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Tandem repeats are repeated sequences whose copies are adjacent along the chromosomes. They account for large portion of eukaryotic genomes and
are found in all types of living organisms. Among tandem repeats, those with repeat unit of middle size are called minisatellites. These loci depart from
classical loci because of the propensity to vary in size due to the adjunction or the removal of one or more repeat units. Because of this polymorphism,
they prove useful in genetic mapping, in population genetic and forensic medicine. Moreover, some specific loci are involved in diseases, like the insulin
minisatellite which is implicated in type I diabetes. Those loci also undergo complex recombination events. Presently, program to compare minisatellite
alleles exist and yield good results when recombination is absent, but none treats correctly recombinant minisatellite alleles. Our goal is to develop
an adequate tool for the detection of recombinant among the minisatellite sequences. By combining a multiple alignment tool and a method based on
phylogenetic profiling, we design a first solution, called MS PhylPro, for this task. The method has been implemented, tested on real data sets from the
insulin minisatellite, and proves to detect recombinant alleles.

General Terms: multiple alignment, insulin minisatellite, phylogenetic profile, recombinant, cross-over, turnover.

Additional Key Words and Phrases: computational analysis of minisatellite sequence data, also called map

1. INTRODUCTION

The genome length in base pairs (bps) displays huge variations among species: from about 105 bps for an archebacteria to
3.109 for humans, or even to more than 1011 bps for the protozoa Amoeba dubia. These differences are explained by the
presence of regions, called repeats, that occur many times in the genome. Some molecular mechanisms allow the cell to
duplicate a genome region. Among different classes of repeats, those whose copies are located one next to the other on
the chromosome are termed tandem repeats. Particularly in tandem repeats, duplication and its dual events, contraction,
may occur at very high frequencies, letting these loci be the most variable (polymorphic) regions for instance in the human
genome. Minisatellites are tandem repeats whose repeat unit ranges between 7 and 100 bps. The length variability of
minisatellites made them markers of choice to study genome variation inside or across population (population genetics), in
genetic mapping, and in forensic medicine for individual identification or paternity testing [Jeffreys et al. 1985]. Indeed, the
repeat sequences (alleles) observed at a given locus in two individuals may be different. Along time, the repeat copies also
undergo point mutations (substitutions, insertions, and deletions), all copies are not identical. The sequence of the variants
of the repeated unit of a minisatellite can be charted by a technique named Minisatellite Variant Repeat PCR [Jeffreys et al.
1991a], the result of which is a sequence over the alphabet of variants (not the DNA alphabet). We will give more details
later. From the medical view-point, a lot of interest has been devoted to minisatellite since some loci are involved in disease
development [Bois and Jeffreys 1999]. For instance, the insulin minisatellite has proven to be an important genetical factor
in polycystic ovary syndrome, obesity, and type I diabetes [Stead and Jeffreys 2000]. Like in hypervariable minisatellites,
and in many human minisatellites, the evolution of the INS locus involves recombination, which leads to exchanges of
groups of variants between alleles [Buard and Vergnaud 1994].

Recently, progress has been made towards computational analysis of minisatellite sequence data, also called map. The
main need is to compare the maps that represents the alleles of two individuals. The comparison should measure the
differences between the two maps by accounting the number of mutations needed to transform one into the other. Solutions
to the minisatellite map alignment problem have been proposed for the case where mutations include point mutations,
duplications, and contractions [Bérard and Rivals 2003; Sammeth et al. 2005; Bérard et al. 2006]. Basically these works
extend dynamic programming approaches for classical sequences (which do not undergo duplications contractions) to
account for long range dependencies in the maps. The pairwise alignment program of [Bérard et al. 2006] has been used
to construct a multiple alignment program called MS Alimul[Rivals ]. MS Alimul starts with pairwise alignments, and
grows them by adding new maps that are close to the maps already in the alignment. The choice of the maps is performed
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following a guide tree obtained by hierarchical clustering of the maps according to their pairwise alignment distances (all
pairwise alignments are first precomputed). Alignments are progressively ”merged” using alignment aligning procedure
from [Kececioglu and Zhang 1998], this is performed iteratively until one obtains a complete multiple alignment. This
strategy is known as progressive alignment in the literature.

