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ABSTRACT

Tandem repeats are repeated sequences whose copies are adjacent along the chromosomes. They account for large portion of eukaryotic
genomes and are found in all types of living organisms. Amongtandem repeats, those with repeat unit of middle size are called
minisatellites. These loci depart from classical loci because of the propensity to vary in size due to the addition or theremoval of one
or more repeat units. Due to this polymorphism, they prove useful in genetic mapping, in population genetics, and forensic medicine.
Moreover, some specific tandem repeat loci are involved in diseases, like the insulin minisatellite, which is implicated in type I diabetes
and obesity. Those loci also undergo complex recombinationevents. Presently, some programs to compare tandem repeatsalleles exist
and yield good results when recombination is absent, but none correctly handles recombinant alleles. Our goal is to develop an adequate
tool for the detection of recombinant among a set of minisatellite sequences. By combining a multiple alignment tool anda method based
on phylogenetic profiling, we design a first solution, calledMS PhylPro, for this task. The method has been implemented, tested on real
data sets from the insulin minisatellite, and proven to detect recombinant alleles.

KEYWORDS: VNTR, tandem repeats, genetics, minisatellite, insulin, INS, recombinant, cross-over, phylogenetic profile,
multiple alignment

1 INTRODUCTION

The genome length in base pairs (bps) displays huge varia-
tions among species: from about 105 bps for an archebac-
teria to 3.109 for humans, or even to more than 1011 bps for
the protozoaAmoeba dubia. These differences are partly
explained by the presence of regions called repeats that oc-
cur many times in genomes. Some molecular mechanisms
allow the cell to duplicate a genome region. Among differ-
ent classes of repeats, those whose copies are located one
next to the other on the chromosome are termedtandem
repeats. Particularly in tandem repeats, duplication and its
dual event, contraction, may occur at very high frequen-
cies, letting these loci acquire or lose one or more repeat
units. These mechanisms make them the most variable re-
gions (polymorphic loci) of the human genome. Among
variable tandem repeat sequences (VNTR), one findsmin-
isatellites, i.e., tandem repeats whose repeat unit ranges
between 7 and 100 bps. The length variability of min-
isatellites made them markers of choice in genetic map-
ping, in forensic medicine for individual identification or
paternity testing, and to study genome variation inside or
across populations (population genetics) [1]. Indeed, the
repeat sequences (alleles) observed at a given locus in two
individuals may be different. Over time, the repeat copies
also undergo point mutations (substitutions, insertions,and
deletions), which let them differ from each other. The se-
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quence of the variants of the repeated unit of a minisatellite
can be charted by a technique namedMinisatellite Variant
Repeat PCR[2], the result of which is a sequence called
map, over the alphabet of variants (not the DNA alphabet).
From the medical view-point, a lot of interest has been de-
voted to minisatellite since the discovery that some loci
are involved in disease development [3]. For instance, the
insulin minisatellite (INS) has been proven to be an impor-
tant genetic factor in polycystic ovary syndrome, obesity,
and type I diabetes [4, 5]. Like in hypervariable minisatel-
lites and in many human minisatellites, the evolution of
the INS locus involves recombination, which leads to ex-
changes of groups of variants between alleles [6], as illus-
trated by Figure 1.

Recently, progress has been made towards computa-
tional analysis of minisatellite sequence data. The main
need is to compare the maps that represents the alle-
les of two individuals. The comparison should measure
the differences between the two maps by accounting for
the number of mutations needed to transform one into
the other. Solutions to the minisatellite map alignment
problem have been proposed for the case where muta-
tions include point mutations, duplications, and contrac-
tions [7, 8, 9]. Basically these works extend dynamic pro-
gramming approaches for the alignment of classical se-
quences (which do not undergo duplications nor contrac-
tions) to account for long range dependencies in the maps.
The pairwise alignment program of [9] has been used to
construct a multiple alignment program calledMS Alimul
[10]. MS Alimul starts with pairwise alignments, and
grows them by adding new maps that are the closest to the
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Figure 1: Two examples of recombination between two minisatel-
lite alleles, which give rise to a recombinant allele. All alleles are
given as maps,i.e., sequences of symbols taken from the alpha-
bet of the variants of the repeat unit (here{A,B,C,D,E,F}). On
the left the two progenitor alleles (top one in blue, bottom one in
red), on the right the recombinant created. In the recombinant al-
lele of example1, the variant symbols from positions4 to 6 comes
from the red progenitor, while the segments before and aftercome
from the blue one. In this recombinant, there are two cross-over
points; the first lies between positions3 and4, while the second
is between6 and7. In other cases, the cross-over point may lie
outside the repeat and the recombinant can be split in two seg-
ments (instead of three), one originating from each progenitor.
This case is depicted in Example2, the prefix comes from the red
progenitor and the suffix from the blue one.

