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Abstract— Path planning issues are often solved via con- for the generation of a double pendulum motion. Finally, we
strained optimization methods but with constraints which must apply the time-intervals method to the generation of a dap-s
be satisfied over a whole interval of time or space. The use motion with the HOAP-3 humanoid robot.
of fast numerical toolboxes implementing state-of-the-ar con-
strained needs to discretize the continous constraints ove time I
grid. Thus, the obtained solution, in this way, will satisfy the
constraints only for time values corresponding to the time gd. To generate a motion, the usual solution is to solve a
Obviously, some constraints could be violated with catastphic  ~gnstrained optimization problem which takes into account

consequences when dealing with, for instance, the balancd o - Lo . .
humanoid robots. In this paper we introduce a guaranteed several constraints, and an objective function which ddpen

discretization method which uses interval analysis to ense that  On the applica-tion. S . _
the constraints are satisfied over the whole time interval. W The constrained optimization problem is to find out the best

analyze numeéica”y this _methé)dd_by F:jerforrf;]ing a _trajec;or?]/ parameters vectox which minimizes an objective function

generation under constraints dedicated to the motion of the F(x.t) and satisfies some constraimtgx.t i 1 nat.

HOAP-3 humanoid robot. (1) g3, 1), V] E_{ 2N}
Therefore, the problem can be expressed as :

. PATH PLANNING UNDER CONSTRAINTS

INTRODUCTION T
Path planning is an important topic in the humanoid robotics minfo F(x,t)dt
research field. Robot motion generation is usually achieved
by solving a path planning problem which boils down to a
constrained optimization one. This problem is solved by [Tlhere can be some constraints on the vector parameters :
for the planning of digital actors’ locomotion ; by [2] foreh
optimization of motions such as a kick motion on HRP-2 robot
or by [3] for the planning of a manipulator robot’s trajegtor 5
The validity of the constraints during the whole motion is of ] ] ) o
prime importance. However, the optimization algorithmedis The constraint functions allow to take |nt.0 account thg-lm_u
need only the assessment of the constraints over a timel@fons of the system such as the mechanical constraints (jo
space grid. Theontinuousonstraints must then be discretizedMits : angle, velocity, torque ... ). They can also deserte
to be taken into account in the optimization process. [ sired beha_wour. In this case the cons?ram@s are theiquS|_
and [4] use such a time-grid discretization, so they comsid‘éf some bodies of_ fche robot gt several time msj[ants to define
only discrete values of the continuous constraints. Tioeeef (he motion. Specifically dedicated to humanoid robots, we
these constraints are satisfied over the time-grid but can ## & function which describes the equilibrium of the robot
violated elsewhere. This is the reason why we introduime- (£MP : Zero Moment Poin).
intervalsdicretization method which guarantees the validity of Ve considemg constraint functions such as :

1)
subject to ¥j,Vt € [0, T]  gj(x,t) <0

X < x5 < &y

. The constraints : gx,t)

the constraints for the whole motion. « the limit value for joint angle :
This paper is structured as follows. First, we recall théapat min max
, : : : 0 < Gi) <G (3)
planning problem under constraints for generating optimal i =il =

motions. Then, we present two simplified dynamic models, the limit value for joint velocity :

considered to assess the proposed method : a double pendulum _

and the legs of the HOAP-3 humanoid robot expressed in the "M < Gy <G (4)
§ag|tal plan.e. The ne>_<t section will z_:lddres_s the_tlm_e diszre . the limit of the ZMP position (cf. II-A)

tion issue : we remind the classical discretization method
usually used in robotics and then introduce our developsent ZMPhin < ZMPy) < ZMfnax (5)

In the last part, we compare the two discretization methods
All these constraints can be expressed as :
1Author Nacim Ramdani is on leave from CERTES EA 3481 Univérsi
Paris 12 Val de Marne vVt € [0, T]min; < gj(t) <max Vje{l,..,ng} (6)



To fit with the optimization problem (cf. 1), we need :
to modify the bounded contraints (eq:6) into two inequality
constraints :

Wt € [0,T] o
—gjp+min; <0 Vje{l,.. ng} @) §
Gjy —max <0

B. The objective function : {,t)

The choice of the objective function for motion optimizatio o oonoeroon e eseeor o e e
must take into account the features of the robot and theatksir
motion. For example, [2] defines the objective function as th  Fig. 1. Representation of B-splines functiog, with n = 2.
electrical energy consumption while taking into accourd th
parameter (friction, etc.) of the actuators; whereas [8losles
to minimize the jerk. So, we are in position to compute the joint angtg§,
This paper focuses on the computation of the constraints,\&ocity (d¢)) and accelerationg()). These results are useful
we will not deal with the objective function. The optimizati for the next section to calculate the constraints and olgct
parameters define the motion function. The next part desgrifunctions.

how to compute the joint trajectorieg)) from the vectorx.
I[l. MODELING
C. Computation of joint values :(g
In this section, we present the dynamic model of a planar

robot. Starting from the joint position, velocity and aegel

« the motion duratiorimax, ation (@(t),q(t),d(t)), we compute the torquE(t) and ZMP
« the initial joint valueq;, valuezmpt).

