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Email: dominique.luzeaux@polytechnique.org
LIRMM, CNRS UM2, 161 rue Ada, 34392 Montpellier Cedex 5 - France

Email: js@lirmm.fr

Abstract— The paper attempts to give a formal framework
to capture the entire process of scientific discovery including
hypothesis formation, reasoning, identifying contradictions,
peer reviewing, reformulating and so on. Data mining can
be seen as one step in this complex process of interactive
learning of an empirical theory This paper uses the terminol-
ogy from paraconsistent logic and paracomplete logic that
extends Aristotle square in a hypercube of oppositions which
defines or substantiates any step of the discovery process.

The central formal notions are validated on a mathemat-
ical scientific discovery game, and an industrial application
in the field of Drug Discovery illustrates how the presented
framework combines different learning processes to predict
pharmaco-kinetic properties (ADME-T) and adverse side
effects of therapeutic drug molecules.

Index Terms— Machine Learning, Scientific Method, Logical
Reasoning Framework, Aristotle’s Square of Oppositions

I. I NTRODUCTION

Our objective is to propose a logical framework to assist
scientists in supervising the entire process of theories
formation while studying a phenomenon, as it is done
by chemists studying properties of a new molecule, such
as absorption or toxicity.

The first piece of the framework’s logical structure is
known since medieval logic as Aristotle’s square [1], and
has appeared in logical texts ever since: Aristotle defines
syllogistic reasoning by differentiating universal and par-
ticular statements, and linking them by deduction and
negation. The detection of contradictions then occupies
the diagonal of such a square and can warn the scientist
that a revision of knowledge is necessary (Figure 1).

The framework is formulated in a logical form such
that contradictions can occur: in logic, a contradiction is
produced by the conjunction of a formula and its negation.
Each logic defines its own negation by an axiomatic
schema expressing relations between universal and ex-
istential modalities, as ”‘Necessary”’ (positive universal)
and ”‘Contingent”’ (negative existential). In the case of
scientific discovery, events can be declared contingent
when they sometimes occur by chance, or can be declared
necessary if they have to exist. A theory then presents a

contradiction when it allows to deduce, for instance, that
a contingent event occurs by necessity.

Since Platon and Aristotle, logicians created different
logics by selecting axioms that impose for instance thata
necessary action is a possible action. But all these logics
exhibit paradoxes provoked by their axioms, which often
lead to their triviality. However, we admit that contradic-
tions occur during a causal reasoning, and they are used
in this framework to alert about problems concerning the
consistency or the completeness of the ongoing theory.

Let us sketch such a formation process (a definition of
unintuitive terms is provided in sections V-A and VI-A).
Since Popper, it is admitted that a scientific theory must
be refutable by experimentation and empirical data. A
scientific experimentation, designed to enable empirical
proof or refutation, requires the use of an accurate and
efficient instrumentation to determine the existence of
positive observations used to formulate postulates and
conjectures. This experimentation design is a tool to
ensure the progression of the ongoing theory by revealing
facts. A fact is a piece of information (data) having an
undeniable empirical evidence for scientists, and tech-
niques such as data mining consist in the induction of
a model from these facts. Such a model is built to
match with positive information describing facts and to
prevent the prediction of non observed facts. Predictions
are made using a theory completed by a model, and the
consideration of the overfitting and underfitting of these
predictions informs the scientists on the bias conditions
making it possible to decide correctly with the ongoing
theory.

The logical framework presented in this paper is de-
signed to take into account the two dynamics of scientific
discovery [2] [3]. The first dynamic, which we refer to as
thepersonal dynamic, embraces the supervision of a com-
puter assistant by a scientist. This dynamic is centered on
individual behaviors, and depends strongly on the research
strategy of each individual and on its use of computer
assistants. In fact, more and more learning techniques and
data mining tools are used to find correlations in data
and propose models to explain a studied phenomenon

54 JOURNAL OF COMPUTERS, VOL. 2, NO. 5, JULY 2007

© 2007 ACADEMY PUBLISHER



and make predictions. We will see how the framework
presented in this paper takes into account this personal
dynamic by giving logical modalities to the statements
occurring during the construction of a theory, and by
placing the interpretation of contradictions in the heart
of the interactive process leading to the construction of
a model which can be discussed, justified, and proven in
pure logic. The second dynamic we are concerned with,
which we refer to as thesocial dynamic, comes from the
collective behavior emerging from the social game during
which scientists publish their theories and confront them
to understand how models in a given domain match or
influence models concerning other domains. In fact, sci-
entists are experts in the different scientific fields involved
in the understanding of a phenomenon, and we suppose
that it is not always possible to merge all the scientific
domains in a only one. In other words, scientists can all
use their own models and data to compute and predict
(personal dynamic). But by confronting their works, they
may realize that a good solution for a given model can be
a bad one for another model, and therefore point out the
need to improve their understanding of the phenomenon.
For instance, when dealing with drug discovery, a model
of Absorption may not take into account the toxicity of
the molecule. To enable this dynamic, the framework
proposed in this paper takes into account the process
of crisis, conflict and transactions which continuously
rhythms Science and contributes to the formation of
theories admitted by the society of scientists as being
scientifically valid.