maps already in the alignment. The choice of the maps is
performed following aguide treeobtained by hierarchical
clustering of the maps according to their pairwise align-
ment distances (all pairwise alignments are first precom-
puted). Alignments are progressively “merged” using the
procedure for aligning alignments from [11]. This step is
performed iteratively until one obtains a complete multiple
alignment. This strategy is known asprogressive align-
mentin the literature [12].

Both pairwise and multiple alignments make sense
from the biological point of view if the maps under scrutiny
are homologous, that is derive from a common ancestor.
The assumption is that mutations represent a small portion
of the maps and it is possible to find a putative series of
mutations to transform one map in the other. Recombina-
tion is able to create a new allele, therecombinant, from
pieces of two different alleles. These parent alleles may
not be homologous or their common ancestor may be so
ancient that their maps are now dissimilar. A recombinant
allele can thus be aligned by pieces, but not completely,
with each of its parents or with any map similar to one of
its parents. Aligning pairwise a recombinant with such a
map yields an alignment of high similarity in the regions of
homology and of low similarity in the other regions. In the
case of multiple alignment, it pertubates the construction
of the progressive alignment by inserting many gaps in the
non-homologous regions.

A long biological literature is devoted to the detec-
tion of recombinant sequences in non-repetitive genetic se-
quences, and the available methods have been reviewed
and compared in [13] (see references therein). Proposed
approaches either (1) rely on the knowledge of a phylo-
genetic tree, (2) use the pattern of nucleotidic substitution
site-by-site, or (3) compute a distance based criterion over
a window of a multiple alignment. In this last class, one
finds thePhylogenetic profilemethod of [14] (also devel-
oped in RAT [15]).

Up to now, for VNTR in general and for minisatellite

data in particular, none of the available alignment meth-
ods deals with recombinant alleles. As the availability of
a phylogenetic tree of the VNTR alleles is rare, and as
for such data, variant duplications are much more frequent
than nucleotidic substitutions (and make it more difficult to
obtain surely homologous sites in a column of a multiple
alignment), approaches of type (1) and (2) are unadapted
to the detection of recombination. Thus, we turn ourselves
towards a distance based method. Here, we present a first
algorithm to detect if an allele is a recombinant. We adapt
the phylogenetic profile method [14] to VNTR data and
combine it with the multiple alignment procedure to detect
putative recombination positions in a map. We have imple-
mented our method in a program dubbedMS PhylProand
tested it on different recombinant and non-recombinant al-
leles of the INS minisatellite provided in [4].

The sequel of the paper is organised as follows: in Sec-
tion 2 we summarise the phylogenetic profile approach. In
Section 3, we explainMS PhylPro and its procedure for
the selection of progenitors, while we present the material
and the validation tests on real data in Section 4.2. The
strengths and limitations of the approach, as well as some
perspectives are discussed in Section 5.

2 DETECTION OF RECOMBINATION USING
PHYLOGENETIC PROFILES

Phylogenetic profile is a distance based method for recom-
bination detection [14]. It relies solely on the sequence
data and does not require the knowledge of an evolution-
ary tree (which is rarely available for VNTR sequences).
Let us give a brief overview of this method.

Assume one investigates if a candidate sequencet is a
recombinant of some sequences from a setS, and assume
that the two progenitor sequences are inS. Just after the
recombination event, a recombinant sequence having one
cross-over point is made of two pieces: the region from
the beginning up to the cross-over point comes from one
progenitor sequence, the remaining region after this point
comes from the second progenitor sequence. Thus, if one
measures the sequence similarity on these two regions be-
tweent and all sequences inS, the maximum of similar-
ity for the left region is attained with the first progenitor,
while for the right region is reached with the second pro-
genitor. If one compares the vectors of pairwise sequence
similarities of the two regions, their correlation is mini-
mal at the cross-over point. Thus, the algorithm considers
all positions in turn in sequencet, looks at the sequence
similarities on a left- and right-windows separated only by
the current position, and selects a possible cross-over point
where the correlation between the left and right similarity
vectors is minimal.