Both pairwise and multiple alignment make sense from the biological point of view if the maps under scrutiny are
homologous, that is derive from a common ancestor. The assumption is that mutations represent a small portion of the
sequences and it is possible to find a putative series of mutations to transform one sequence in the other. Recombination is
able to create a new allele, the recombinant, from pieces of two different alleles; these parent alleles may not be homologous
or their common ancestor may be so ancient that their sequences are now dissimilar. Recombinant alleles are therefore
align-able by pieces, but not completely, with each of its parent or with any map or cluster of maps that similar to one of
its parent. When aligning pairwise a recombinant with such a sequence yields an alignment of high similarity in regions
of homology and low similarity in others regions. In the case of multiple alignment it pertubates the construction of the
progressive alignment by inserting many gaps in the non-homologous region.

A long biological literature is devoted to the detection of recombinant sequences in non repetitive genetic sequences,
and these have been reviewed and compared in [Posada 2002] (see references therein). Proposed approaches either (1) rely
on the knowledge of a phylogenetic tree, or (2) use the pattern of nucleotidic substitution site-by-site, or (3) computed a
distance based criterion on a window of a multiple alignment. In latter class, one finds the Phylogenetic profile method of
[Weiller 1998] (also developed in RAT [Etherington et al. 2005]).

Up to now, for repeat sequence in general and for minisatellite data in particular, none of the available comparison
approaches deals with recombinant alleles. As the availability of a ”phylogenetic” tree of the minisatellites alleles is
unlikely, and as in minisatellite, variant duplication is much more frequent than nucleotidic substitutions (and makes it
more difficult to obtain surely homologous sites in a column of a multiple alignment), approaches of type (1) and (2) are
unadapted to the detection of recombination in minisatellite. Thus, we turn ourselves towards a distance based method.
Here, we present a first algorithm to detect if an allele is a recombinant and to propose which alleles could be its parents
alleles. For this we adapt the phylogenetic profile method[Weiller 1998] to minisatellite data and combine it with the
multiple alignment procedure to detect putative recombination positions in a map. We have implemented our method in a
program dubbed MS PhylPro and tested it on different recombinant maps of the INS minisatellite provided in [Stead and
Jeffreys 2000].

The sequel of the paper is organized as follows: in Section 2 we summarize the phylogenetic profile approach and an
improvement on the distance criterion used. In Section 3, we explain MS PhylPro, and while the tests on real data are
described in Section 4. A conclusion and some perspectives are discussed in Section 5.

2. DETECTION OF RECOMBINATION USING PHYLOGENETIC PROFILES

2.1 A brief discussion of PhylPro

We describe the phylogenetic profile method in general terms, for any type of sequence.
One is given a test sequence t and a set of possible parent sequences P. Once t and set P are aligned using any multiple

alignment algorithm (e.g. clustalw), the goal is to find positions in the test sequence that are recombination points, that
is, the sequence on the left (left sequence) comes from a different parent other than the sequence on the right (right
sequence) comes from. For a given position, the idea is to test the sequence similarity profile between t and each s in
P on windows at the left- and at the right of the current position. The sequence similarity profile consists in a vector
of distance (e.g., alignment distance) between t and any s ∈ P. If the vector of distances on the right window correlate
well with the one of the left windows, then the corresponding region of t probably comes from the same parents and the
current position is not a recombination position. If on the contrary the correlation is low, it might be position where the
cross-over took place. So PhylPro evaluates this test for each position of the test sequence and searches for position where
the vectors correlation is minimum. Of course, it remains difficult to choose appropriate window size, distance measure,
and correlation coefficient (see [Weiller 1998; Posada 2002; Etherington et al. 2005] for discussions on these questions).
The window size is automatically set to the total number of variable sites divided by 1.5.

This original method provides correlation coefficient as a score of the propensity of a position to be a recombination
junction, but lacks a significance measure. An empirical evaluation of the significance of the correlation coefficient was
proposed and implemented in [Posada 2002] as follows. A user-defined number n (in this work, we use n = 1000, unless
otherwise noted) of randomized alignments are computed by shuffling the columns of the multiple alignment. Then, one
computes a P-value for the null hypothesis of no recombination, taken as the number of times the minimum distance vector
correlation was smaller than the ones computed from the randomized alignments. The location of such minimum distance
vector correlation likely is a recombination junction.
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2.2 Influence of the distance

In the case of non-repetitive sequences, the use of different sensitive distance measures is mentioned, but not studied in
depth in [Weiller 1998]. Here, we show the effect of using two distance measures on the resulting profiles on 24 nucleotide
data sets of [Posada 2002]. In half of them, recombination is assumed to be absent, while for the other 12, literature has
suggested the presence of recombination. The first classical distance simply distinguish between identity and mismatch,
while the second differentiate mismatches in transitions and transversions.