II. OUTLINE OF THE PAPER

We illustrate in section III the recurrent problems
posed by the personal and social dynamics, by describ-
ing the domain of Drug discovery and the prediction
of ADME-T properties. The pharmaceutical industry is
indeed confronted to a pressing need to analyze ever
growing quantities of collected data and convert them into
relevant decisions, using cheminformatics methods. Most
often, reliable predictions are only possible on molecules
very similar to the learning set, and these predictions
use descriptions which are not easy to be translated
in better molecular structures. This domain concentrates
many challenges for inductive learning : the bias problem,
the underfitting/overfitting problem, the constraint satis-
faction problem, the multiparametric decision problem,
the empirical testing and the interactive problem solving
by scientists assisted by machine learning. As there are
hundreds of descriptors used to describe the surface of
the molecules and thousands related to the computation
of properties for a single molecule, the risk of overfitting
is permanent. When we try to limit the number of descrip-
tors to reduce this overfitting, we create a risk of falling in
the adverse case of underfitting. So the balance between
completeness and consistency corresponds to the balance
between underfitting and overfitting. As learned rules in
drug design can conjugate more than three terms, the
constraint satisfaction problem is divided in two domains:

the domain where deciding with learned rules is easy but
produce errors, and the domain where finding rules to
decide is so difficult that the system learns by heart and
can only decide for molecules which are very similar
to the examples used during learning. Finally the mul-
tiparametric decision, required to deal with a distributed
set of constraints that is not convex, often leads to an
antagonism between optimized decisions. Furthermore,
examples from disparate domains such as medical, chem-
ical, legal, . . . have different theoretical basis. Therefore,
the regularities learned from these examples cannot be
justified only by causal arguments.

After this introductory example, we present step by step
the four levels of our formalism. Section IV describes
Aristotle’s square of oppositions, which defines the op-
positions between universal and particular modalities,
therefore enabling mathematical and logical reasoning
on simple problems. In section V, this square is used
to formalize the notions of postulate and conjecture,
which are necessary to define a theory. The cubic struc-
ture presented in this section is obtained by linking the
various squares together. section V-B offers an intuitive
illustration of these notions. Section VI then presents
a hypercubic structure obtained by linking the cube of
oppositions to two new Aristotle’s squares introduced to
define the modalities of model, experimentation, predic-
tion and facts. We emphasize the fact that the cube of
oppositions lacked of temporality, and that this hyper-
cubic structure links reasoning on facts and postulates
to decision making and action, which are sufficient to
define an agent. Finally, section VII establishes a link to
deontic, autoepistemic, and defeasible modalities which
are produced when agents using this hypercube to reason
interact by implementing a conversational process of
discovery and learning from each other. In conclusion we
discuss how the objective to capture the entire process of
scientific discovery is achieved starting from Aristotle’s
square to frame computer agents assisting humans during
a problem resolution.

III. T HE PROBLEM OFDRUG DISCOVERY, ADME-T

Schematically, the pharmaceutical activity can be di-
vided into three sectors: drug discovery (i.e. going from
a target to a molecule that is ready to be tested in man),
drug development (i.e. the proof of concept in man and the
clinical trials) and finally the marketing and monitoring
of the product.

It is widely accepted that out of one hundred drug
discovery projects that are started, less than one would
eventually reach the market ten to fifteen years later.

Despite over a decade of massive investment by the
pharmaceutical industry into high throughput methods
(Genomics, High Throughput Screening and combinato-
rial chemistry), efficient identification and optimizationof
potent and quality lead molecules is still the highest and
riskiest hurdle in current drug discovery and development.
The only clear outcome of high throughput methods has
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been an unparalleled production of large quantities of data
that need to be analyzed.

In order to reduce risks in the clinical stages of devel-
opment, in a typical lead optimization process, 40 to 60
assays are run in parallel or in a cascade to evaluate the
potential of each candidate molecule, its specificity, its
good Absorption and Distribution, good Metabolism and
Excretion profiles and limited Toxicity (ADME-T). In this
multi-parametric space, identifying “quality” molecules
which display desirable properties is a true challenge.

The use of computational tools (data mining, predictive
modeling etc) has been seen as the potential solution to
this dramatic inefficiency.

QSAR (Quantitative Structure Activity Relation) equa-
tions are standard examples in predictive modeling for
drug discovery where an overall fitness score is de-
veloped as a weighted sum of numerous descriptors.
In Docking, the score includes ligand internal energy,
interaction energy and entropic considerations in the form
of a weighted sum of terms [4]. Typically the score is
developed empirically by analyzing a set of examples
and deriving a weighted sum. The weights are fitted to
the learning set and may not necessarily be relevant or
precise for other complexes.

QSAR attempts to relate a numerical description of a
molecular structure to a known biological activity. Large
numbers of readily computable descriptors are available,
in combination to sophisticated techniques that improve
the initial linear regression analysis methods used in de-
riving QSAR equations (PCA, PLS, NN, GA, SVM etc).
In general, QSAR equations relate one objective (such as
activity for example) with a number of descriptors. QSAR
equations are constructed by the combination of a number
of weighted terms (descriptors).

These methods rely on the choices of (1) the descriptors
for “generalization” and (2) the examples in the learning
set to avoid overfitting.

An inadequate choice of either parameters will gen-
erally lead to useless models that do not generalize or
are not interpretable. This is also true for initial ILP
approaches [5]. In addition, search strategies can be com-
promised when confronted to non-convex solution fronts,
i.e. when a solution “between” two valid solutions might
be invalid. Furthermore scale invariance is not always
true, i.e. even for a continuous property such as molecular
weight, its use and therefore significance is distinct for
different ranges (for example 200-600 range correspond
to small molecules, a molecular weight greater than 2000
does not). This is to say that some relations are sensitive
to scale. More generally, qualities can be converted into
quantities (binning) but the reverse is not always true. This
requires defining domains of validity for all parameters,
in both the search and the objective spaces. In turn the
notion of domain is linked to boundaries and hence allows
characterization of paradoxical combinations or conflicts.
Here, conflicts are real mutual exclusions rather than a
competition between several continuous parameters.

All in all, it is fair to say that the current state of

the art in cheminformatics is insufficient: “In general,
reliable predictions are only possible for molecules similar
to those in the training set” [6] hence undermining their
predictive use, and “most models [. . . ] use descriptors that
are not easily understood by the chemist and not easy to
translate into better molecular structures”, and hence have
little impact in drug discovery.