This would work perfectly if time has stopped just
after the recombination and if the two progenitors are in
the setS. However, recombination occurred in the past
and since then the sequences have evolved and accumu-
lated point-mutations (substitutions, insertions, deletions),
which blurred the recombination signal. Only descendants
of the original progenitors are in setS. Moreover, some
sequences inSmay themselves be recombinants.
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One encounters another problem: whatever the se-
quence, there is (at least) one position at which the cor-
relation is minial. One must decide with the correlation
value if this position is a true cross-over point. Is the
correlation value low enough? To solve this problem, an
estimation of the significance of the correlation has been
added to the method namedPhylPro [13]. In an empirical
procedure, the algorithm generates a user-defined number
of randomised alignments by shuffling the columns of the
original multiple alignment, and recomputes the minimum
correlation value among all positions. TheP-value for the
null hypothesis of recombination absence equals the num-
ber of times the simulated correlation value was smaller
than the one observed with the original data.

Important parameters of the phylogenetic profile
method are the window size, the distance used to measure
the sequence similarity, and the correlation coefficient. For
nucleotidic sequences, the Hamming distance in combina-
tion with the linear correlation coefficient yields good re-
sults. In practice,PhylPro takes as input a multiple align-
ment of a set of sequences and tests in turn for each se-
quence if it is a recombinant sequence. The window size
is set as a function of the total number of variable sites in
the multiple alignment (i.e., the columns of the alignment
that contains at least two different symbols). As output, the
method plots the correlation coefficient along the sequence
position, but does not automatically predict the progenitor
sequences. A visual examination of the plot is needed to
predict whether a sequence is a recombinant and predict its
putative progenitors [14]. An option ofPhylProoffers the
possibility to remove the alignment sites that are too poly-
morphic, since these suggest the presence of homoplasy.

3 A NEW ALGORITHM FOR DETECTING RE-
COMBINATIONS IN TANDEM REPEATS

We propose and develop a program namedMS PhylProto
detect recombination events in VNTR data. It follows the
principle ofPhylProexposed above and combines it with
a multiple alignment procedure calledMS Alimul, which
is specifically designed for the alignment of VNTR maps.
Compared toPhylPro, we implement an additional feature
to select a subset of alleles among the set of putative pro-
genitors present in the input multiple alignment. For this
we propose an efficient procedure and describe it in Sec-
tion 3.2. This improvement is a first reason why we choose
to adapt the phylogenetic profile method to VNTR data, in-
stead of fitting the data into existing programs. The second
reason is because we find it more practical to have a pro-
gram that takes as input an alignment of the sole putative
progenitors, as such alignments can be obtained from the
literature or withMS Alimul.

3.1 Overview of MS PhylPro

In MS PhylPro, we choose to separate the input into (i)
a single test allele for which we want to assess if it is a
recombinant or not, and (ii) an already computed multiple
alignmentMS of a setSof alleles, which may be putative
progenitors of the test allele.

As MS PhylPro builds onMS Alimul, we first give a
short description of the latter. It is a heuristic progres-
sive multiple alignment procedure that was designed for
tandem repeat maps. It follows the algorithmic scheme
used in ClustalW to align classical (i.e., non-repetitive) se-
quences [16]. It first computes an optimal pairwise global
alignment for each possible pair of maps usingMS Align
[9], and then uses the resulting distance matrix between al-
leles to infer a guide tree for the multiple alignment with
a Neighbour-Joining method [17]. This tree resembles an
evolutionary tree in that the alleles are at the leaves and in-
ternal nodes group alleles according to similarity. To each
internal node corresponds the set of alleles at the leaves of
the subtree rooted by this node. An example of a guide
tree for five alleles is displayed in Figure 2. In a third step,
the multiple alignment is built progressively for larger and
larger subsets of alleles corresponding to the internal nodes
of the guide tree, until reaching the root, whose associated
set comprises all alleles. Finally, the complete multiple
alignment is optimised with local modifications.