TableI in Appendix summarizes the results. The use of the transition/transversion scoring matrix instead of the identity
matrix used in [Weiller 1998] implementation of Posada[Posada 2002] improves the sensitivity of phylpro to identify some
likely recombinant data sets DmelCytB, WolfCR and Armillaria-mtDNA. Interestingly, no other tools identify recombinant
likelihood of DmelCytB data set.

The results between the two distances disagree and as PhylPro is conservative in recombination detection, we suggest
that both measures could be used to complement each other.

To validate the results obtained above, we apply PhylPro that uses identity matrix and the one that uses the transi-
tion/transversion scoring matrix on simulated datasets obtained using a program, named ms(see [Hudson 2002] and its
supplementary material (user manual)). This will allow us to evaluate the power and false positives of the two distance
measures applied above using PhylPro.

The program ms can generate many independent replicate samples under a variety of neutral models about migration,
recombination rate and population size. In this program, the standard coalescent approach is used to generate our samples.
The random genealogy of the sample is first generated and then mutations are randomly place on the genealogy.

In this work, the sequences representing our simulated data, using appropriate parameters (we will give them later),
were evolved under the Hasegawa-Kinshino-Yano model[Hasegawa et al. 1985] of evolution using the gene trees output of
ms that represent the history of the sampled chromosomes. We program used for this purpose is seq-gen of Rambaut and
Grassly[Rambaut and Grassly 1997]. The parameters used in the simulation include Θ: the neutral mutation rate per site
(otherwise known as the nucleotide diversity), ρ: the levels of recombination and α: the strength of rate variation among
sites. Note that when α = ∞, there is no rate variation among sites. And the smaller the α, the stronger the rate variation.
Furthermore, for ρ = 1, note that 10% of the datasets simulated contain no recombination events.

TableII of the appendix contains the power and rate of false positives of PhylPro under the identity and the transi-
tion/transversion (TT ) matrices respectively. We observed that the results obtained under the identity matrix i similar to
that of the transition/transversion matrix except that TT is conservation. We can therefore conclude that its greater power
experienced in the Posada biological datasets above is not due to greater false positive rate.

3. A NEW ALGORITHM FOR DETECTING RECOMBINATIONS IN MINISATELLITES

3.1 Adaptation of PhylPro to minisatellites

In PhylPro, the input is a multiple alignment of the sequences and the recombination test is performed individually on each
sequence of the alignment, which is then compared to the remaining set.

In MS PhylPro, the input consists of a test allele t, and a multiple alignment M of a cluster of maps P that are possible
progenitors of t. Such a cluster contains sequences that can be the progenitor of only one part of t. The recombination
test using the phylogenetic profile is applied to the test allele t, and t is compared with the sequences in the multiple
alignment. To compute the distances between t and each s in P, we first align t with M using MS Alimul. Indeed, the
progressive strategy implies that MS Alimul uses a procedure to align any two multiple alignment, even in the case where
one alignment is a single sequence. We use this procedure of MS Alimul. The distance in a window between two maps in
the alignment is simply the number of columns in which the character differ for the two maps (of course, here nucleotidic
transversion/ transition cannot be accounted for). The multiple alignment M of the cluster P is obtained using MS Alimul.
The window size W is set automatically as in PhylPro. This algorithm is summarized in Figure 2.

Another adaptation was made to PhylPro. In the former, sites of the alignment that are too polymorphic caused the
recombinant detection to be less reliable. The reason is that such site may have undergone several substitutions in one
sequence and are often badly aligned. Thus, PhylPro also includes a procedure to detect such sites and removed them from
the alignment prior to the recombinant detection. In our adaptation of PhylPro, we included this as an option. We show
in Section 4 that removing polymorphic sites in minisatellite maps distort the detection of recombination in datasets that
truly contain recombinants.