This discussion about the limits of QSAR shows how
contradictions occur each time a numerical description of
a molecular structure is related to biological activities.
These contradictions are logical events and have to be
framed in such a context by a logical framework placing
them at the core of the user/assistant interaction in order
to enable their understanding and to control the proof
process of conjectures generated by learning from exam-
ples. Section IV recalls some definitions about Aristotle’s
square, the building brick of this logical framework. This
article presents how this classical logical structure is
extended to frame all the facets of scientific discovery
illustrated by the ADME-T problem.

IV. A RISTOTLE’ S SQUARE OF OPPOSITIONS

In this section, we recall what the classical square of
oppositions is, and we provide a common sense interpre-
tation to introduce the modalities which take sense in the
context of theory formation and scientific discovery.

A. Classical square of oppositions

The doctrine of the square of opposition originated with
Aristotle in the fourth century B.C. and has occurred
in logic texts ever since. It connects various quantified
propositions and their negations by introducing various
notions of oppositions: contradiction, contrariety and sub-
contrariety (Figure 1).

Definition 1 (Contradiction):Contradiction for two
terms is defined as the impossibility for them to be both
true or both false at the same time.

Definition 2 (Contrariety):Contrariety is defined as
the impossibility for two terms to be both true, but the
possibility to be both false.

Definition 3 (Sub-contrariety):Sub-contrariety is de-
fined as the impossibility for two terms to be both false,
but the possibility for them to be both true.

According to these definitions, opposition is based on
various degrees of truth difference. A last useful notion
is sub-alternation between two terms, also better known
as implication:

Definition 4 (Sub-alternation / Implication):Sub-
alternation is defined as the impossibility of having the
first term true without having also the second true.

The square of oppositions is represented by the follow-
ing geometrical relations (Figure 1).

The column withA and I corresponds to affirmative
propositions, while the column withE andO corresponds
to negative propositions. The line withA and E corre-
sponds to universal propositions, while the line withI and
O corresponds to existential (also called particular) propo-
sitions. Several extensions have been proposed in order to
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A ...............................................
contrariety

E

I

implication

?
...............................................

sub-contrariety
O

implication

?

contradiction

Figure 1. Aristotle’s square of oppositions

palliate the logical drawbacks and develop the inference
capabilities of the traditional Aristotelian square. Various
modal decorations on the vertices can be found in [7].

To express our formalism, we need to define, starting
from this square, a closed set of modalities to distinguish
the logical status of the statements occurring during the
process of theory formation.

B. An interpretation of Aristotle’s square

It is very important to understand that the modalities are
the key of the communication between the scientist and
his computer assistant: they are used by the assistant to
reason logically, and therefore must be interpretable easily
by the human to enable a control and a supervision of the
theory formation. Several interpretations may be possible,
and the ones presented here were chosen because their
definitions as found in the dictionary are related in the
same way as the modalities they represent.

Definition 5 (Proof:�α): A proof is a process which
enables the verification of a computation’s exactitude, or
of the pertinence of problem’s solution. To proveα is to
establish with reasoning the truth ofα, and�α denotes
the fact thatα has been demonstrated as being necessarily
true (or necessary).

Definition 6 (Refutation:�¬α): A refutation is a pro-
cess which enables to demonstrate the falsity of an affir-
mation by contrary proofs.�¬α denotes the fact thatα
has been demonstrated as being impossible, or necessarily
false.

Definition 7 (Contingent:¬�α): Contingent denotes
the fact thatα has not been proven.α may then occur,
without any explanation or ”by chance”.

Definition 8 (Possible:¬�¬α): Possible denotes the
fact that the formula has not been refuted.

If we gave a probabilist interpretation of these four
modalities, we would say thatα has a high risk of
occurring, whereas¬�α will most likely not occur. Of
course,�α has 100% chances of happening, and�¬α

has none.
Figure 2 represents Aristotle’s square decorated with

these modalities.
Aristotle’s square is the building block of our logical

structure. This formalism closes the set of modalities
used to type statements treated during logical reasoning,
instead of closing the world on which one has to reason.
In the following sections, we explain why at least three
of these squares are needed to formalize the formation

necessary : �α .............................
contrariety

impossible : �¬α

possible : ¬�¬α

implication

?
............................
sub-contrariety

contingent : ¬�α

implication

?

contradiction

Figure 2. A modal interpretation of Aristotle’s square of oppositions

of theories in the context of incomplete and inconsistent
knowledge (section V), and five of them to take into
account the scientific aspect of the discovery process
(section VI).

V. THE CUBE OF OPPOSITIONS

The process which supplies evidence for the validity,
or for the invalidity, of certain inferences and conversions
(of a proposition into its negative) is based on the square
presented on Figure 2, which opposes Proof (�) and
its negation (¬�). Therefore the square of opposition
appears as a geometrization of the inference process. But
as we mentioned in the introduction, each logic defines
its own negation, and this square actually corresponds
to the definition of proof in classical logic, which could
be sufficient to help solving problems in a closed and
perfectly described world. But to deal with scientific
discovery, learning, and theory formation, we need to take
into account the inconsistency and the incompleteness of
the knowledge used to reason, which justifies the use of
paraconsistent logic (in a paraconsistent logic there can
exist a proposition which is true and the negation of which
is true, without implying the triviality of the theory, i.e.
the truth of any proposition) and paracomplete logic (in a
paracomplete logic there can exist a proposition which is
false and the negation of which is false, without implying
triviality of the theory, i.e. the truth of any proposition).

Extending the classical square by introducing conjunc-
tions and disjunctions of the terms, and working on
the geometrical aspects of the so formed hexagons as
well as on its various modal decorations, [7] introduces
new modalities with two other hexagons corresponding
to a paraconsistent and to a paracomplete definition of
negation (Figure 3).

