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Abstract
Background: The evolutionary rate at a given homologous position varies across time. When
sufficiently pronounced, this phenomenon – called heterotachy – may produce artefactual
phylogenetic reconstructions under the commonly used models of sequence evolution. These
observations have motivated the development of models that explicitly recognize heterotachy, with
research directions proposed along two main axes: 1) the covarion approach, where sites switch
from variable to invariable states; and 2) the mixture of branch lengths (MBL) approach, where
alignment patterns are assumed to arise from one of several sets of branch lengths, under a given
phylogeny.

Results: Here, we report the first statistical comparisons contrasting the performance of covarion
and MBL modeling strategies. Using simulations under heterotachous conditions, we explore the
properties of three model comparison methods: the Akaike information criterion, the Bayesian
information criterion, and cross validation. Although more time consuming, cross validation
appears more reliable than AIC and BIC as it directly measures the predictive power of a model
on 'future' data. We also analyze three large datasets (nuclear proteins of animals, mitochondrial
proteins of mammals, and plastid proteins of plants), and find the optimal number of components
of the MBL model to be two for all datasets, indicating that this model is preferred over the
standard homogeneous model. However, the covarion model is always favored over the optimal
MBL model.

Conclusion: We demonstrated, using three large datasets, that the covarion model is more
efficient at handling heterotachy than the MBL model. This is probably due to the fact that the MBL
model requires a serious increase in the number of parameters, as compared to two supplementary
parameters of the covarion approach. Further improvements of the both the mixture and the
covarion approaches might be obtained by modeling heterogeneous behavior both along time and
across sites.
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Background
Probabilistic methods for phylogenetic inference are
based on mathematical models of sequence evolution [1].
In the last 20 years, several approaches have been pro-
posed for developing more sophisticated models,
accounting for various properties of substitution proc-
esses [2-8]. One of the most well-characterized example of
such an improvement is provided by the Rate Across Sites
(RAS) model [2], which relaxes the assumption that all
sites of a protein or a nucleotide sequence evolve at the
same rate. More specifically, the RAS model includes site-
specific substitution rates, modeled as random variables
following a gamma distribution. It generally has a better
fit to the data, and it allows to circumvent certain artefacts
in phylogenetic inference [9]. It has been implemented in
most maximum-likelihood and Bayesian phylogenetic
software, and is now widely used for routine phylogenetic
inference. More sophisticated distributions of substitu-
tion rates, such as mixtures of gamma distributions [10],
further increase the fit of the model to alignments, sug-
gesting that improvements of the RAS model are still pos-
sible.

Functional and structural restrictions operating at a given
residue may be subject to change over time [11,12], which
should be reflected by substitution rates varying not only
across sites, but also across time. In this line of thought,
Fitch and Markowitz [13] proposed the covarion hypo-
thesis: due to functional restrictions, some codons (the
concomitantly variable codons or covarions) can accept
substitutions at a given time, while others (invariant sites)
cannot. Importantly a site can shift from being variable to
being invariable (and vice versa) over time. More gener-
ally, Philippe and Lopez [14] proposed, instead of cov-
arion-like expression, the term heterotachy (from Greek,
meaning "different speed") to describe the fact that sites
evolve at different rates across time.

Heterotachy was shown to be frequent in both nucleotide
and amino acid sequences [6,15-22]. For instance, up to
95% of the variable sites of cytochrome b have a heterota-
chous behavior within vertebrates [23]. Importantly, both
simulation [24,25] and empirical [26,22,16,27,28] stud-
ies demonstrate that heterotachy may impede phyloge-
netic inference. This is expected because probabilistic
methods are inconsistent when the underlying assump-
tions of their models are seriously violated. Models that
handle heterotachy are thus of prime interest, particularly
as larger and larger datasets are used [29].

The initial covarion hypothesis, as formulated by [13],
makes an explicit link between site interdependencies and
rate shifts, and for that reason, is not easy to implement.
As a more tractable alternative, Tuffley and Steel [30] pro-
posed a site-independent mathematical version of the

covarion idea, which was later implemented in a Bayesian
framework [6]. In Tuffley and Steel's covarion model, the
substitution history at each site unfolds according to a
doubly stochastic process: a classical first-order Markov
process of substitution among the 4 nucleotide bases, or
the 20 amino-acids, whose substitution rate is itself time-
modulated in an on-off fashion. In Huelsenbeck's model,
evolutionary rates of sites, when in the on state, are mod-
eled by a gamma distribution. Galtier [5] proposed a var-
iant of this model, by merging the covarion-like random
effects with the site-specific random-effects introduced by
the RAS model: sites can take more than two rates ("on"
and "off"), i.e. the off category plus, e.g., the four rates of
a discretized gamma distribution. More recently, Wang et
al. [31] propose a more general model in which evolu-
tionary rates can switch among different rate classes when
they are in a variable state.