3.2 Progenitor selection

We have designed another procedure for the progenitor selection to accelerate the prediction of parent alleles. We use
the tree attribute ’depth’ to determine how representatives of a class are automatically selected as possible progenitors.
Graphically, if we want to use depth equal one to select a representative for a class, then any of sequences S1 and S2 and
sequences S3 and S4 of the following guide tree (fig. 1), can be picked to represent each pair. For example, we can select S1
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and S3. So that the dataset containing sequences S1, S2, S3, S4, and S5 can optimally be represented (for example) by the
sequences S1, S3, and S5. And progressively, if we prefer depth equal to two, the class will be represented (for example)
by the sequences S1 and S5.

This automated selection can be done during a depth-first traversal by evaluating the depth of the resulting left subtree.
If the depth of the resulting subtree is equal to value of the depth of interest, one of the sequences in this subtree will be
randomly selected to represent the subtree and the selection procedure back-track in a depth-first way to find representives
for the other subtrees of the guide tree. Let us call this selection procedure, cut and find current depth (henceforth,
(CF CD(T , depth))), where T is the guide tree. Procedure CF CD will return set P, which is the set of potential progenitors.
Possible range of values of depth that can be use to determine P is 0 < depth < O(log l), where l is the total number of
alleles (leaves of the guide tree T ).

s5 s4 s3 s2 s1

Figure 1. A guide tree for sequences S1, S2, S3, S4, and S5.

Using the foregone details, we design an algorithm MS PhylPro to detect recombinant in minisatellites using MS ALIMUL
and PhylPro. This algorithm is encapsulated in Figure 2. Given is a class C (the class naturally is made of aligned min-
isatellite sequences), a guide tree T , and an test allele t that needs explanation on its recombinant candidacy status. The
variable A contains either yes or no to indicate if t is a recombinant or not.

1. MS PhylPro(C, t, depth)
2. T ←MS ALIMUL(C, t)
3. P←CF CD(T, depth)
4. P-value←PhylPro(P, t)
5. A←Is-Significant(P-value)

Figure 2. The algorithm MS PhylPro.

4. IMPLEMENTATION AND EXPERIMENTATION

The above algorithm MS PhylPro (with depth of interest equal 1) has been implemented in C and tested on eleven (11)
datasets using a PC with Pentium IV CPU and 512MB RAM. Our datasets are collected from the set of manually de-
termined recombinants of Stead and Jeffreys [Stead and Jeffreys 2000] (in fig. 5 of their paper). Briefly, these datasets,
obtained from the insulin minisatellite, consist of dispersion patterns of A-, B-, C-, E-, F- and H-type repeats plus o-type
repeats (unamplifiable repeats due to additional unknown variants). Note that minisatellite variant repeat mapping by PCR
(MVR-PCR)[Jeffreys et al. 1991b] system equipped with the capacity to detect these repeat variants was used to derived
this insulin minisatellite.

We first align the whole set of assumed non recombinant alleles and build a Neighbor Joining tree from the resulting
pairwise distances for this sake. In this tree, the four classes of alleles defined by Stead and Jeffreys in [Stead and Jeffreys
2000] appear as the four main clusters (each cluster being monophyletic). We could then use these clusters as sets of
potential progenitor. On these 11 datasets, MS PhylPro was always able to detect recombination in the recombinant maps.
In table III of the appendix, we show for each dataset, the size of the test allele t (recombinant) and set M (possible
progenitors of t) in term of the number of the dispersion patterns (repeat variants) contained.

First, we tested which influence has the option that removes polymorphic sites from the input multiple alignment.
Table IV in Appendix summarizes the comparison with (2nd column) and without (3rd column) this option. Recombination
was never detected with removal of polymorphic sites and always without. It clearly shows that this option does not apply
for minisatellites and its finds application only in DNA sequences.
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In a second experiments, we have tested MS PhylPro with procedure for selection of progenitor. In Table V in Appendix,
we list the results; these illustrate the effect of the procedure P←CF CD(T, depth) that is used to automatically select the
possible progenitors for any given test sequence. The first two columns show the results and running times of MS PhylPro
without this procedure and the last two columns with it. One observes that it improves the running time without sacrificing
the sensitivity of MS PhylPro for detecting recombination.