Each of these hexagons shows how the bottom modality
is opposed to the top modality. Looking at the three
hexagons, we have thus the most general sub-alternation
(or implication) relation between these various negative
terms:�¬α −→ ¬α −→ ¬�α [8]. This is no surprise,
since these terms are known as expressing various kinds
of negation in classical and modal proposition logics with
the corresponding weakening relations: [9], [10] show that
�¬ is an intuitionistic paracomplete negation, and [11]
shows that¬� is a paraconsistent negation.
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1) �α ∨ �¬α 2) �α ∨ ¬α

�α

-
�¬α

�

�α

-
¬α

�

¬�¬α
?

¬�α
?

α
?

¬�α
?

¬�¬α ∧ ¬�α

-�

α ∧ ¬�α

-
�

3) α ∨ �¬α

α

-
�¬α

�

¬�¬α
?

¬α
?

¬�¬α ∧ ¬α

-�

Figure 3. 1) “classical” negation, 2) “paraconsistent” negation , and
“paracomplete” negation

A. Modalities attached to a theory formation

We derive from these negations the formal definitions
of a Postulate (α ∧ ¬�α) and Conjecture (¬α ∧ ¬�¬α)
(Figure 4), introduced to deal respectively with the in-
consistency and the incompleteness of knowledge during
the formation of a theory. An ongoing theory is then
determined by a set of postulates and conjectures that
should finally be instituted as being its principles and its
theorems to be demonstrated.

1) �α ....................�¬α 2) �α ............α ∧ ¬�α

¬�¬α
?

................¬�α
?

¬α ∨ �α
?

..........¬�α
?

3) �α ............¬α ∧ ¬�¬α

α ∨ �¬α
?

..............¬�α
?

Figure 4. 1) classical definition of a refutation (as on Figure 2), 2)
paraconsistent definition of a conjecture, and 3) paracomplete definition
of a postulate

Definition 9 (Observed:α): α is often interpreted as
“true” (and ¬α as “false”), but here, the interpretation
of α as “is observed” (and¬α as “not observed”) is
preferred. This notion of observation is refined in section
VI in which observations are related to experimentation in
a context of modeling: there is a glimpse of temporality
under this notion, which should be also refined by the
process of prediction and factualisation. In the cubic
structure presented in the current section, the notion of
observation “forgets”, in a certain sense, all the meanings
required to design the modeling actions of an agent.

We introduce the use of postulates to fix some limits
to what is arguable or not, and conjectures to restrain the
objectives, to fix some limits to what is provable or not
(for example, one could state that the conjectureP = NP

is not to be proven)
Definition 10 (Postulate:α ∧ ¬�α): A postulate is a

primary principle, indemonstrable or undemonstrated.

�α - α ∨ �¬α

¬�¬α �
-

6

α ∧ ¬�α

�

¬α ∨ �α
?

� �¬α

¬α ∧ ¬�¬α

6

-

�

¬�α
?

-

Figure 5. The cube of oppositions

Formally, a postulate is a statement supposed on the basis
of incomplete observation;
(¬α ∨ �α: the formula is not a postulate).

Definition 11 (Conjecture:¬α ∧ ¬�¬α): A
conjectureis a simple supposition founded on apparent
possibility or probabilities, a hypothesis which has not
received any confirmation. Formally, a conjecture is a
statement which existence is assumed without being
observed, since it is not refuted. For instance,tomorrow
is a new dayis a conjecture.
(α ∨ �¬α: the formula is not a conjecture)

Definition 12 (Theory):A theory includes a set of pos-
tulates and a set of conjectures: an ongoing theory is not
supposed to be complete and consistent. The use of para-
consistent and paracomplete logics to formulate theories
simply comes from the fact that postulates and conjectures
are expressing contradictions when using respectively a
paraconsistent and a paracomplete negation.

As [12] and [13], we combine the three squares
presented on Figure 4 to form a higher order cubic
structure, theCube of Oppositions(Figure 5), relating all
the modalities presented so far.

The squares are not visible on the faces, but on the
diagonals of the cube. Indeed, since the relations of
contradiction are visible on the diagonals of Aristotle’s
square, it is natural that the different squares form the
diagonal planes of the cube of oppositions.

The latter is built from two distinct tetrahedrons. The
one of contrariety, which vertices are those from which
the implication arrows start, opposes the proof� to the
modalities that can imply its contrary¬�, and the one
of sub-contrariety which vertices are those to which the
implication arrows lead. The latter opposes the contradic-
tion of a proof¬� to the modalities that can be derived
from a proof. Any vertex of the cube is then contradictory
to the furthest lying opposite vertex (easily obtained by
central symmetry).

A proof is the result of a dynamic process of constant
revision: a new proof is interesting when it proves some
conjectures or eliminate surnumerous postulates, and is
reciprocally suspected when it proves some conjecture
that are reputed unsolvable or false. Logicians appreciate
that solvers reason with consistent and complete theories,
this is why theories which take into account inconsistency
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and incompleteness model them by believes, intentions,
and defaults. However, during the interactive phases of
learning, it is illusory to try being consistent and complete
by considering that errors are the defaults of some known
consistent and complete theories, which would lead to
making a theory of the whole. A discovery is triggered
by the resolution of a contradiction. For instance, it is
contradictory to consider a statement as a proof and
as a postulate, since proof is related to postulate by a
contrariety relation. So when a postulate is proven then
either it has to be removed, either the proof is false. This
shows how this set of modalities is closed by negation,
and why paracomplete and paraconsistant contradictions
are needed to reason with incomplete and inconsistent
knowledge.

By chance, this cube of oppositions is not an exotic
logical structure, but simply a fragment of a classical logic
which is used to raise an alert when a theory needs to be
revised, i.e. when a postulate or a conjecture is proven.
How can a postulate or a conjecture be empirically
proven? This question shows the limits of this formalism,
as illustrated in section V-B, and leads to the hypercubic
structure presented in section VI.