One merit of Tuffley and Steel's version of the covarion
model is that it aims at capturing the dynamic heterota-
chous scenario by using only two additional global sta-
tionary parameters: s01, the switching rate from the off to
the on state, and s10, the rate from on to off.  Note that
these two parameters are both assumed to be stationary
over time. On the other hand, this model assumes that
rate-shifts occur in a strictly site-independent fashion,
whereas, in principle, it is possible to imagine more gen-
eral scenarios, in which groups of sites undergo collective
rate shifts at very specific time-points, due to a sudden
change of the selection pressure (this type of situation is
precisely supposed to create the misplacement of micro-
sporidia [28,27]).

Recently, Kolaczkowski and Thornton [24] proposed a
'mixture of branch lengths' (MBL) model that could han-
dle this kind of collective rate shifting. In this finite mix-
ture model, which was later mathematically corrected
[32], each observation is assumed to arise from one of sev-
eral components (the number of components being pre-
defined), each specifying a distinct and independent set of
branch lengths, onto the same topology. Loosely speak-
ing, each site can "choose" among the available compo-
nents that which best describes its pattern of changes
along the tree. In practice, as there is no a priori knowl-
edge of which site belongs to which component, the like-
lihood at each site is a weighted sum over all components
[33,32]. The kind of heterotachy assumed in the MBL
model [24] can appear artificial at first sight, but is theo-
retically able to capture collective rate shifts, rather than
the purely site independent on-off processes of the cov-
arion model. In principle, the MBL model could thus pro-
vide a useful device for detecting singular and collective
rate shift events.
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However, the potential gain of the MBL over the covarion
model is statistically expensive, because of the serious
increase of the number of parameters implied (the
number of additional branch lengths, (Nc-1)*(2s-3), and
the weights of the components, Nc-1): (Nc-1)*(2s-2),
where Nc is the number of components in the mixture,
and s is the number of taxa. The MBL model poses practi-
cal challenges as well. For instance, in the Bayesian
Markov chain Monte Carlo framework, the complicated
structure of a single tree with several valuations (several
sets of branch lengths) makes it difficult to propose
update mechanisms that would be efficient for mixing in
tree space, or, in a reversible-jump perspective, for averag-
ing over the number of components. As a result, jointly
estimating the phylogeny and the number of components
will be a computational challenge.

A common statistical practice when facing computational
difficulties is to make simplifying assumptions (e.g., a
known phylogenetic tree), and to contrast the merit of dif-
ferent model configurations based on their statistical fit.
Note that model comparisons based on likelihood ratio
tests are not directly applicable here, as the set of models
of interest do not all form a nested hierarchy. (Even eval-
uating the number of components would be difficult,
because of the irregular parameter space in the mixture
model [34,35], the logarithm of the likelihood follows a
complicated mixture of chi-square distributions [36]). An
alternative is to use likelihood penalty methods, such as
the Bayesian Information Criterion (BIC; [37]), or Akaike
Information Criterion (AIC; [38]). When the number of
observations (here aligned sites) is sufficiently large, BIC
is asymptotically equivalent to the Bayes factor, and AIC
to the expected relative Kullback-Leibler information [38]
Although easy to compute, these two measures rely on
many assumptions to estimate the penalty for the
increased number of parameters. Moreover, as for AIC, it
further assumes that the models being tested are 'not too
far' from the true model [38]. In addition, AIC seems to
overestimate the number of parameters when there are
many parameters compared to the sample size [39,40].
Contrary to AIC, BIC has a tendency to under-estimation,
given sparse data and results [41]. Furthermore, in the
context of mixture models, the regular assumptions for
the AIC and BIC are no longer valid [42,43]. In any case,
Djuric [44] argued that the penalty for over-parameteriza-
tion should strongly depend on the model structure, i.e.,
the types of unknown model parameters. Although BIC
works reasonably well at the practical level [45], Djuric
[44] suggested a careful examination before applying AIC/
BIC.

Another evaluation of model fitness is the cross-valida-
tion (CV) method [46]: it measures the predictive power
of a model fitted to a first, randomly drawn, part of the

dataset, when applied to the remaining (set aside) part of
the data. Here, the portion of data set aside plays the role
of 'future' observations. Accordingly, the best model is
naturally the one that best predicts these future data.
Compared to AIC and BIC, CV is computationally much
more demanding, but also more reliable in principle: (1)
this is an operational test, in which one measures the pre-
dictive power on data that have not been seen during the
learning step, which guarantees the 'honesty' of the meas-
ure. In particular, it implies that there is no need to
account for a dimensional penalty. (2) the expectation of
cross-validated likelihood is an unbiased estimate of the
Kullback-Leibler (KL) distance between the "true" distri-
bution of column patterns, and the distribution implied
by the model [47], and (3) in fairly general settings (not
including the leave-one out testing scheme), cross valida-
tion is asymptotically consistent, i.e. is able to choose the
true model among identifiable alternatives [48]. In addi-
tion to these theoretical guarantees, there is no specific
requirement on the compared models (e.g. nested).

