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Abstract— Path planning issues are often solved via con-
strained optimization methods but with constraints which must
be satisfied over a whole interval of time or space. The use
of fast numerical toolboxes implementing state-of-the-art con-
strained needs to discretize the continous constraints over a time
grid. Thus, the obtained solution, in this way, will satisfy the
constraints only for time values corresponding to the time grid.
Obviously, some constraints could be violated with catastrophic
consequences when dealing with, for instance, the balance of
humanoid robots. In this paper we introduce a guaranteed
discretization method which uses interval analysis to ensure that
the constraints are satisfied over the whole time interval. We
analyze numerically this method by performing a trajectory
generation under constraints dedicated to the motion of the
HOAP-3 humanoid robot.

INTRODUCTION

Path planning is an important topic in the humanoid robotics
research field. Robot motion generation is usually achieved
by solving a path planning problem which boils down to a
constrained optimization one. This problem is solved by [1]
for the planning of digital actors’ locomotion ; by [2] for the
optimization of motions such as a kick motion on HRP-2 robot
or by [3] for the planning of a manipulator robot’s trajectory.

The validity of the constraints during the whole motion is of
prime importance. However, the optimization algorithms used
need only the assessment of the constraints over a time or
space grid. The continuous constraints must then be discretized
to be taken into account in the optimization process. [2]
and [4] use such a time-grid discretization, so they consider
only discrete values of the continuous constraints. Therefore,
these constraints are satisfied over the time-grid but can be
violated elsewhere. This is the reason why we introduce a time-
intervals dicretization method which guarantees the validity of
the constraints for the whole motion.

This paper is structured as follows. First, we recall the path
planning problem under constraints for generating optimal
motions. Then, we present two simplified dynamic models
considered to assess the proposed method : a double pendulum
and the legs of the HOAP-3 humanoid robot expressed in the
sagital plane. The next section will address the time discretiza-
tion issue : we remind the classical discretization method
usually used in robotics and then introduce our developments.
In the last part, we compare the two discretization methods
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for the generation of a double pendulum motion. Finally, we
apply the time-intervals method to the generation of a one-step
motion with the HOAP-3 humanoid robot.

I. PATH PLANNING UNDER CONSTRAINTS

To generate a motion, the usual solution is to solve a
constrained optimization problem which takes into account
several constraints, and an objective function which depends
on the application.

The constrained optimization problem is to find out the best
parameters vector x which minimizes an objective function
F(x, t) and satisfies some constraints g j(x, t), ∀ j ∈ {1, ...,ng}.
Therefore, the problem can be expressed as :

min
R T

0 F(x, t)dt

subject to : ∀ j,∀t ∈ [0,T ] g j(x, t) ≤ 0
(1)

There can be some constraints on the vector parameters :

xmin
i ≤ xi ≤ xmax

i (2)

A. The constraints : g j(x, t)

The constraint functions allow to take into account the limi-
tations of the system such as the mechanical constraints (joint
limits : angle, velocity, torque . . . ). They can also describe the
desired behaviour. In this case the constraints are the position
of some bodies of the robot at several time instants to define
the motion. Specifically dedicated to humanoid robots, we
add a function which describes the equilibrium of the robot
(ZMP : Zero Moment Point).

We consider ng constraint functions such as :
• the limit value for joint angle :

qmin
i ≤ qi(t) ≤ qmax

i (3)

• the limit value for joint velocity :

q̇min
i ≤ q̇i(t) ≤ q̇max

i (4)

• the limit of the ZMP position (cf. II-A)

zmpmin ≤ zmp(t) ≤ zmpmax (5)

All these constraints can be expressed as :

∀t ∈ [0,T ]min j ≤ g j(t) ≤ max j ∀ j ∈ {1, ...,ng} (6)



To fit with the optimization problem (cf. 1), we need
to modify the bounded contraints (eq:6) into two inequality
constraints :

∀t ∈ [0,T ]
−g j(t) +min j ≤ 0
g j(t) −max j ≤ 0

∀ j ∈ {1, ...,ng} (7)

B. The objective function : F(x, t)

The choice of the objective function for motion optimization
must take into account the features of the robot and the desired
motion. For example, [2] defines the objective function as the
electrical energy consumption while taking into account the
parameter (friction, etc.) of the actuators; whereas [3] chooses
to minimize the jerk.

This paper focuses on the computation of the constraints, so
we will not deal with the objective function. The optimization
parameters define the motion function. The next part describes
how to compute the joint trajectories (q(t)) from the vector x.