In MS PhylPro, we first align the test allelet with the
multiple alignmentMS. This is done with the procedure of
MS Alimul that aligns one allele with a multiple alignment
of a set of sequences. It is an extension of a pairwise align-
ment methodMS Align that adapts the algorithm of [11].
This yields a new multiple alignment, call itM, for the set
S∪ {t}. Then we applyPhylPro on M for the test allele
t. The window sizeW is set automatically as inPhylPro.
To compute the distance betweent and any other allele in
S, we use the Hamming distance over the two windows:
it is simply the number of columns in which the charac-
ters of the two maps differ. However, one can account for
the number of nucleotidic differences between each pair of
aligned variants provided their nucleotidic sequences are
known. This has been implemented in the last version of
MS Align [9], on whichMS Alimul is built, but not yet in
MS PhylPro. Then PhylPro selects the possible recom-
bination junction and outputs aP-value as detailed above.
The algorithm ofMS PhylProis sketched in Figure 3. Note
that we conserved the option that enables the removal of
polymorphic sites. However, we show experimentally in
Section 4.2 that this option impairs the recombination de-
tection and does not seem useful at least in the case of INS
data.

3.2 Progenitor selection

As mentioned in Section 2,PhylProsolely predicts recom-
bination junction, but not the progenitor alleles. Once a
potential recombinant has been detected, a naive solution
for the prediction of progenitors is to test the recombina-
tion in any triple of alleles including the recombinant. This
requires a time at least proportional to the square of the
number of sequences, which is not practical.

Here, we propose to take advantage of the guide tree
used to construct the multiple alignmentM. This tree clas-
sifies the alleles in clusters according to their similarity:
to each internal node corresponds the set of alleles at the
leaves of the subtree rooted by this node. As alleles from
the same cluster (i.e., in the same subtree) are similar, it
is often not meaningful to test all possible pairs of alleles
from the same cluster. In our solution, the user gives as
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parameter a depth in the tree. The depth of a node is the
number of nodes that are its ancestors on the path from the
root to this node. One can consider an internal node at this
depth in the tree and draw a horizontal line that cuts the
tree. Each edge crossed by the line leads to a subtree, that
is to a cluster of related alleles. Thus, to a depth in the
tree correspond as many clusters as the number of edges
crossed by the horizontal line (see Figure 2). We propose
to randomly sample one allele per cluster at the given depth
and to test for recombination betweent and this subset of
alleles. In this way, we ensure that the selected alleles are
not the most similar and restrict the number of possibilities.

We implemented this idea in a procedure called,Se-
lection of Progenitors by Depthor SPDfor short. It takes
as input a treeT and a integerdepthrepresenting the given
depth (in the range 1 to log2(#S)). It outputs a subsetSp of
S. The recombinant status oft can be tested against alleles
in Sp, if the correlation value is lower than for the whole
set and it suggests that alleles resembling the original pro-
genitors are inSp.

2

3

53

2

1

Depth Nb clusters

S1S2S3S4S5

Figure 2: A guide tree for a set of5 sequences S1,S2,S3,S4, and
S5. Illustration of the notion a depth used in the procedure called
Selection of Progenitors by Depth(SPD). A depth is represented
by a horizontal line; at its right the number of clusters associated
to that depth is shown.

1. MS PhylPro(MS: multiple alignment,t: test allele,
T: guide tree,depth: depth parameter)

2. T← MS Alimul(MS, t)
3. SP← SPD(T, depth)
4. P-value← PhylPro(SP, t)
5. Return(Is-Significant(P-value))

Figure 3: The algorithmMS PhylPro.

3.3 Algorithm Complexity

As we account for point mutations and duplica-
tions/contractions, the multiple alignment problem con-
sidered here generalises the classical multiple alignment
problem with a sum-of-pairs score, which is NP-complete
[18]. Apart from the multiple alignment step,PhylPro
takesO(lnw), where l ,n, and w denote respectively the
number of sequences in the multiple alignment, its num-
ber of columns, and the window length. The procedure
for progenitor selection takesO(l), if implemented with a
Breadth First Search on the guide tree.

4 EXPERIMENTAL EXPERIENCE

4.1 Adaptation to VNTR sequences and the
INS minisatellite data set.

Here, we emphasise the differences of recombination de-
tections with VNTR sequence data compared to classical
nucleotidic sequences. In the case of minisatellite maps,
the symbols of maps represent variants of the repeat unit.
The alphabet of symbols is fixed experimentally in the
MVR-PCR assay [2]. In most cases the nucleotidic se-
quence of each variant is known and it is possible to com-
pute a number of differences, a distance between any pair
of variants. Thus, by computing difference between maps
windows, it is possible to account for the nucleotidic dif-
ferences between each pair of aligned variants.