In this work, we explore the use of AIC, BIC and CV for the
comparison of covarion and MBL models. We first vali-
date and examine properties of the MBL model using sim-
ulations. Second, we contrast the conclusions of AIC, BIC
and CV to the problem of determining the number of
components of the MBL model, and to general compari-
sons with the covarion model. Third, we extend our
model comparisons to three real data sets from nuclear,
plastid and mitochondrial compartments, and show that
the covarion model is always favored over the optimal
MBL model.

Results
Simulated data
We first implemented the mixture branch length model in
the phylobayes package [49]. Simulations allowed us to
explore the performance of the MBL model when the true
number of components as well as other parameters are
known. Various levels of heterotachy can be easily
obtained by tuning a single parameter, τ, without affecting
the average branch length (see Methods for details) of the
tree topology displayed on Figure 1. In addition, the
degree of rate variation across sites was modulated by
using several values of α, the shape parameter of the
gamma distribution. A total of 16 data sets of 5,000 sites
each were synthesized under the two-component MBL
model and analyzed using the MBL model with number
of components varying from one to four.

When the simulated data are analyzed with the exact
number of components (two), the inferred values of the
parameters are generally close to their true values (Table
1). For instance, the value of α is always inferred with an
error smaller than 5%. The branch lengths and the weights
Page 3 of 13
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are also well recovered, although only when the level of
heterotachy is pronounced (τ>= 0.4, Table 1). Interest-
ingly, when weakly heterotachous datasets (τ = 0.2) are
analyzed under the two-component model, the weight for
one of the two components shrinks to almost zero, and
the corresponding branch lengths become meaningless,
taking on extremely large or small values.

Inferring the number of components followed a similar,
but more complex, pattern (Table 2). When the dataset
contains a strong heterotachous signal (τ = 0.8), AIC, BIC
and CV recover the expected number of components
(two). In contrast, as the level of heterotachy gets weaker
(τ = 0.2), all criteria almost always choose the one-com-
ponent model. The amount of heterotachous signal is
simply insufficient in these 5,000 positions. Interestingly,
under these conditions, when the MBL model with two
components is used, the weight of one of them tends to be
extremely small (Table 1), which is consistent with the
higher fit of the one-component model. For intermediate
level of heterotachy (τ = 0.4 and 0.6), AIC supports 2 and
3 components and BIC 1 or 2, suggesting that AIC might
tend to overestimate, and BIC might underestimate, the
number of components, (Table 2). In contrast, in both
cases, CV recovers the correct value.

We next extended the comparisons by including the cov-
arion model (Table 3). As expected because sequences

were simulated using an MBL model, the covarion model
is never favored. However, under a low level of hetero-
tachy (τ = 0.2), the covarion model performs slightly bet-
ter than the two-component model, in spite of the fact
that the dataset is indeed a mixture of two components.
This could be due to the fact that the covarion model
requires less parameters than the 2-components MBL
model.

Real data
When applied to three real datasets from nuclear, mito-
chondrial and plastid compartments, CV and BIC always
supports the covarion model (Table 4), while AIC favors
parameter-rich MBL model. In the selection of the opti-
mal number of components of the MBL model, CV always
favors the two-component model (Table 4). In contrast,
BIC favors one component, except for mitochondrial
alignment in which four or six components are virtually
indistinguishable (44,416.88 versus 44,416.75), and AIC
three or four components.

We also studied the branch lengths of the two partitions
detected by the MBL model (mitochondrial, Fig. 2;
nuclear, see Additional File 1; plastid, see Additional File
2). Interestingly, in the case of mitochondrial alignment,
the branch lengths of the two partitions mainly differ for
catarrhinian primates, i.e. they evolved much faster in
component I. To know whether particular genes are
involved in this heterotachous behavior, we computed the
posterior probability of each site belonging to either com-
ponent (see Method, formula 9), and then averaged these
posterior probabilities over the sites, separately for each
gene. The sites belonging to the cytochrome oxidase
(cox1-3) and cytochrome b (cytb) genes show a signifi-
cantly different posterior probability of belonging to com-
ponent I than the sites from other genes (P < 0.0001, Fig.
3). A chi-square test was also performed, showing that the
two partitioning of the sites, into the cox/cytb or the non-
cox/cytb gene groups, and into the 2 components of the
model, are not independent (P < 0.001, Table 5). Simi-
larly, for plastid alignment, the two components are bio-
logically relevant. The branch lengths of one component

Topology used for computer simulationsFigure 1
Topology used for computer simulations. The tree 
under the newick format is: ((((A:0.375, B:0.3):0.25, 
C:1):0.08, D:0.32):0.8,((E:0.42, 
F:0.31):0.24,(G:0.27,(H:0.2,(I:0.5, J:0.5):0.25):0.12):0.25):0.26). 
Scale bar indicates the expected number of changes per site.
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Table 1: Inferred values of α, the parameter of the discrete gamma distribution of the rates across sites, inferred weight of one of the 
two components (w) and Pearson correlation (r) of the inferred tree branch lengths with the true ones of their respective component, 
for sequences simulated with various values for τ and α.