C. Computation of joint values : q(t)

The vector x is comprised of :
• the motion duration tmax,
• the initial joint value qi,
• the final joint value q f ,
• a parameter vector P which modifies the trajectory be-

tween the initial and final joint values.
We have chosen to compute the joint value q(t) thanks to two
functions which depend on the value of tmax, qi and q f :

• s(t) links qi and q f with initial and final velocity and
acceleration equal to zero,

• b(t) are Bspline-functions.
1) the function s(t): .

s(t) = at5 +bt4 + ct3 +d (8)

with :
a = 6× (q f −qi)/t5

max

b = − 5
2 ×a× tmax

c = 5
3 ×a× t2

max

d = qi

(9)

2) the functions b(t): b(t) is a set of nb B-splines functions
bn(t) as shown in figure:1.

3) joint value: The joint value qi(t) is computed by adding
s(t) with a ponderation of b j(t). This ponderation is contained
in the vector : P(n j×nb), where n j is the number of joints and
nb the number of splines for each joint :

qi(t) = si(t) +
nb

∑
n=1

P(i,n)bn(t) (10)

The joint velocity q̇i(t) and acceleration q̈i(t) are computed
by derivating qi(t).
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Fig. 1. Representation of B-splines functions bn(t) with nb = 2.

So, we are in position to compute the joint angle (q(t)),
velocity (q̇(t)) and acceleration (q̈(t)). These results are useful
for the next section to calculate the constraints and objective
functions.

II. MODELING

In this section, we present the dynamic model of a planar
robot. Starting from the joint position, velocity and acceler-
ation (q(t), q̇(t), q̈(t)), we compute the torque Γ(t) and ZMP
value zmp(t).

A. Computation of the dynamic model

The dynamic model equation allows to compute the joint
torques Γ(t) knowing the joint angle, velocity and acceleration
:

Γ(t) = NE(q(t), q̇(t), q̈(t), t) (11)

In [5], the Newton-Euler method is used for computing the
dynamic model of a 3-D robot thanks to a two-recursions-
algorithm. This paper deals with optimization applied to 2-
D robot, therefore we adapt the Newton-Euler method for
computing the joint torques of a 2-D robots.

For humanoid robots, the computation of the Zero Moment
point (ZMP) give information about the balance. [6] defines
ZMP as the point zmp, on the contact surface, where the
moment is equal to zero Mzmp = 0 (cf. fig 2). If this point stays
in the base of support, the robot maintains its equilibrium.

Fig. 2. Representation of zmp

The zmp location depends on the joint angle q(t), velocity
q̇(t) and acceleration q̈(t).



B. Double pendulum

The double pendulum (cf. fig.3) is used, in section IV, as
a simple model. We define the initial value qi = [0,0] to get
the foot position : (x = 0, y = 0). The final joints value is
computed to do a step lenght of d :

q f =
[

Acos
(

d
2L

)
,2×Acos

(
d

2L

)]
(12)

Let us consider one parameter per joint. So, in the case
of Fig.3, we get 2 parameters : P = [p1; p2]. The goal is to
determine the best value of P, which minimizes the energy
consumption and guarantees the contraints shown in I-A,
thanks to the constrained optimization algorithm.

Fig. 3. Double pendulum used for the comparaison of the discretization
method

We define the objective function as :

F(x) =
t f

∑
t=0

∑
i

Γ2
i(t) (13)

Where Γi(t) is the torque of joint i at the instant t:

C. HOAP-3 ’s leg in the sagittal plane

To validate the method proposed in section V, we will use
a more complicated model : HOAP-3’s legs. We consider only
the lower limbs, so the upper parts of the body are equivalent
to a mass on the chest (cf. fig:4). The legs of the humanoid
robot HOAP-3 are modeled as a 6-links robot in the sagittal
plane (hips, knees and ankles).

To apply the Newton Euler Algorithm (cf. II-A), we con-
sider a fixed contact between one foot and the ground, whereas
the other foot moves from its initial position to its final
position.

D. Why discretization is needed ?

Starting from the parameter vector x we
are able to compute the continuous func-
tions : (q(x, t), q̇(x, t), q̈(x, t),Γ(x, t),zmp(x, t)). Nevertheless,
the constrained optimization software needs the evaluation
of the constraints over a time grid ti, i = {1,2, ...,k}.
Consequently, these constraints must be discretized. First we
describe the method usually used in robotics for discretizing
continuous functions (section : III-A), then we will introduce
a new way of discretization which uses interval arithmetics
(section : III-B).