« the final joint valuegs,
« a parameter vectoP which modifies the trajectory be-

tween the initial and final joint values. A. Computation of the dynamic model

We have chosen to compute the joint valyg thanks to two The dynamic model equation allows to compute the joint

functlons- which depend o.n th.e.\./alue tﬂ‘fa"j i andqf.: torquesl ) knowing the joint angle, velocity and acceleration
« S links gi and g¢ with initial and final velocity and .

acceleration equal to zero,

The vectorx is comprised of :

« by are Bspline-functions. M) = NE(Aw, - by V) (11)
1) the function g): . In [5], the Newton-Euler method is used for computing the
5 4 .3 dynamic model of a 3-D robot thanks to a two-recursions-
St = ar’ +bt"+ct*+d (8) algorithm. This paper deals with optimization applied to 2-
with - D robot, therefore we adapt the Newton-Euler method for
a=6x(qr — Gj)/t2ax computing the joint torques of a 2-D robots.
For humanoid robots, the computation of the Zero Moment
b= —% X a X tmax point (ZMP) give information about the balance. [6] defines
(9) ZMP as the pointzmp on the contact surface, where the
c= % X ax 2 moment is equal to zedl,mp= 0 (cf. fig 2). If this point stays
in the base of support, the robot maintains its equilibrium.
d=q

2) the functions p): by is a set ofny B-splines functions
by« @s shown in figure:1.

3) joint value: The joint valueq) is computed by adding
S¢) With a ponderation ob; ). This ponderation is contained
in the vector P, .p,), wheren; is the number of joints and
n, the number of splines for each joint :

Mo
i) = Sip) + Z P(in)bn) (10) Fig. 2. Representation afmp
n=1

The joint velocity gy and acceleratiow;;, are computed  The zmp location depends on the joint anglg, velocity
by derivatinggjt)- ) and accelerationy).



B. Double pendulum

The double pendulum (cf. fig.3) is used, in section IV, as
a simple model. We define the initial valug= [0,0] to get
the foot position :(x =0, y = 0). The final joints value is
computed to do a step lenght df:

qr = [Acos(%) 2% Acos<%>} (12)

Let us consider one parameter per joint. So, in the case
of Fig.3, we get 2 parametersP.= [p1; p2]. The goal is to
determine the best value &f, which minimizes the energy
consumption and guarantees the contraints shown in I-A,
thanks to the constrained optimization algorithm. Fig. 4. 2-D model of HOAP-3

IIl. GUARANTEED CONSTRAINTS COMPUTATION
A. The classical time-grid discretization

Discretization addresses the process of transferringreont
uous models and equations into discrete counterparts.Iijsua
discretization consists on picking up several time poirfithe
functions to be discretized. The constraints are compused a
shown : fori ={1,2,..,k}

min; < gj(t) <max Vje{l,..,ng} (14)

Fig. 3. Double pendulum used for the comparaison of the el:ation  Once the optimization is finished with optimal results, the
motion satisfies all the constraints over the time grid big th
We define the objective function as : does not ensure that the constraints are satisfied else\diere
Fig:5).

tf
F(x) = r2 13
(x) t;Z i(t) (13) 0s

Wherelj is the torque of joini at the instant:

foot(x,y)

constraint /\ Py

C. HOAP-3 s leg in the sagittal plane "

To validate the method proposed in section V, we will use
a more complicated model : HOAP-3's legs. We consider only
the lower limbs, so the upper parts of the body are equivalent ‘ ‘ . ‘ ‘
to a mass on the chest (cf. fig:4). The legs of the humanoid ‘ : ’ ) ’ ’

robot HOAP-3 are modeled as a 6-links robot in the sagittal
plane (hipS, knees and ankles). Fig. 5. _ Example of afunctio_n discretizat@on. (_The dis_crﬂlues satisfy the
constraint, whereas the continuous function violates it.)