α/w/r τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

α = 0.5 0.51/0.028/n.a. 0.52/0.42/0.976 0.49/0.46/0.993 0.52/0.50/0.998
α = 1.0 1.06/0.033/n.a. 1.04/0.43/0.993 1.00/0.47/0.993 1.02/0.49/0.998
α = 1.5 1.51/0.07/n.a. 1.56/0.50/0.993 1.56/0.48/0.997 1.46/0.49/0.998
α = 2.0 2.01/0.005/n.a. 2.04/0.41/0.979 1.89/0.49/0.999 1.99/0.50/0.998

Note that the correlation between the true branch lengths of the two components are 0.86, 0.52, 0.19 and -0.16 with τ = 0.2, 0.4, 0.6 and 0.8, 
respectively. Two components were used for the inference. When τ = 0.2, the partition identity cannot be recovered, so the branch lengths cannot 
be compared with the true ones.
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are relatively clock-like whereas for the other one all green
plants except Mesostigma showed a highly accelerated rate.
Interestingly, RNA polymerases show a significantly
higher posterior probability of belonging to component II
than the sites from ribosomal proteins (P < 0.0001, see
Additional File 3) in agreement with recent studies
[50,22].

Discussion
Model comparisons: CV is more reliable than AIC and BIC
The maximum likelihood value is always improved when
more parameters are added to the model. The widely used
likelihood penalty information criteria, AIC and BIC,

evaluate the fitness of models by heuristically adjusting
the likelihood score. Based on asymptotic arguments
[37,38], they compensate for the automatic increase of the
likelihood merely due to the increase in number of
parameters, using simple (and distinct) formulae for the
dimensional penalty. By construction, AIC gives a milder
dimensional penalty than BIC. In many practical cases,
the difference may be overwhelmed by the difference in
log-likelihood between the two models. However, in the
present case, and on both real and simulated data sets,
AIC and BIC do not always reach the same conclusions
(Tables 2 and 4).

Table 2: Optimal numbers of components determined by AIC, BIC or cross-validation (CV) on the simulated data with different levels 
of heterotachy (τ) and with different rate across sites heterogeneity (α).

AIC/BIC/CV τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

α = 0.5 1/1/1 2/1/2 2/2/2 2/2/2
α = 1.0 1/1/1 2/1/2 3/2/2 2/2/2
α = 1.5 2/1/1 2/2/2 2/2/2 2/2/2
α = 2.0 1/1/1 2/2/2 3/2/2 2/2/2

Table 3: Cross-validation for the simulated datasets (α = 0.5)

One component 
(homotachy)

Two-component Three-component Four-component Covarion

α = 0.5

τ = 0.2 0 10.5 ± 5.5 18.6 ± 7.9 20.6 ± 10.9 0.8 ± 2.4
τ = 0.4 2.0 ± 8.7 0 4.7 ± 9.4 14.7 ± 8.7 2.0 ± 8.6
τ = 0.6 84.5 ± 12.4 0 10.0 ± 7.2 21.9 ± 10.1 85.2 ± 12.9
τ = 0.8 359.5 ± 30.0 0 8.1 ± 6.5 15.9 ± 9.3 359.6 ± 29.4

α = 1

τ = 0.2 0 9.6 ± 4.3 18.5 ± 9.1 23.8 ± 9.0 0.6 ± 1.9
τ = 0.4 13.0 ± 5.9 0 10.6 ± 4.4 17.3 ± 8.1 14.6 ± 5.3
τ = 0.6 101.4 ± 8.6 0 11.0 ± 6.0 18.1 ± 9.2 101.7 ± 8.4
τ = 0.8 472.0 ± 13.9 0 10.2 ± 5.5 13.6 ± 5.6 453.4 ± 14.0

α = 1.5

τ = 0.2 0 11.7 ± 6.3 7.4 ± 4.4 18.4 ± 12.1 0.7 ± 1.8
τ = 0.4 36.6 ± 5.9 0 12.1 ± 7.1 18.9 ± 9.2 34.9 ± 5.4
τ = 0.6 136.7 ± 12.8 0 7.7 ± 6.3 15.9 ± 9.6 135.3 ± 12.7
τ = 0.8 505.6 ± 23.8 0 10.8 ± 7.6 19.1 ± 8.8 490.9 ± 24.5