Fig. 4. 2-D model of HOAP-3

III. GUARANTEED CONSTRAINTS COMPUTATION

A. The classical time-grid discretization

Discretization addresses the process of transferring contin-
uous models and equations into discrete counterparts. Usually
discretization consists on picking up several time points of the
functions to be discretized. The constraints are computed as
shown : for i = {1,2, ..,k}

min j ≤ g j(ti) ≤ max j ∀ j ∈ {1, ...,ng} (14)

Once the optimization is finished with optimal results, the
motion satisfies all the constraints over the time grid but this
does not ensure that the constraints are satisfied elsewhere (cf.
Fig:5).

Fig. 5. Example of a function discretization. (The discrete values satisfy the
constraint, whereas the continuous function violates it.)

Figure 5 shows the discretization of a constraint function.
If the maximum value of the constraint is 0.5, the con-

strained optimization program does not detect any constraint
violation even though the constraint is not satisfied for t ∈
[3,4], and even though there is a computed value at t = 3
and at t = 4. In spite of time points discretization process, a
solution which violates the continuous constraints may exist.

This drawback can be solved by increasing the number
of time-points, but this will also increase the computation
time [4]. Another solution may be to consider a time-interval
instead of a time-point. This is the topic of the next part.

B. Time-interval discretization via interval analysis

The main idea of the time-interval discretization is to bound
a function g j(t) with a minimum and maximum value during



a time interval [t] = [tmin, tmax] instead of computing a single
value.

The issue is to compute mint∈[tmin,tmax]g j(t) and
maxt∈[tmin,tmax]g j(t). This operation is easily done thanks
to interval analysis.

Interval analysis was initially developed to account for the
quantification errors introduced by the floating point represen-
tation of real numbers with computers and was extended to
validated numerics [7], [8], [9]. A real interval [a] = [a, ā] is
a connected and closed subset of R. The set of all real intervals
of R is denoted by IR. Real arithmetic operations are extended
to intervals. Consider an operator ◦ ∈ {+,−,∗,÷} and [a] and
[b] two intervals. Then:

[a]◦ [b] = [in fu∈[a],v∈[b] u◦ v, supu∈[a],v∈[b] u◦ v] (15)

Consider g : Rn 7−→ Rm ; the range of this function over an
interval vector [a] is given by:

g([a]) = {g(u) | u ∈ [a]} (16)

The interval function [g] : IRn 7−→ IRm is an inclusion
function for g if

∀[a] ∈ IRn, g([a]) ⊆ [g]([a]) (17)

An inclusion function of g can be obtained by replacing each
occurrence of a real variable by the corresponding interval
and each standard function by its interval counterpart. The
resulting function is called the natural inclusion function. The
performances of this inclusion function depend on the formal
expression for g.

Interval analysis has been used in several fields. In robotics,
it has been used to solve off-line the constrained optimization
problem which furnishes the best trajectory for manipulator
robots [3].

C. Computation of the constraints

Fig. 6. Example of time-interval discretization of a function. (The minimum
and maximum value are computed for each interval. The continuous value is
always between those two values.)

Figure 6 shows the time-interval discretization of the func-
tion of figure 5. A drawback of interval arithmetics is the

existence of pessimism (cf. [10]). The pessimism is the differ-
ence between the actual maximum, or minimum value of the
function and the computed one. To deal with this problem,
time intervals can be sub-divided into nd subdivisions, and
determine the minimum (or maximum) value for each sub-
division. The minimum (or maximum) for the whole interval
is the minimum (maximum) of all the minimum (maximum)
of the subdivisions.

IV. PERFORMANCE ASSESSMENT

The programs are developped using C/C++ language. The
constrained optimization is done thanks to FSQP program [11].
The interval arithmetic is done by PROFIL/BIAS [12].

We proposed to compare the two methods with a simple
example : the double pendulum (cf. fig.II-B). We define the
initial value qi = [0,0] to get the foot position : (x = 0, y = 0).
The final joints value is computed to do a step of size d :

A. Number of contraints

We take into account the constraints :
• the joint position,velocity : 2 constraints,
• the zmp location : 1 constraint.
Starting from the interval t = [0, tmax], we define k time

instants and time-intervals, to be used in the constrained
optimization. The algorithm considers only one inequality per
computation.

nc = 2k× (2+1) (18)

B. Time-points discretization

Table I shows the results for different number (k) of
discretization time points. ne is the number of evaluation of
the constraint value by the optimization program. p1 and p2
are the final value of the optimized parameters.

k ne result constraint p1 p2

3 168 OK no valid -26 0.62
5 280 OK no valid -25.5 0.62
10 1203 ERROR valid -1.7 4.1
30 61037 Max iter valid -2.1 -2.3
100 19644 OK no valid -1.6 -3.35

TABLE I
RESULTS FOR DOUBLE PENDULUM OPTIMIZATION MOTION WITH INSTANT

DISCRETIZATION.