5. CONCLUSION AND FUTURE WORK

We provide the first program MS PhylPro to detect recombinant sequences among a set of minisatellite data. Our ap-
proach take advantage of the multiple alignment program MS Alimul and of an adapted phylogenetic profile method for
recombinant detection. This tool was tested on several real datasets and shown to give positive results.

We wish to test thoroughly the sensitivity MS PhylPro on different minisatellite data like the Mouse minisatellite [Bois
and Jeffreys 1999] and some hypervariable human minisatellites [Buard and Vergnaud 1994]. Further works include the
implementation of other automatic determination of progenitor sets, and dealing with multiple recombination in a single
sequence. We also hope to extend MS PhylPro to estimate the amount of recombination in a given data set.
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A. APPENDIX A

Data Identity matrix Transition/Transversion matrix
P-value P-value

DmelCytB 0.8440(N) 0.0490(Y)
FusariumTri101 0.9020(N) 0.7840(N)

HumanHRVI 0.8450(N) 0.1070(N)
GymnND4 0.8930(N) 0.6320(N)

DaphniaC01 0.5950(N) 0.8300(N)
MammPGK 0.2700(N) 1.0000(N)

WolfCR 0.3120(N) 0.0050(Y)
MammPDH 1.000(N) 0.9900(N)

Armillaria-mtDNA 0.4470(N) 0.0830(Y)
InsectaC011 0.7760(N) 0.2970(N)
Perom12S 0.9900(N) 0.5200(N)
VertebC01 1.0000(N) 0.2770(N)

Candidula 16S 0.0330(Y) 0.1840(N)
Petunias-RNase 0.4250(N) 0.4360(N)
HIV(B)EnvNR 0.7010 0.8990(N)

HIVEnvNR 0.0030(Y) 0.1900(N)
Maiz ACT 0.2760(N) 0.1420(N)

NeisseriaArgF 0.0000(Y) 0.0700(Y)
BoletalesATP6 0.0000(Y) 0.2940(N)
HGVgenome 0.0520(Y) 0.8910(N)
HumanDRB1 0.0580(Y) 0.9860(N)

Fusaruim3 0.0000(Y) 0.3860(N)
Candida-mtDNA 0.0000(Y) 0.0000(Y)

HIVEnv 0.0000(Y) 0.3540(N)

Table I. Comparison of recombination detection with two distance measures on classical nucleotidic data sets from [Posada 2002]. The second column
shows the result obtained in [Posada 2002], while the third indicated the P-values obtained for using transition/transversion matrix. Data sets in plain font
indicate recombination was assumed to be absent, while those in bold font have being shown to contained recombinant sequence(s). The P-value indicate
recombination was detected if less than 0.05. But marginally significant, if 0.05> P-value > 0.01 and marginally nonsignificant if 0.10> P-value> 0.05.
We indicate the present of recombination significantly, marginally significantly or insignificantly using a Yes (Y ) and non-present of it using a No (N).

POWER
Identity matrix Transition/Transversion matrix

Parameters P-value P-value
Θ = 10, α = ∞, ρ = 1 0(Y) 0.66(N)
Θ = 10, α = ∞, ρ = 4 0(Y) 0.30(N)
Θ = 10, α = ∞, ρ = 10 0(Y) 0.02(Y)
Θ = 200, α = ∞, ρ = 1 0(Y) 0.08(N)
Θ = 200, α = ∞, ρ = 4 0(Y) 0.88(N)

Θ = 200, α = ∞, ρ = 10 0(Y) 0.86(N)
FALSE POSITIVES

Identity matrix Transition/Transversion matrix
Parameters P-value P-value

Θ = 10, ρ = 0, α = ∞ 1(N) 0.96(N)
Θ = 10, ρ = 0, α = 2 1(N) 0.44(N)

Θ = 10, ρ = 0, α = 0.5 1(N) 0.72(N)
Θ = 10, ρ = 0, α = 0.05 0.02(Y) 0 (Y)

Θ = 50, ρ = 0, α = ∞ 0.44(N) 0.6(N)
Θ = 50, ρ = 0, α = 2 0.34(N) 0.62(N)

Θ = 50, ρ = 0, α = 0.05 0.7(N) 0.5(N)

