illustrated in Figure 2, and from which we can find that the increasing rate of
extracting time depends on the number of unexpected sequences. In fact, in our
implementation of the USER approach, to predict and process a non-matched
sequence is much faster than to predict and process a matched sequence.
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Figure 2: Number of all unexpected sequences in 100,000 sequences.

Figure 3: Time for extracting all unexpected sequences from 100,000 sequences.
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5 Conclusions

We introduced the problem of mining unexpected sequential patterns and un-
expectedness rules in a sequence database with respect to a user defined belief
base, that states the unexpected behaviors within the context of sequence min-
ing. We proposed the approach USER for resolving this problem. We first
introduced the belief base and unexpectedness of sequences within the formal
models that we considered with sequence databases, we then proposed the unex-
pected sequential patterns and unexpectedness rules including antecedent rules
and consequent rules for measuring the unexpected behaviors in sequence min-
ing. Our experiments show the USER approach is robust.

Our future research in unexpected sequence mining includes several aspects.
We are interested in mining hierarchised unexpectedness rules. Furthermore,
we are interested in generating belief bases by using objective measures. We are
also interested in extending the notion of “unexpectedness” to general sequence
mining process, that is, dynamically increase the belief base with new-found
unexpectedness rules.
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