B. E+N, a game of scientific discovery

The application chosen to illustrate this first part of
the formalism isE+N, a toy game inspired from Abott’s
mathematical game “Eleusis” [14], and an interaction
protocol “Nobel” designed by cognitive scientists to study
collective behaviors in a controlled and parametrized
environment [15]. As described in [2], E+N game was
designed to simulate the discovery phenomenon and the
formation of theories by implementing an Angluin like
machine learning interaction protocol [16]. It is currently
experimented in with PhD students, to gather enough data
to enable the comparison with their results with those
of computer assisted players, but also with children to
validate the didactic impact of the game on their learning
dialectics.

E+N is a card game in which players have to discover
hidden rules determining the valid card sequences that
can be formed during the game. Players have access
to personal experimentation spaces in which they test
sequences to observe their validity for the selected hidden
rule. They also have access to a public environment in
which they can publish their own theory explaining a
hidden rule, read the ones submitted by other players, and
possibly refute them when they find a sequence which
is irrelevant with what was published. The game ends
when the flow between published and refuted theories
stops, and the winner is the player with the higher score.
A player scores by publishing and refuting theories, and
loses points when his own theories are refuted.

The choice to use cards was made to make this
game accessible to the largest backgrounds as possible
(including children), but this simple game is actually a
constructive and collective process of theory construction
during which players have to observe the sequences at

their disposal, and formulate postulates and conjectures to
build a publishable theory. The social game confronting
players who do not have tested the same sequences
create cases of contingency: when publishing a theory
without testing sequences to prove or refute possible and
contingent statements, there is a risk that another player
has tested them. We insist on the fact that this game has
been simplified for experimentation reasons: the length of
the sequences is fixed to two cards, and the description
of the cards is also fixed and known by every player, we
will discuss in section V-B.2 the consequences of these
simplifications, after illustrating with the game’s concepts
the definitions given so far.

1) Illustration of Definitions:

• Observed (α): By creating a new card sequence, one
can observe if it is accepted or not. On the contrary,
¬α denotes that a sequence has not been played.
For instance, the sequenceS=[King of hearts][Ace
of spades] is either played, or not.

• Proof (�α): When a sequence is valid, then the
statement describing it is proven. Considering that
the way to describe cards is fixed and known, and
supposing that the card sequenceS given above
is valid (accepted by the hidden rule), then the
following statementSt, is proven:A card which form
is “hearts”, which color is “red”, which strength is
“King”, and which is a court card, can be followed
by a card which form is “spades”, which color is
“black”, which strength is “Ace”, and which is not
a court card.

• Refutation (�¬α): Supposing that the card sequence
S given above is not valid (rejected by the hidden
rule), then theSt is refuted. If the statement in
question, or part of it, has been published, then the
player who observes the counter example can refute
it and score points. For instance, a theory as “A red
card is followed by a black card” can be refuted if
S is not valid.

• Possible (¬�¬α): Possible denotes the fact that
a sequence has not been played, and therefore a
statement describing it is not refuted or contradicted.

• Contingent (¬�α): Contingent denotes the fact that
a sequence has not been played, so a statement
describing it is not proven. Surely, there is a temporal
notion underlying these two last modalities, since
what is possible or contingent has not been played
yet. Contingency is strongly linked to the notion of
action, and in this game, every card sequence is
contingent, as the result of the player’s choice. It is
not as if cards were played continuously, following
a specific rule, as Earth turning around the sun in
a bit less than 365 days, which is a phenomenon
strictly observed, and which cannot be influenced by
the observer. Moreover a sequence, until it is played,
can be at the same time possible and contingent since
these modalities are linked by a contrariety relation.

• Postulate (α ∧ ¬�α) A postulate can be seen as a
statement describing only partially an observed and
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Figure 6. Eleusis + Nobel Game display

contingent card sequence. Indeed, the description
may not be accurate or really relevant. Since the
language to describe cards is given in this simplified
version of the game, there can be no postulates, these
statements are already proven.

• Conjecture (¬α ∧ ¬�¬α): A conjecture is a set of
logical rules that produce predictions (statements)
which are not observed and possible. For instance, if
there is at least one sequence of a red card followed
by a black card which has not been observed as valid,
then the statement “a black card will be accepted
after a red one” is a conjecture, but can be used to
predict, associated to a risk of producing an error.

The dynamic of the interactive process is given by
the “Nobel” part of the game during which each player,
motivated by the acquisition of credits, publishes his own
theories: each player has his own bias, and individual
theories are improved by being confronted to others.

2) Discussion: As it was emphasized in the presen-
tation of this game, some simplifications were made to
make this game accessible to the children who experi-
mented it at first: hidden rules are consistent and complete
on the set of sequences of two cards, and the cards
description is also fixed and known by each players. As
we mentioned in the illustration of postulates (section
V-B.1), the first consequence of these simplifications is
to eliminate the use of postulates. A harder game could
make players doubt about the most pertinent vocabulary

to describe the properties of cards involved in the hidden
rule, as well as about the relations between cards (hidden
rule concerningn consecutive cards, or a card could be
related to the one placed in thenth position after it).
In this harder game using postulates would make sense,
since the observation of a sequence would only proof its
existence. Moreover, in the context of scientific discovery,
a publication not only contains postulates and conjectures,
but also a model together with a device for experimental
validation and facts confirming or invalidating the model’s
predictions, which are not taken into account in the Cube.
The state of the art and the credibility of an author (credit)
are not dealt with neither. However, some of these are
already present in E+N and visible on Figure 6: the state
of the art, for instance, is represented by a journal of
publications, listing every theory published, as well as
the eventual refutations (left hand side). On the right hand
side is shown information as personal credits (score), the
credits of the best player, the average number of cards
played before publishing . . . The main frame shows the
private environment in which each player can freely play
cards to form sequences, and this whole experimentation
environment could be published as a device for empirical
validation or refutation.

Section VI fills the gaps mentioned earlier, and presents
how the cube is extended into a hypercubic structure by
absorbing two other squares of oppositions defining the
relations between modeling and proof or refutation on the
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one hand, facts and predictions on the other.