α = 2

τ = 0.2 0 11.2 ± 5.3 17.7 ± 10.4 26.1 ± 9.9 1.7 ± 2.4
τ = 0.4 37.5 ± 17.5 0 9.3 ± 11.6 18.6 ± 15.7 39.2 ± 18.5
τ = 0.6 173.9 ± 12.6 0 10.6 ± 4.6 12.4 ± 5.3 169.5 ± 12.0
τ = 0.8 596.1 ± 22.2 0 8.0 ± 1.5 15.1 ± 6.9 588.0 ± 23.0

The mean (± SD) of the difference between the CV log likelihood of the current model and the model with the highest CV log likelihood is given. 
Five random runs were performed for this two-fold CV.
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Cross-validation methods are much more expensive in
terms of CPU time than these information criteria. How-
ever, they are conceptually more trustworthy, since they
consist in a true blind test, i.e. instead of relying on a heu-
ristic dimensional penalty, they measure the predictive
power of the model on data that have not been seen dur-
ing the parameter optimization step. In addition, they are
valid even far from the asymptotic regime, i.e. when the
number of sites is small. From comparisons among AIC,
BIC and CV, we observe that BIC and CV generally agree,
while AIC overestimates the fit of parameter-rich models.
These observations are consistent with the reports that
AIC seems to have an inherent bias in favor of overly
parameterized models [51-53,41,39,40],.

Properties of the mixture branch length (MBL) model
The MBL model is able to detect heterotachous signals
and recover the true number of components, sets of
branch lengths, weights for the components, as well as the
alpha parameter for the RAS gamma distribution, when
datasets are simulated with a strong level of heterotachy
(Tables 1 and 2). In contrast, when the level of hetero-
tachy is weak (e.g. τ = 0.2) and the alignment size is in the

order of magnitude of the currently used ones (5,000
amino acids), the homotachous (one component) model
is preferred. This is consistent with the observations that
the performance of the homotachous model is weakly
affected under weakly heterotachous datasets (τ = 0.2),
and that it starts to get devastating only when the level of
heterotachy gets higher (τ = 0.4) [54,32,55,56,24]. It
seems therefore that, at least on these simulated cases,
when heterotachy does not impair phylogenetic infer-
ence, the classical non-mixture model is indeed found to
be the optimal by standard model selection methods.

Estimating the adequate number of components can be
viewed as a limitation of MBL models. On the one hand,
we have shown that only the computationally demanding
CV is able to provide an accurate estimate of the optimal
number. On the other hand, it appears that, when the
number of components is too high, the weights of these
useless components are small (below 0.05, except for
plastid -0.08- and nuclear -0.20- alignments). In other
words, the over-parameterized model naturally reduces,
but does not abolish, the effect of useless parameters, but
is logically penalized in model comparison.

Table 4: Comparison of the covarion model and MBL models with different number of components for three real datasets

-LnL AIC BIC CV

Animal dataset (5,000 sites and 20 species)

one-component 86468.5 86506.5 86630.3 82.1 ± 7.9
two-component 86302.7 86378.7 86626.4 37.8 ± 13.5
three-component 86222.7 86336.7 86708.2 47.9 ± 10.7
four-component 86167.6 86319.6 86814.9 69.0 ± 17.2
five-component 86126.8 86316.8 86936.0 82.2 ± 21.2
Six-component 86087.1 86315.1 87058.1 NC
covarion 86300.7 86340.7 86471.0 0

plastid dataset (3,754 sites and 22 species)

one-component 78225.2 78267.2 78398.0 75.3 ± 8.8
two-component 78056.4 78140.4 78402.1 34.2 ± 24.5
three-component 77996.7 78122.7 78515.2 49.8 ± 15.6
four-component 77925.8 78093.8 78617.2 60.3 ± 21.0
five-component 77926.2 78136.2 78790.4 72.4 ± 22.0
six-component 77900.4 78152.4 78937.5 NC
covarion 78070.9 78114.9 78252.0 0

mitochondrial mammal dataset (3,591 sites and 17 species)

one-component 44285.9 44317.9 44416.9 45.9 ± 3.7
two-component 44154.8 44218.8 44416.8 16.6 ± 7.5
three-component 44127.6 44223.6 44520.5 34.2 ± 12.3
four-component 44081.2 44209.2 44605.1 38.2 ± 15.4
five-component 44071.9 44231.9 44726.8 NC
six-component 44072.3 44264.3 44858.2 NC
covarion 44187.1 44222.1 44330.4 0