To apply the Newton Euler Algorithm (cf. 1I-A), we con-
sider a fixed contact between one foot and the ground, whereagigyre 5 shows the discretization of a constraint function.
the other foot moves from its initial position to its final |f the maximum value of the constraint is5) the con-
position. strained optimization program does not detect any comstrai
violation even though the constraint is not satisfied tfar
i [3,4], and even though there is a computed valud at3

Starting  from the parameter vectorx We anq a1t — 4. In spite of time points discretization process, a
are able to compute the continuous  funCse|ytion which violates the continuous constraints magtexi
tions : (q(x,t),d(x,1),4(x,1), I (x,t),zmpx,t)). Nevertheless,  This drawback can be solved by increasing the number
the constrained optimization software needs the evaluatigs time-points, but this will also increase the computation

of the constraints over a time grid, i = {1,2,...k}. {ime [4]. Another solution may be to consider a time-intérva
Consequently, these constraints must be discretized. W&S j,stead of a time-point. This is the topic of the next part.
describe the method usually used in robotics for discregizi

continuous functions (section : 1lI-A), then we will intrade B-  Time-interval discretization via interval analysis
a new way of discretization which uses interval arithmetics The main idea of the time-interval discretization is to bdun
(section : 11I-B). a functiongj(t) with a minimum and maximum value during

D. Why discretization is needed ?



a time intervallt] = [tmin,tmay iNstead of computing a single existence of pessimism (cf. [10]). The pessimism is theediff

value. ence between the actual maximum, or minimum value of the
The issue is to computemingg, . .49i(t) and function and the computed one. To deal with this problem,

M&%e tntmaddi (). This operation is easily done thankdime intervals can be sub-divided intgy subdivisions, and

to interval analysis. determine the minimum (or maximum) value for each sub-
Interval analysis was initially developed to account foe thdivision. The minimum (or maximum) for the whole interval

guantification errors introduced by the floating point regere  is the minimum (maximum) of all the minimum (maximum)

tation of real numbers with computers and was extended dbthe subdivisions.

validated numerics [7], [8], [9]. A real intervadh] = [a, 3] is

a connected and closed subseRofThe set of all real intervals

of R is denoted byR. Real arithmetic operations are extended The programs are developped using C/C++ language. The

to intervals. Consider an operatoe {+,—,,=} and [] and constrained optimization is done thanks to FSQP prografn [11
[b] two intervals. Then: The interval arithmetic is done by PROFIL/BIAS [12].

We proposed to compare the two methods with a simple
example : the double pendulum (cf. fig.ll-B). We define the
@] o [b] = [infuc[a e UV, SURfalvelp UoV]  (15) initial value g = [0,0] to get the foot position (x= 0, y=0).
The final joints value is computed to do a step of size

IV. PERFORMANCE ASSESSMENT

Considerg: R"—— R™ ; the range of this function over an

interval vector [a] is given by: A. Number of contraints
We take into account the constraints :
a) = u) luela 16 .. N . .
9({a]) ={g(u) | u € a]} (16) « the joint position,velocity : 2 constraints,
The interval function[g] : IR" — TR™ is an inclusion  « the zmp location : 1 constraint.
function forg if Starting from the intervat = [0,tmay, We definek time
v[a] € IR", g([a]) < [g]([a]) (17) instants and time-intervals, to be used in the constrained

optimization. The algorithm considers only one inequgtigr

An inclusion function ofg can be obtained by replacing eacltomputation.
occurrence of a real variable by the corresponding interval ne=2kx (2+1) (18)
and each standard function by its interval counterpart. The _. . . o
resulting function is called the natural inclusion funati@he B. Time-points discretization
performances of this inclusion function depend on the férma Table | shows the results for different numbe) (of
expression fol. discretization time pointsne is the number of evaluation of

Interval analysis has been used in several fields. In ragotighe constraint value by the optimization prograpa.and p;
it has been used to solve off-line the constrained optiritirat are the final value of the optimized parameters.
problem which furnishes the best trajectory for manipulato

K [ ne [ result Jconstraint] p1 | p2 |
robots [3]. |
[3] 3 168 OK no valid -26 0.62
C. Computation of the constraints > || 280 OK novalid | -25.5| 0.62
10 || 1203 | ERROR | valid 17 | 41
30 || 61037 | Max iter | valid 21 | 23
100 || 19644 OK no valid -1.6 | -3.35
06
TABLE |
e RESULTS FOR DOUBLE PENDULUM OPTIMIZATION MOTION WITH INSTAN
nr DISCRETIZATION.
03r /_I_
The number ifg) of constraints evaluations increases with
oty = ' the numberK) of time points. The final valuepq, p2) depends

ot /] on the value ok. Therefore we cannot say which valyg (pz)

is the optimal one. Moreover, when the optimization program
finishes with the optimal solution (result = OK), the constts

7y " 2 s y 5 5 are not satisfied for the whole motion.