VI. T HE HYPERCUBE OF OPPOSITIONS

In this section, we suppose that each scientist publishes
his own model and the experimental protocol to validate
it, together with the postulates and conjectures defining
the theory as mentioned in section V. A scientist also
produces experimentable facts, as well as possible and
contingent statements making factual some predictions
coming from others scientists’ model. Section V presents
a set of modalities closed by negation and used to describe
the formation of a theory, in a mathematical way, in a
purely theoretic manner. But as Popper [17], we believe
that science is pragmatic and must empirically rely on
experimentation and be validated by the confrontation
of a theory to reality. Every formal element has to be
experimentally refutable by a scientific society, and proof
and refutation must form the social accreditation process
of a formalism.

In other words, the role of the computer assistant is
to build, starting from facts, a model which is used to
simulate a phenomenon and predict the behavior of a
system, in an almost scientific manner. The modalities
representing these notions are introduced in section VI-A
and are based on a higher-order modal extension of the
previous cube of oppositions [12], [18]. An illustration
in drug design is provided in section VI-B. Section
VII then present informally how agents using such a
logical framework can interact to agree on a consensual
vocabulary to describe a phenomenon.

A. Modalities in empirical Theory formation

Definition 13 (Model:∼): Modeling is a method of
study and measurement consisting in replacing a studied
system by a model supposed to have an analogous be-
havior.∼ is the universal modality associated to a formal
statement representing a model.

Definition 14 (Experimentation:¬∼): An experimen-
tation is an effective test realized to study a phenomenon.
¬∼ is the existential modality associated to a statement
expressing an experimentation.

Definition 15 (Prediction:� ∨ ∼ ∨ �¬): A
prediction is the result of a computation, or a principle.
� ∨ ∼ ∨ �¬ is the existential modality associated to a
statement implied by a proof or a refutation or a model.

Definition 16 (Fact:¬� ∧ ¬∼ ∧¬�¬): A Fact is the
concrete result of an action, and has an unquestionable
empirical evidence for scientists.¬� ∧ ¬∼ ∧¬�¬ is the
universal modality attached to a statement from which
may be implied an experimental, possible and contingent
result.

The two opposition squares relating these new modali-
ties are visible on Figure 7 (only modalities are shown to
simplify the diagrams). They can be linked to the previous
cube to build a hypercubic construction of higher-order
geometrical figures of oppositions as suggested by [12]
(Figure 8 shows only a part of this hypercube for clarity
reasons).

� ............∼ ∼ ..........�¬

¬∼
?

........¬�

?
¬�¬

?
....... ¬∼

?

Figure 7. the squares defining simulation and experimention towards
proof and refutation

� - � ∨ ∼ ∨ �¬

¬�¬ �
-

6

∼

�

¬∼
?

� �¬

¬� ∧ ¬∼ ∧¬�¬

6

-

�

¬�

?-

Figure 8. One facet of the hypercube of oppositions

Both experimentation and modeling produce results,
and it is the confrontation between them that puts forward
an eventual contradiction between a phenomenon and
the model used to simulate it, which leads to put into
question proofs, conjectures, and postulates to localize the
theoretical error.

More generally, each face opposes two universal
modalities by confronting the two particular modalities
which can be derived from both of them. For instance,
different models create different points of view, and
modify postultes and conjectures. A first result of this
methodology is to reveal the facets of different learning
techniques. On the front face, the adequacy of “fact” and
“model” is related to the production of possible and con-
tingent statements which are linked by a subcontrariety
relation. The corresponding learning method are version
space or Galois lattice techniques. The left face as the
bottom face links respectively the “fact” to the “proof”
or to the “refutation” of the model. The three other faces
are related to the analysis of the prediction. The back face
is used to compare a prediction, i.e. a “theoretical result”
given by a “simulation”, to an “experimentation” which
concretizes some “experimental results” (the fact that an
object falls when it is released on earth is observable
by experimenting it on a particular object in particular
conditions).

In the following section, we illustrate the different
facets of this supervision strategy of a learning process
on an industrial application in Drug Discovery. The form
of the “hidden rules” is not known anymore, but several
models can exist.

B. Application to the prediction of Absorption

In this section, we present an application of the hyper-
cube in scientific discovery, on the absorption problem.
In the example E+N presented in section V-B, the objects
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Figure 9. KEMTM

were described using a fixed and known ontology and
the hidden rules an error free answer to each query
concerning a card sequence.

In this new problem a scientist is using a learning
machine to learn a model from facts. This model is
formulated as a constraint network, and each constraint
concerns properties of the molecular graph’s description.
As the model is learned from examples, since predictions
may be done in a context of overfitting and underfitting,
contradictions are the events which allow the supervision,
by the expert, of the learning assistant modeled as a
hypercube.

This real application of learning in scientific discovery
results from collaboration with Ariana Pharmaceuticals in
Drug design [19]. KEMTM can suggest specific molecular
modifications to achieve multiple objectives, after analyz-
ing a multi-parametric database.

In this example we focus on the prediction of ab-
sorption, a key issue in drug design since this is one
of the important and early causes of failure in the drug
discovery process. Indeed molecules need to be absorbed
before they can perform any desired activity. Absorption
is a complex process involving both passive (diffusion)
and active (through transporter proteins) across cellular

membranes. For passive transport, molecules need to be
soluble (hydrophilic) in water and at the same time they
need to be greasy (hydrophobic) to penetrate cellular
membranes that are formed of lipids. This contradict-
ing requirement is modulated by active transport, where
molecules need to be recognized (i.e. complementarity of
shape and charge) by another molecule (transporter) that
helps them through membranes. Although no one can for
sure predict the absorption of a new molecule, a number
of empirical rules are known. This is an interesting
context for applying our IA since our key requirement is
to capture knowledge from the experimental data and then
evolve and improve this model in a consistent manner.