For CV, standard deviation can be easily computed and is thus indicated.
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Branch lengths for the two partitions in the case of the mitochondrial alignment of mammals (3591 sites, 17 species)Figure 2
Branch lengths for the two partitions in the case of the mitochondrial alignment of mammals (3591 sites, 17 
species). The shape parameter of the Γ distribution was estimated to be 0.4. The weights are 0.40 for component I (B) and 
0.60 for component II (A).
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Interestingly, in the case of mitochondrial and plastid
alignments, heterotachy detected by the MBL model is
meaningful (Figs. 2 and S2). For instance, the most
important heterotachous signal detected by the MBL
model on the mitochondrial data set consists in a collec-
tive rate-shift, preferentially concerning the positions of
cox and cytb gene. This acceleration of the multisubunit
respiratory complex cytochrome c oxidase in primates is
well documented and co-evolution implies genes
encoded in the nucleus and in the mitochondrion [57].
Thus, the MBL model seems to be indeed able to detect
collective behavior, corresponding to real biological
events.

How to model heterotachy?
However, and in spite of the considerable interest received
by the MBL model recently [24,22,55,56,54,58,32], both
BIC and cross-validation indicate that the covarion model

performs significantly better than the MBL model on all
real data sets we have analyzed so far. This considerably
reduces the relevance of Kolaczkowski and Thornton
(2004) observations, concerning the failure of current
models and methods, including covarion, to correctly
infer phylogenetic trees under heterotachous conditions,
as it further confirms how artificial the simulation condi-
tions were.

An obvious explanation for MBL's failure is that it is too
parameter-rich ((Nc-1) *(2s-2), s is the number of species
and Nc the number of components). Indeed, a completely
new set of branch lengths has to be inferred for each com-
ponent, which may be too expensive, as heterotachy may
manifest itself only on a subset of the branches. Accord-
ingly, branch lengths of the two components are relatively
well correlated (R between 0.57 and 0.63, Fig. 4), illustrat-
ing a parametric redundancy. The difference in the behav-
ior of the covarion model and the MBL model on the real
datasets and the simulation datasets implies that the real
dataset might not have such global rate shifts (i.e. all the
corresponding branch lengths in different categories
would be drastically different) as designed in the simula-
tion datasets.

When multiple genes are analyzed, a separate model [59]
is aimed at capturing heterotachous signal among genes.
The only difference with the MBL model is that the
number of components and their structures are defined a
priori. The separate model may therefore probably suffer
from the same weaknesses as the MBL model, an inherent
over-parameterization due to the fact that branch lengths
are well correlated among genes, with few exceptions [60].
On the other hand, it may lead to more accurate phyloge-
netic inference, in case where the covarion model failed
[50]. This indicates that both the separate model and
MBL-like approaches still deserve further studies.

Mixture models generally imply numerous additional
parameters. Improved fitness is obtained only if most of
these additional parameters are natural, i.e. have a great
explanatory power. This is for example the case for the
CAT model [7] in which components reflect the amino
acid spectrum allowed by structural and functional con-
straints. Unfortunately, the combinatorial effect is too
important for MBL modeling to be efficient for instance,
assuming only 2 independent collective rate shifts on two
distinct branches, involving two intersecting groups of
sites, will create 4 distinct site patterns, describing all pos-
sible ways a given site may have 'responded' to the first
and/or to the second rate shift. In this situation, the MBL
model will need 4 components to explain every site cor-
rectly. More generally, with S independent collective rate
shifts, 2S components will be needed to describe all possi-
ble combinations that will all be likely to occur across the

Table 5: Contingency table for the mitochondrial alignment

Cox+Cytb Other genes

Component 1 142/278 583/447
Component 2 1237/1101 1629/1765

Observed/expected numbers of positions are indicated.

Whiskers plot for the average posterior probabilities of com-ponent I for the two-component MBL model on the mito-chondrial mammal datasetFigure 3
Whiskers plot for the average posterior probabilities 
of component I for the two-component MBL model 
on the mitochondrial mammal dataset. A Kruskal-Wal-
lis non-parametric test shows the means of posterior proba-
bilities for genes are significantly different (p < 0.0001)
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alignment. This combinatorial argument may explain the
failure of the MBL model in practice, in spite of its ability
to detect collective behaviors.

Conclusion
The covarion model, in spite of its better fit, is a purely
site-independent model. As such, it may not be optimally
efficient at capturing collective rate shifts, such as those
that we can detect using MBL, and may instead be meant
for the background of "stationary" heterotachy present at
every site. This suggests that an explicit model accounting
for collective events, in the spirit of MBL, albeit more par-
simonious in terms of parameterization, would be an
interesting direction to take. A natural approach to do this
would be a divergence point model [61-63], where, due to
the functional and/or structural shift, some sites evolve
differently from other sites in the different areas of the
phylogeny defined by the divergence points.

In another direction, the covarion model, in the version
that we test here [6], can also be improved. Wang et al.
[31] introduced a more general model, in which rate can
not only switch from on to off but also from a given rate
to another and demonstrated a slight, but generally signif-
icant, improvement. Yet, this model remains homogene-
ous over positions, a constraint that could be released by
considering a mixture model in which the parameters of
the covarion process are component specific.

