Optimal Patterns Synthesis Approach for Knee Motion under Functional Electrical Stimulation
Mourad Benoussaad, Philippe Poignet, David Guiraud

To cite this version:
Optimal patterns synthesis approach for knee motion under Functional Electrical Stimulation

M. BENOUSSAAD¹, P. POIGNET¹, D. GUIRAUD¹

¹ DEMAR Project, INRIA/LIRMM UMR 5506 CNRS/UM2, 161 Rue Ada 34392 Montpellier Cedex 5, France

Email of the corresponding author: mourad.benoussaad@lirmm.fr

Abstract

This paper concerns the synthesis of Functional Electrical Stimulation (FES) patterns for efficient functional movement. We propose an approach based on a nonlinear optimization formulation. The study considers a biomechanical knee model and the associated agonist/antagonist muscles. The goal of this method is to synthesize optimal patterns which minimize the muscular activities in order to reduce the fatigue. The approach is illustrated with a sinusoidal desired knee joint trajectory. Moreover, The applied optimal FES patterns allow the muscles co-contraction during the movement.

1. Introduction

In healthy subjects, the Central Nervous System (CNS) sends electrical signals to muscular fibres that produce a force, and then a movement. When there is a spinal cord lesion, Functional Electrical Stimulation (FES) may be used to activate the skeletal muscles like in the SUAW’s project [2]. However, its application poses some problems in practice. In fact, the applied stimulation patterns are often empirically chosen, increasing the muscular fatigue. For motion synthesis, we use the muscular activities minimization approach. Therefore, our work goal, presented in this paper, is to obtain optimal stimulation patterns based on a nonlinear optimization problem formulation.

2. Method

2.1. Biomechanical model

In this first on going study, we consider a 2D biomechanical model with one degree of freedom characterizing the knee joint. It is controlled by two-antagonist muscles, which are the quadriceps and the hamstring. Figure 1 is a simplistic representation of this joint. Figure 1

\[I \ddot{\theta} + \Gamma_q + mg(\beta L_q) \cos(\theta) = F_e \dot{\theta} - K_e (\theta - \theta_r) \]

where, \(\dot{\theta} \) and \(\ddot{\theta} \) are the knee joint velocity and acceleration, \(\Gamma_q \) and \(\Gamma_h \) are the quadriceps and hamstring torques, \(F_e \) and \(K_e \) are the viscous friction and elasticity coefficients, \(I \) is the inertia of shank+foot group and \(\theta_r \) is the resting angle of elasticity torque that should be identified.

2.2. Muscle model under FES

The muscle model used in the following is the one proposed in [4]. One of the main aspect of this model is that its input is the FES signal. This model is composed of two parts (figure 2):
• The activation model, that describes the behaviour of muscle fibres under FES and includes the fibre recruitment percentage and the dynamic activation representing mainly the calcium dynamics.

• The mechanical muscle model, that represents the mechanical muscular contraction. It is controlled by the recruitment rate α and the chemical control u_{ch}.

The model input is a square signal (figure 2) described by the pulse width PW, the intensity I and the frequency f.

The geometrical parameters L_{f}, L_{aq}, L_{ab} and r (figure 1) were identified by using the quadriceps and hamstring lengths estimated from the Hawkins laws [3].

3. The force-length equation is a relationship between muscular maximal force and the muscle length (Eq. 2). We identify b_l in the following equation:

$$ F(L) = F_{max} \cdot \exp \left(\frac{L - L_0}{b_l} \right) $$

where, L is the current muscle length and L_0 the muscle length at maximal force F_{max}. Methods for the estimation phase are proposed in [5] [6].

2.4. Optimal stimulation patterns

For synthesizing the optimal FES patterns, we optimize the pulse width (PW) and the intensity (I) of the stimulation patterns minimizing the joint trajectory tracking errors and the activation of the two antagonistic muscles (Eq. 3). The optimization problem is stated as:

$$ \min_u J(x, u) $$

subject to, $u_{min} < u < u_{max}$

where, $x = [k_q, k_h, F_q, F_h, \theta, \dot{\theta}]$ is the state vector and $u = [u_q, u_h]^T$ the inputs, with $u_q = [PW_q, I_q]$ the quadriceps inputs and $u_h = [PW_h, I_h]$ the hamstring inputs. K_i is the muscular stiffness and F_i is the muscular force ($i=q,h$). u_{max}, u_{min} are the maximal and minimal constraints of inputs. q and h represents respectively the quadriceps and the hamstring muscles.

