J. Pettré, J. Laumond, and T. Siméon, A 2-stages locomotion planner for digital actors, SCA '03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Airela-Ville, pp.258-264, 2003.

S. Miossec, K. Yokoi, and A. Kheddar, Development of a software for motion optimization of robots - Application to the kick motion of the HRP-2 robot, 2006 IEEE International Conference on Robotics and Biomimetics, pp.299-304, 2006.
DOI : 10.1109/ROBIO.2006.340170

A. Piazzi and A. Visioli, Global minimum-jerk trajectory planning of robot manipulators, IEEE Transactions on Industrial Electronics, pp.140-149, 2000.
DOI : 10.1109/41.824136

M. Hardt, K. Kreutz-delgado, and J. Helton, Optimal biped walking with a complete dynamical model Decision and Control, Proceedings of the 38th IEEE Conference on, pp.2999-3004, 1999.
DOI : 10.1109/cdc.1999.831393

W. Khalil and E. Dombre, Modeling, Identification and Control of Robots, Applied Mechanics Reviews, vol.56, issue.3, 2002.
DOI : 10.1115/1.1566397

M. Vukobratovi´cvukobratovi´c and B. Borovac, ZERO-MOMENT POINT ??? THIRTY FIVE YEARS OF ITS LIFE, International Journal of Humanoid Robotics, vol.01, issue.01, pp.157-173, 2004.
DOI : 10.1142/S0219843604000083

T. Sunaga, Theory of an interval algebra and its application to numerical analysis, Japan Journal of Industrial and Applied Mathematics, vol.2, issue.11, pp.547-564, 1958.
DOI : 10.1007/BF03186528

R. Moore, Interval Analysis, 1966.

A. Neumaier, Interval methods for systems of equations, 1990.
DOI : 10.1017/CBO9780511526473

L. Jaulin, M. Kieffer, K. Didrit, and E. Walter, Applied interval analysis, 2001.
DOI : 10.1007/978-1-4471-0249-6

URL : https://hal.archives-ouvertes.fr/hal-00845131

J. L. , C. Lawrence, and A. L. Tits, User's Guide for CFSQP Version 2.5: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints1, 20742.