Methods
The mixture branch length (MBL) model

The mixture model assumes several components with dif-
ferent sets of branch lengths. When sites are assumed to be
independent, the likelihood for the data D in the mixture
model is the product of N site-specific likelihoods, and
each site's likelihood is the sum of likelihoods over all Nc
components, weighted by the components' probabilities

w 

Where l is Nc sets of (2s-3) branch lengths (s is the
number of species); τ is the topology; θ is the rest of
parameters (such as rate matrix, stationary probability);
and Ci is the alignment column at site i. The MBL model
is implemented based on a homemade software, which
uses a Bayesian Markov chain Monte Carlo (MCMC) sam-
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Comparison of branch lengths from the two partitions for the nuclear (A), plastid (B) and mitochondrial (C) alignmentsFigure 4
Comparison of branch lengths from the two parti-
tions for the nuclear (A), plastid (B) and mitochon-
drial (C) alignments. R = 0.63, 0.63 and 0.57 respectively.
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pler [7]. Maximum likelihood was calculated via simu-
lated annealing.

The covarion model
The covarion model corresponds to a doubly stochastic
process The   process of rate switching is described as:

where s01 is the rate of switching from off to on; s10 is the
rate of switching from on to off. Thus, two parameters are
necessary for this process, the rates of switching between
the two states, off and on. When a site is in the on state, it
undergoes substitutions among the 20 amino-acids
according to a first   order Markov process, described by a
rate matrix Q. Here, for both the   covarion and MBL mod-
els, this substitution process was described by a   JTT+Γ
model with four discrete categories..

The rate matrix can be

where I is the identity matrix (r × r, r is the number of
states, for a protein data set, r = 20). For more details on
the implementation, see refs. [30] and [6].  Therefore, R is
40 × 40 rate matrix for the covarion in the Markov process.
For both the MBL and covarion models, the substitution
process was described by a JTT+Γ model with four discrete
categories.

Maximum likelihood estimation using simulated annealing
We use simulated annealing, within our MCMC sampler,
to obtain the maximum likelihood estimation. Simulated
annealing is a straightforward generalization of the
MCMC algorithm, especially for high-dimensional mod-
els such as MBL [64]. In a normal MCMC run, at each
cycle, a new parameter value (x'), slightly different from
the current one (x), is proposed according to a stochastic
kernel q(x, dx'), and accepted according to the Metropolis-
Hastings rule, i.e. with probability

where L(x) is the likelihood for the current state; L(x') is
the likelihood for the proposed state; q(x', dx) is the prob-
ability of proposing from x' to dx state; q(x, dx') is the
probability of proposing from x to dx' state. The only addi-
tional feature to be implemented for simulated annealing
is to replace this Metropolis Hastings version by its ther-
mal version:

Here, β is analogous to an inverse temperature. If β<1, the
Markov chain is heated up (the equilibrium distribution
is flatter than the posterior distribution), and if β>1, it is
cooled down (the equilibrium distribution is more
peaked around its mode). At the reference temperature (β
= 1), it reduces to the posterior distribution.

Based on this modification of the Metropolis principle,
one can mimic the process of a thermodynamic annealing
to obtain the maxima: we start at a high temperature (β =
1), whereby the posterior distributions are extensively vis-
ited; then, as the temperature decreases (as β increases),
the distribution explored by the MCMC gets progressively
more peaked around the mode, until, at a sufficiently low
temperature, the Markov chain "freezes" at the ML esti-
mate. Our cooling schedule consists in starting with β = 1,
and increasing its value geometrically (i.e. β = 1.01* β),
until β = 50000. To check whether the chain gets stuck in
local maxima, several independent runs with random
starting points are performed, and compared with each
other. All the independent runs were found to converge at
the same maximal point.

Model evaluations
The BIC [37] is defined as:

where  is now the overall set of parameters maximizing

the log-likelihood lnp(D| ), K is the number of parame-

ters that have been adjusted in , and N is the number of
sites. The penalty depends both on the number of param-
eters and on the number of sites; the smaller the BIC, the
better the fitness of the model. Another criterion similar
to the BIC, but less strict, is the Akaike Information Crite-
ria (AIC; [38]), for which the penalty only depends on the
number of parameters:

A second order correction for the AIC [65] has a negligible
impact in the present context, and so is not reported here.

We also compared models by the cross-validation (CV).
Briefly, for a given model, we first optimize parameters on
a portion of the dataset, i.e. the learning set (DL), then use
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these parameters ( L) to compute the likelihood of the

testing set (DT). Thus, the CV score is obtained by sampling

the learning set and the testing set several times, and taking
the expectation of the likelihood over these replicates
(parameters being inferred from the training tests):

By averaging over replicates, one gets rid of sampling
errors in the partitioning of the dataset into a learning set
and a test set. In particular, one smoothes out possible
(albeit unlikely) uneven repartitions in which sites corre-
sponding to distinct components of the mixture would be
partially segregated.