The optimization criterium is:

$$ J = \frac{1}{2} \sum_{t=0}^{t_{end}} \left[\mu_1 (\theta(u_q, u_h) - \theta_d)^2 + \mu_2 q^2 + \mu_3 h^2 \right] dt $$

where, θ_d is the desired joint trajectory, t_{end} is total duration of the movement and μ_1, μ_2, μ_3 are the cost function weights. The recruitment rate α_q, α_h of quadriceps and hamstring represent their muscular activities depending on PW and I. In the following, we will assume that the frequency f is fixed.

3. Results

Simulations have been performed using MatLab 7.0.0 on a PC platform (Pentium-IV 3-GHz, 1-Gb RAM). In the first part of the simulation, we test the minimal number of inputs for obtaining an efficient synthesis. Intensities I_q and I_h of muscle input signals are first fixed. We only optimize the pulse widths PW_q, PW_h for synthesizing a knee sinusoidal motion. We choose 10 degrees of freedom for the motion control in order to decrease the computation duration.

![Figure 2 - Complete muscle model](image)

The mechanical model is based on the Hill structure (figure 3). It includes a contractile element E_c controlled by two inputs α and u_{ch}, E_s and E_p are the serial and parallel elements.

![Figure 3 - controlled mechanical muscle model](image)

2.3 Parameters identification

Four groups of parameters have to be estimated for each subject:

1. the anthropometric parameters: the inertia I, the mass m and the shank+foot length L_b. They were estimated from the mass and length of the whole body through the De leva approach [1].

2. The dynamic parameters: the viscous friction F_v and the elasticity coefficient K_e. They were identified using Eq. 1 by means of passive pendulum tests applied on the joint knee (i.e. $r_q = r_h = 0$).

3. The geometrical parameters L_{f}, L_{aq}, L_{ab} and r (figure 1) were identified by using the quadriceps and hamstring lengths estimated from the Hawkins laws [3].

4. The force-length equation is a relationship between muscular maximal force and the muscle length (Eq. 2). We identify b_l in the following equation:
4. Discussion and Conclusions

In the current paper, a nonlinear optimization method was used to determine optimal electrical stimulation patterns. This optimization is based on nonlinear knee and muscle models. The results show the optimization method effectiveness for an optimal electrical stimulation. In the first part of results, we observe good motion synthesis except at the start due to the system delay. The results are less accurate in the second part, although the number of optimized parameters is the same. The increase of degrees of freedom improves the tracking accuracy. However, it increases the optimization duration. The results show the co-contraction occurrence of antagonistic muscles. The co-contraction rate is not explicitly controlled but it appears for the motion stabilization. It depends on the cost function weight μ_1, μ_2 and μ_3. In the future works, the optimal stimulation patterns will be applied to paraplegics for experimental validations. An important part of work will then be the specific parameters identification of each subject.

References

Figure 4 - knee system state, output and inputs (PW)

Figure 5 - knee system state, output and inputs (PW, I)

The desired motion trajectory starts at rest position (90°), makes a flexion to 60° then an extension to 120°. The results are presented on figure 4.

In the second part, we optimize all the stimulation inputs i.e. $u=\left[pw_1, pw_2, pw_3, t_1, t_2\right]$ for the same sinusoidal motion. We take 5 degrees of freedom such that the number of optimized parameters is the same than before. Figure 5 illustrates these synthesis results. This simultaneous optimization of all inputs may be useful to minimize the charge $Q=PW \times I$ applied on each muscle. It also allows selecting the best recruitment curve sensitivity. Actually, both simulations last around 14s. It depends on the number of optimized parameters and the total movement duration t_{end}.