Table II. Power evaluation is shown in the upper part of the table, while the lower part contains the rate of false positives. In the results above, we remove
polymorphic and due to the time limitation (before submitting the final version of this paper), number of permutations considered was 50. Recall that
Θ is nucleotide diversity, α is rate variation among sites and ρ is the levels of recombinations in the simulated datasets. And when α = ∞, there is no
rate variation among sites and the smaller the α, the stronger the rate variation. Furthermore, for ρ = 1, note that 10% of the datasets simulated contain
no recombination events. The P-value indicate recombination was detected if less that 0.05. But marginally significant, if 0.05 > P-value> 0.01 and
marginally nonsignificant if 0.10 > P-value > 0.05. We indicate the present of recombination significantly, marginally significantly with a Yes (Y) and
recombination insignificantly using a No (N).
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Data allele t Set M
Total size # allele/Total size

Dataset 1 46 36/1524
Dataset 2 46 113/12336
Dataset 3 66 50/3433
Dataset 4 58 50/3433
Dataset 5 56 50/3433
Dataset 6 56 50/3433
Dataset 7 54 50/3433
Dataset 8 51 50/3433
Dataset 9 48 50/3433

Dataset 10 47 50/3433
Dataset 11 46 50/3433

Table III. The second column shows the size of each dataset in term of the number of the dispersion patterns/repeat variants, each dataset contained, while
the third column shows two values. The first value is the number of alleles undergoing consideration as possible progenitors for allele t and the second
value shows total size of these allele in term of repeat variants, they contained.

Data Remove Polymorphic sites Don’t remove Polymorphic sites
P-value P-value

Dataset 1 0.9440(N) (W = 6) 0.0020(Y) (W = 34)
Dataset 2 0.1330(N) (W = 10) 0.0000(Y) (W = 114)
Dataset 3 1.0000(N) (W = 2) 0.0000(Y) (W = 100)
Dataset 4 1.0000(N) (W = 2) 0.0000(Y) (W = 100)
Dataset 5 1.0000(N) (W = 2) 0.0000(Y) (W = 100)
Dataset 6 1.0000(N) (W = 2) 0.0000(Y) (W = 100)
Dataset 7 1.0000(N) (W = 2) 0.0000(Y) (W = 100)
Dataset 8 1.0000(N) (W = 2) 0.0000(Y) (W = 100)
Dataset 9 1.0000(N) (W = 2) 0.0000(Y) (W = 100)

Dataset 10 1.0000(N) (W = 2) 0.0000(Y) (W = 100)
Dataset 11 1.0000(N) (W = 2) 0.0000(Y) (W = 100)

Table IV. The P-value indicate recombination was detected if less than 0.05. But marginally significant, if 0.05 > P-value> 0.01 and marginally non-
significant if 0.10 > P-value > 0.05. We indicate the present of recombination significantly, marginally significantly with a Yes (Y) and recombination
insignificantly using a No (N). The width of the window used is denoted with W in columns 2 and 3 above.

Without CF CD(T ,depth) Using CF CD(T ,depth)
Data P-value Run time(sec) P-value Run time(sec)

Dataset 1 0.0230(Y) 10.92 0.0170(Y) 4.23
Dataset 2 0.0000(Y) 448.72 0.0000(Y) 190.11
Dataset 3 0.0000(Y) 76.44 0.0000(Y) 34.25
Dataset 4 0.0000(Y) 74.90 0.0000(Y) 33.72
Dataset 5 0.0000(Y) 79.33 0.0000(Y) 33.79
Dataset 6 0.0000(Y) 81.89 0.0000(Y) 34.20
Dataset 7 0.0000(Y) 88.15 0.0000(Y) 34.32
Dataset 8 0.0000(Y) 76.85 0.0000(Y) 34.22
Dataset 9 0.0000(Y) 75.24 0.0000(Y) 33.05

Dataset 10 0.0000(Y) 75.82 0.0000(Y) 33.04
Dataset 11 0.0000(Y) 84.80 0.0000(Y) 34.28

Table V. In the results above, we do not remove polymorphic. The P-value indicate recombination was detected if less than 0.05. But marginally
significant, if 0.05 > P-value> 0.01 and marginally nonsignificant if 0.10 > P-value > 0.05. We indicate the present of recombination significantly,
marginally significantly with a Yes (Y) and recombination insignificantly using a No (N).
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