To illustrate our approach we focus on a set of 169
molecules for which the absorption in human tissues has
been experimentally evaluated (4 classes. 0 not absorbed,
3 highly absorbed) [20]. These molecules are described
using a set of physico-chemical properties such as molec-
ular radius, different calculated measures of their total
polar surface accessible to water (TPSAand VSA POL),
their hydrophobicity (SLOGP), presence of halogens etc.

To learn, KEM acts according the facet of the hyper-
cube of oppositions visible on Figure 8: 1)(left face)A
decision tree is used to find a good segmentation of
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Figure 10. PredictionsA andB

the numerical descriptors. 2)(front face) A Galois lattice
method works on these binary descriptors in order to
construct a lattice of regularities. 3)(upper face) sup-
irreducible nodes are translated into logical constraints
for prediction. 4)(back face) the prediction is confronted
to the experimentation. 5)(right face) the study of the ex-
perimental error is done by a refutation of the simulation.

Initially, the system learns from the data set a set
of rules linking the structure of the molecule to the
absorption. The quality of the prediction is tested in
a subsequent stage on a novel set of molecules. The
results are shown on predictionA in Figure 10. Ideally
the predictions should be on the diagonal. An error of
one class is tolerated. However, it is clear that for one
molecule, the error is larger (i.e. experimental: class
1 vs predicted: class 3). This confrontation between a
theoretical result and an experimental result puts forward
a contradiction in the model.

Let us sketch this dialog: the molecule (Ranitidine)
has been predicted withfraction absorbed in human
3 i.e. highly absorbed. However, if the user makes a
postulate and forcesfraction absorbed in human 3to
be false, the system localizes the error that induced the
contradiction by showing that the postulate contradicts the
conjectural learned ruleVSA pol 2→ fraction absorbed
in human 3. At this stage the user realizes that indeed this
conjecture was true for the learning set, however this is
not generally true and it can be eliminated. The user then
goes back to simulating once more the test and results
are shown in Figure 10, predictionB. As expected, the
results have been improved. The important point is that
the improvement has been done in a controlled way under
the user’s supervision, and this was only possible because
the user and KEMTM shared a common vocabulary to
type statements.

In scientific discovery, there are in general no Oracles
who can say a priori whether a prediction is correct or not.
Experimentalists formulate a conjecture that is consistent
with existing empirical data and then set about to test it.
We believe that the key for a computational system is to
adhere to the same process i.e. build up an explanation /
reasons for predicting an outcome. If the system is able
to provide enough arguments, the user will ”trust” it and
try the experience. This implies that the arguments are
annotated with modalities which are meaningful both for
the user and the machine.

VII. T HE INSTITUTION AGENT SOCIAL GAME

This section is the final step of the formalism and links
the classical formalisms used to express the individual
and collective behaviors of agents. Our contribution is to
describe the dynamic process of conventional formation
of theories by agents (human as well as artificial agents)
in respect with social norms regulating a community,
in order to describe a community of agents interacting
with each other to understand their environment and
organize themselves to fix common objectives and chose
the best actions to achieve them. The objective is then to
give the intuitive idea about mathematical developments,
which are our ongoing research, and to show that this
is a constructive approach to build agents comparable
to classical BDI agents, which use Beliefs, Desires, and
Intentions to reason and decide.

The only constraint fixed on agents is to reason using
a hypercube (section VI) and a normative system NS,
which is a logical language using the cube modalities to
communicate.

Definition 17 (Normative System):We call a Norma-
tive System (NS) the couple (L, Cube) formed by:

• L: a language formed by a hierarchy of concepts and
the relations between them,

• Cube: a cube of oppositions.
Definition 18 (IA): An IA is an agent using an

Hypercube framework to reason and judge statements.
As we emphasized, the Hypercube is a formalization of
dialectic as it is practiced by humans, and anIA can
then be either an artificial agent, or a human agent. The
interaction protocol is compliant with both of them since
the definitions of the modalities are shared by both of
them.

Scientific discovery is a collective process, and needs
interaction between researchers to exchange their points
of view and judgments. This is howIAs interact (Figure
12): by exchanging judgments about statements, more
exactly, by asking anotherIA if it agrees with a particular
judgment: ”this statement is a conjecture, is it not?”, to
which the answer is ”yes” or ”no, it is a result”, or if a the-
ory seems relevant or not. This type of interaction is well
described in Machine Learning theories and these queries
are known respectively asMembershipand Equivalence
queries. [16], [21] shows that the use of at least these
two types of queries is required for an effective learn-
ing. Exchanging judgments creates the negation in the
common frame of reference (language), and the revision
of the normative system associated with one IA or the
other. Two judgments are especially important:judging
one’s conjecture as being a paradox, and judging one’s
postulate as already being a result. KEMTM , presented
in section VI-B, illustrates this control by a scientist over
the artificialIA assisting him.

We suppose that eachIA can be represented by a
particular normative system resulting from its own ex-
perience and adaptation during an interaction with other
IAs, and we assume that the logic used during a decision
process is the same for everyIA. We then focus on
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adaptation and interaction of IAs sharing a vocabulary
and trying to build a common language or frame of
reference with this vocabulary to describe a phenomenon
and provide consensual definitions, expressed logically or
by constraint networks.

Three logical properties, presented in the following, are
needed to qualify this interaction protocol and to add a
logical control to the adaptation process:

• deontic: anIA must be able to attribute credits to
anotherIA, to interact, and to teach anotherIA,

• defeasible: LowerIAs must be able to adapt their
behavior to the norms imposed by the higher ones,

• autoepistemic: anIA can be seen as composed by
at least two interactingIAs and can therefore learn
its own hierarchy of norms and auto-adapt.

section VII-A presents how a deontic and defeasible
logic can be used to frame the collective dynamic during
which IAs build a commonNS, and section VII-B
suggests how anIA can be itself composed by several
IAs to form an autoepistemic agent performing an inner
dialog while reasoning.