The learning set (DL) and the testing set (DT) can be created
in various ways. One method is the so-called v-fold cross-
validation. The original data set is partitioned into v dis-
joint subsets of equal size; then each partition is succes-
sively used as the testing set (DT), the union of all other v-
1 partitions being used as the learning set (DL). The overall
procedure is repeated until a total of v tests have been per-
formed. In this work, we used the most currently used 2-
fold cross-validation schemes. The random sampling of
half data set was performed ten times, which yielded a
precision of CV score sufficient to discriminate among the
models under study. This small value is therefore a good
compromise between computational time and accuracy.

Identifying the optimal component for each site
Since we do not know exactly which component a given
site belongs to, the likelihood for one site is the weighted
sum of likelihoods conditional on each possible alloca-
tion of the site to the available components. We can, how-
ever, calculate the posterior probability of a site (i)
belonging to a given component (k):

These posterior probabilities were then averaged over the
sites, for each gene of the alignment. Alternatively, each
site was affiliated to the component of higher posterior
probability, and a chi-square test of the independence
between the affiliations to the component, and the affili-
ation to each of the genes, was performed.

Simulations
All the simulations were done with the JTT replacement
matrix, rate across site heterogeneity being modeled by a
Γ distribution (four discrete categories). Heterotachous
data were simulated by concatenating two alignments

generated under the same tree topology, but with different
branch lengths [24,54]. Briefly, a reference tree, with
branch lengths specified, is chosen (Fig. 1). Next, each
branch length of the two partitions is adjusted by multi-
plying the length of the reference tree either with (1 + τ),
or with (1 - τ), where τ ∈ [0,1] is a parameter tuning the
extent of heterotachy. The choice between the two oppo-
site multipliers ((1 + τ) and (1 - τ)) is made at random,
independently for each branch while under two con-
straints: a) the corresponding branch in the two partitions
should be adjusted with opposite multipliers; b) in one
partition, sister branches should be adjusted with oppo-
site multipliers also; i.e., if one branch length in one par-
tition is increased by a factor (1 + τ), then the same branch
in the other partition is decreased by a factor (1 - τ) and
also the sibling branch length in the same partition is
decreased by a factor (1 - τ). In this way, the average length
over the alignment remains equal to the reference length
[54] and the branch length heterogeneity strictly followed
the strategy by Kolaczkowski and Thornton [24], i.e., the
branch lengths in each component tend to behavior in a
Felsenstein zone. Totally, 16 simulated datasets are gener-
ated with different discrete α (0.5,1,1.5,2) and different
τ(0.2,0.4,0.6,0.8).

Real Datasets
Three protein datasets were used to examine the fitness of
the covarion model, the mixture branch length models,
and the homotachous model (one-component model):

• Nuclear alignment: a subsample was obtained from the
dataset of 133 nuclear genes and 57 animal species [66].
The twenty most complete species were selected. For com-
puting time reason, only the first 5000 sites were used.

• Plastid alignment: the dataset was created by concate-
nating plastid ribosomal proteins (rpl14, rpl20, rpl2,
rpl33, rps12, rps16, rpl16, rpl22, rpl32, rpl37, rps19, rps3,
rps7, rps11, rps14, rps18, rps2, rps4 and rps8) and RNA
polymerase proteins (rpolA, rpolBp, and rpolB) from
green plants, glaucophytes, red algae, cryptophytes, stra-
menopiles and haptophytes. The ambiguously aligned
regions were removed using Gblocks [67]. The final align-
ment contains 22 species and 3754 sites.

• Mitochondrial alignment: we used a concatenation of
12 mitochondrial genes (atp6, atp8, cox1, cox2, cox3,
cytochrome b, nad1, nad2, nad3, nad4, nad4L and nad5)
totally 3591 sites from 17 mammals.

The computing times for a CV replicate (on Pentium P4,
3.2 GHz) are approximately 80 and 190 (MBL 2 compo-
nents and covarion), 40 and 110, and 35 and 80 hours for
nuclear, plastid and mitochondrial datasets, respectively.
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MBL model in the case of the nuclear alignment of opisthokonts.The 
branch lengths for the two partitions are provided.
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Additional file 2
MBL model in the case of the plastid alignment of plants. The branch 
lengths for the two partitions are provided.
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[http://www.biomedcentral.com/content/supplementary/1471-
2148-7-206-S2.ppt]

Additional file 3
MBL model and gene function in the case of the plastid alignment of 
plants. Average posterior probabilities of component I for the two-compo-
nent MBL model are provided.
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