The number (ne) of constraints evaluations increases with
the number (k) of time points. The final value (p1, p2) depends
on the value of k. Therefore we cannot say which value (p1, p2)
is the optimal one. Moreover, when the optimization program
finishes with the optimal solution (result = OK), the constraints
are not satisfied for the whole motion.

C. Interval discretization

Table II shows the results for different number (k) of inter-
vals and different number of sub-division (nd). The number ne
is also linked to the number of interval (k). Nevertheless the
the final solution (p1, p2) is almost the same for several value
of k.



An important result is that, with only four intervals ( or sub-
divisions), the optimization will find the best solution (p1 =
0, p2 = 0) and the constraints are always satisfied.

k nd ne result constraint p1 p2

1 1 / ERROR / / /
1 4 364 OK valid 0 0
2 1 / ERROR / / /
2 2 298 OK valid 0 0
2 4 607 OK valid 0 0
4 1 414 OK valid 0 0.05
4 4 942 OK valid 0 0

TABLE II
RESULTS FOR DOUBLE PENDULUM OPTIMIZATION MOTION WITH

INTERVAL DISCRETIZATION.

D. Assessment

This simple example shows that the time-point discretization
carried out for motion optimization, can generate some solu-
tions which violate the constraints. Whereas the time-interval
discretization ensures the constraints validity. Moreover, the
iteration number of the constraints computation is lower than
for the time-instant discretisation (942 << 19644).

V. EXPERIMENTAL RESULTS

The guaranteed computation of the constraints is applied to
the generation of joints trajectories for a one-step-motion of
the humanoid robot : HOAP-3 (cf. II-C).

The optimization vector x is composed of :
• the initial and final value (qi, q f ) for all joints : 2× 6

parameters,
• one B-splines parameter for all joints : 1×6 parameters,
• the motion duration : 1 parameter.
Therefore the constrained optimization program deals with

19 parameters.
To avoid any convergence problem in this study, we do not

take into account any objective function. We consider only the
following constraints :

• the initial and final positions of the moving foot (position
(x,y) of the toes and position (y) of the heel) : 2×3;

• the minimum and maximum limit of joint values and
velocities for all the intervals: 2×6× k;

• the minimum and maximum values of the ZMP location
: zmp(t), for all the intervals : 2× k.

For this constrained optimization, we focus on 5 intervals of
discretization : k = 5. Thus, we get nc = 6+(12+2)×k = 76
constraints to validate. We also use nd = 5 sub-divisions.

On figure 7, we compare the values of the zmp(t), computed
from the obtained solution, and the value given by the time
intervals computation for several number nd of sud-divisions.

When nd = 1 (fig.7(a)), the minimum and maximum values
of the function : zmp(t) are computed with an important
pessimism and we know that the constrained optimization
program will reject acceptable solutions. Whereas for nd = 100
(fig.7(e)), the pessimism effect is very small. Nevertheless we

know that the computation time increases with the value of
nd . A good compromise between large computation time and
small pessimism effect is to choose a value of nd between 5
and 20.
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Fig. 7. Comparaison of interval computation of the ZMP for several nd
values

Figure 8 shows the experimentation of the retained motion,
with the humanoid robot HOAP-3.

CONCLUSION

In this paper we have presented a new method that ensures
the validity of continous constraints for trajectories optimiza-
tion. We have shown that the commonly used time-point dis-
cretization method is fast but do not ensure the validity of the



(a) t = 0s (b) t = 0.5s (c) t = 1s

(d) t = 1.5s (e) t = 2s (f) t = 2.5s

Fig. 8. One step motion obtained with guaranteed discretization

constraints. Therefore the constrained optimization algorithm
will accept some solutions which violate the contraints.

However, the time-interval method proprosed ensures con-
straints validity over the whole motion. We have compared
the two methods for the contrained optimization of a double
pendulum motion, and applied the time interval discretization
to motion optimization of the humanoid robot HOAP-3.

We have planned to implement our method to address the
contrained optimization of a whole step motion and to merge
the two methods to decrease computation time.
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