-0.1

C. Interval discretization
Fig. 6. Example of time-interval discretization of a fulocti (The minimum . .
and maximum value are computed for each interval. The cootis value is Table Il shows the results for different numbk} ()f Inter-

always between those two values.) vals and different number of sub-divisiongj. The numbeng
is also linked to the number of intervat)( Nevertheless the
Figure 6 shows the time-interval discretization of the fundhe final solution p1, p2) is almost the same for several value
tion of figure 5. A drawback of interval arithmetics is theof k.



An important result is that, with only four intervals (or subknow that the computation time increases with the value of
divisions), the optimization will find the best solutiop;(= ng. A good compromise between large computation time and
0, p2 = 0) and the constraints are always satisfied. small pessimism effect is to choose a valuengfbetween 5

and 20.

[k][ na | ne [ result | constraint] pr [ p2 |
/ ERROR / /
4 | 364 OK valid
1 / ERROR /
2 | 298 OK valid
4 | 607 OK valid
1

4

414 OK valid
942 OK valid

TABLE Il
RESULTS FOR DOUBLE PENDULUM OPTIMIZATION MOTION WITH @na=1

o|olo|o|~|o| |

oO|oO|o|o|—|Oo

INTERVAL DISCRETIZATION. 20

D. Assessment ’

This simple example shows that the time-point discretizati e

carried out for motion optimization, can generate some-solu ° i B : e
tions which violate the constraints. Whereas the timeriratie (b)ng=5

discretization ensures the constraints validity. Moreptee
iteration number of the constraints computation is lowemnth
for the time-instant discretisation (942< 19644).

V. EXPERIMENTAL RESULTS

The guaranteed computation of the constraints is applied to _,—‘—,—‘—

the generation of joints trajectories for a one-step-nmmotid % : 2 25
the humanoid robot : HOAP-3 (cf. II-C).
The optimization vector x is composed of :
« the initial and final value dj, gs) for all joints : 2x 6
parameters,
« one B-splines parameter for all joints x16 parameters,
« the motion duration : 1 parameter. ]
Therefore the constrained optimization program deals with F
19 parameters. ° : : 2
To avoid any convergence problem in this study, we do not (d) ng = 20

take into account any objective function. We consider ohéy t
following constraints :

« the initial and final positions of the moving foot (position o
(x,y) of the toes and positiofy) of the heel) : 2< 3; T
o the minimum and maximum limit of joint values and jf
velocities for all the intervals: 2 6 x k; . ‘ ‘ ‘
« the minimum and maximum values of the ZMP location
: zmpy), for all the intervals : 2 k. (€) na =100
For this constrained optimization, we focus on 5 intervéls Gig. 7. Comparaison of interval computation of the ZMP fovesal ng
discretization k= 5. Thus, we geh. = 6+ (12+2) x k=76 Values
constraints to validate. We also usg=5 sub-divisions.
On figure 7, we compare the values of ttmapy), computed  Figure 8 shows the experimentation of the retained motion,
from the obtained solution, and the value given by the timgith the humanoid robot HOAP-3.
intervals computation for several number nd of sud-divisio
Whenng = 1 (fig.7(a)), the minimum and maximum values CONCLUSION
of the function :zmp,, are computed with an important In this paper we have presented a new method that ensures
pessimism and we know that the constrained optimizatidne validity of continous constraints for trajectoriesiopta-
program will reject acceptable solutions. Whereasifpe 100  tion. We have shown that the commonly used time-point dis-
(fig.7(e)), the pessimism effect is very small. Neverthelee cretization method is fast but do not ensure the validityhef t

(c) ng = 10




(@) t=0s

(b) t = 0.5s

(d) t=1.5s (e)t=2s (f)t=25s

Fig. 8. One step motion obtained with guaranteed discteaiza

[10]

[11]

[12]

constraints. Therefore the constrained optimization ritlgm
will accept some solutions which violate the contraints.

However, the time-interval method proprosed ensures con-
straints validity over the whole motion. We have compared
the two methods for the contrained optimization of a double
pendulum motion, and applied the time interval discreitrat

to motion optimization of the humanoid robot HOAP-3.

We have planned to implement our method to address the
contrained optimization of a whole step motion and to merge

the two methods to decrease computation time.
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(2]
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