A. Collective dynamic

1) Deontic logic: Often used in multi-agent systems to
constrain an agent’s behavior, annotable deontic logic uses
modalities expressing obligation, interdiction, advice,and
warning. According to Frege’s definition, these statements
express a judgment, i.e. the recognition of the type of
truth of the statement [22]. Imputations (gains or losses,
risk estimation) are used to estimate the risk incurred in
a given situation to decide what action to take or what
behavior to adopt. A modality and an imputation have
to be used to express statements of the following form:
”The obligation to respect the speed limit is attached to a
imputation ofx”. A credit value can also be associated to
IAs, ordering them hierarchically, to define which one is
the most qualified to rule in a given context, for example
by defining a social organization as a government with a
parliament, a senate...

2) Defeasible logic: It is possible to link twoIAs

by respecting a defeasible logic to take into account a
hierarchy of Institution Agents. The resulting hierarchy
of IAs has to be brought together with the transitivity
axiom, that stands as follows: ”What is necessary in an
upperNS of is also necessary in a lowerNS”. In other
words, no one should be unaware of the law, no one
should go against a superior law. [23] gives a concrete
usage of defeasible logic, that allows us to order rules
and to supervise an IA, for example with another higher
IA, as illustrated on Figure 13.

• Every Obligation of a lower IA belongs to the
superior IA’s advice.

• Every Interdiction of a lower IA belongs to the
superior IA’s warnings.

The middle line shows the conditions according to which
an IA can be supervised by another one. The violation
of this constraint (O2 = �2 ⊂ I1 = �1¬ or I2 =

Figure 11. IA’s credit

Figure 12. Exchanging judgments

�2¬ ⊂ O1 = �1) can put forward contradictions between
the two IA’s normative system. Finding a contradiction,
and trying to eliminate it, leads to the initiation of a
transaction between the two IAs, during which they adapt
their theory. When no contradiction remains, a new IA can
be created, formed by the association of the two precedent
IAs, and this process ensures the traceability of all the
events leading to an IA’s creation.

B. Personal dynamic

Figure 14. Autoepistemic dialog

Figure 15. IA formation

1) Autoepistemic logic: Aristotle distinguishes en-
dophasy as an inner dialog (”to think is to speak with
oneself”). This is a constructive manner to build an
intelligent agent as the result of an self learning. The inner
IAs can be interpreted as managing believes, desires or
intentions (BDI), for example. By applying the dialectic
and deontic interaction we have presented in section VII-
A.1, an IA is able to acquire its ownNS, which prepares
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Figure 13. Normative system hierarchy

an efficient learning, and even enable self learning from
examples.

In this section, we presented how an interaction process
and a hierarchical control can be used to define an agent
able to adapt its defeasible deontic and autoepistemic
Normative System.

VIII. C ONCLUSION

We presented a logical framework in order to capture
the entire process of scientific discovery as it is per-
formed in scientific comunity. This framework is based
on Aristotle’s square, a conventional logical structure, and
recent related works in logic. In this context, we focused
on a geometrical representation of the notion of logical
contradiction.

Our approach is progressive. We first presented with
a cubic structure the formation of a theory as driven by
the proof of its postulates and conjectures by scientists.
Then we presented a hypercubic extension to capture the
empirical modeling processes, to make the predictions of
a model and the experimentations explicit. We showed
how this theory construction can be done by human and
by machines taught by humans in a formal and in a
practical way. Finally we presented in an informal way
how the institution agents (agents using this hypercubic
structure to build theories), educated by human, can be
constrained to respect normative systems and how this
approach is only a constructive alternative to BDI agents.

We illustrated on an example coming from Drug Dis-
covery how these annotations of common sense, which are
now logically defined, are used by a learning machine and
a scientist to interactively build a model which is coherent
and complete with observations and experimental results.
We prone that this hypercube describes in a universal
way a rational agent and enables the supervision of its
computing process.

In perspective, to complete our experimentation, we
plan on experimenting this constructive approach to teach
a humanoid robot and make him gain more autonomy. A
mathematical formalism of agents based on this vision is
currently developed in category theory.

REFERENCES

[1] T. Parsons, “The traditional square of opposition,”
in The Stanford Encyclopedia of Philosophy,
E. N. Zalta, Ed., Winter 2006. [Online]. Available:
http://plato.stanford.edu/archives/win2006/entries/square/

[2] C. Dartnell and J. Sallantin, “Assisting scientific discovery
with an adaptive problem solver.” inDiscovery Science,
ser. Lecture Notes in Computer Science, A. G. Hoffmann,
H. Motoda, and T. Scheffer, Eds., vol. 3735. Springer,
2005, pp. 99–112.

[3] J. Sallantin, C. Dartnell, and M. Afshar, “A pragmatic logic
of scientific discovery.” inDiscovery Science, ser. Lecture
Notes in Computer Science, L. Todorovski, N. Lavrac, and
K. P. Jantke, Eds., vol. 4265. Springer, 2006, pp. 231–242.

[4] S. Morley and M. Afshar, “Validation of an empirical
rna-ligand scoring function for fast flexible docking using
ribodock.” Journal of Computer Aided Molecular Design,
pp. 189–208, 2004.

[5] M.-G. N., W. K. A. B.K., and K. R.D., “New approach to
pharmacophore mapping and qsar analysis using inductive
logic programming. application to thermolysin inhibitors
and glycogen phosphorylase b inhibitors,”Journal of
Medicinal Chemistry, vol. 45(2), pp. 399–409, 2002.

[6] B. Faller and F. Wohnsland, “Physicochemical parameters
as tools in drug discovery and lead optimisation,” inPhar-
macokinetic optimization in drug research. Testa, Wa-
terbeemd, Folkers and Guy editors, Wiley-VCH, Zurich,
2004, pp. 189–208.
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