For our experiments, we use maps data from the INS
minisatellite, which lies upstream from the Insulin gene
on Chromosome 11 in the Human genome [4]. The maps
were obtained through Minisatellite Variant Repeat-PCR.
In Caucasian populations, somatic INS alleles cluster in
two main classes, I and III, of respectively small and large
alleles [4]. In contrast to somatic alleles, mutant alleles
arising in sperm often display complex rearrangement in-
volving intra- and inter-allelic recombination. The INS
data is well suited to test recombination detection in VNTR
sequences. All INS minisatellite maps were retrieved from
http://www.le.ac.uk/genetics/ajj/insulin.

First, the data include mutant alleles derived from the
sperm of four men. In each case, the progenitor alleles
of these men are known. Among these mutants, the au-
thors report in Figure 5 of [4] eleven cases of mutant result-
ing from complex inter-allelic recombination. This gives a
data set of immediate recombinant alleles with the knowl-
edge of their true progenitors alleles. These are positive
examples for our tests. However, in real cases one does not
know the progenitor alleles, but only other somatic alleles
sampled in the population (see below). Thus, we composed
our eleven positive test cases with one sperm mutant allele
and a subset of somatic alleles from the same class as its
progenitors.

Second, the data contain maps of somatic alleles from
different individuals living in UK; these alleles were clas-
sified into 4 subclasses IC, ID, IIIA, and IIIB. Most alleles
in a class are similar to each other and can be correctly
aligned withMS Alimul [9]. Investigations of the mutation
processes at work in somatic cells at the INS minisatellite
show that most variations arise through simple intra-allelic
duplication of variants. Combined with the fact that alleles
within each class or subclass can be multiply aligned with-
out major gaps in the alignment, this is strong evidence
in favor of the absence of recombination within these sub-
classes. Therefore, we composed from the whole data set
ten groups of alleles that either do not contain a recombi-
nant allele or contain one but no alleles related to its pro-
genitor (see Table 5 in the appendix). These last datasets
are termed ”non-recombinant” data sets and are used to test
the specificity ofMS PhylPro, i.e., its ability to predict no
recombination when there is none.
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4.2 Implementation and Experimentations

The above algorithmMS PhylPro has been implemented
in C and tested on using a PC with Pentium IV CPU and
512MB RAM. A visual presentation of the algorithmic
flow of MS PhylProwith an example output are shown in
Figure 4.

t : CBoBoFAFAAACACAAAAFACAAAABAAABA AFAAAA BCAAAFBB
#S= 113

|
T := MS Alimul(S,t) |

Sp := SPD(S,1) |
↓

t : CBoBoFAFAAACACAAAAFACAAAABAAABA AFAAAA BCAAAFBB
#Sp = 33

|
PhylPro |

↓
P1 : BCEAAAABCAAAABAAAEAAABAABA AFAAAA FAABoBBBB
P2 : CBoBoFAFAAACACAAAAFACAAAABAAABA BCAAAFBB
t : CBoBoFAFAAACACAAAAFACAAAABAAABA AFAAAA BCAAAFBB

Figure 4: Workflow and example output of MSPhylPro with re-
combinant allele S1−46.1 and progenitors P1 := IIIA143.1 and
P2 := ID40.2.

We first perform experiments in which the input con-
sists a subset of alleles from the four subclasses and the
test allele is a recombinant. Table 1 summarises the results
with and without the option of removal of highly polymor-
phic sites. Let us consider that recombination is detected
whenever theP-value is below 0.01. The results show that
without removal, recombination is always detected in these
positive test cases. The automatically set window size is
given next to theP-value. It is interesting to note that the
result is positive although both the number of alleles in
the set and the size of the segment exchanged by recom-
bination vary respectively from 36 to 113 for the former
(see Column 3 of Table 4), and from 4 to 29 repeat units
for the latter. The second outcome is that removing poly-
morphic sites of the alignment reduces the latter drastically
(see the window size) and prevents detection. Obviously,
this option is not appropriate for such highly polymorphic
markers as the INS minisatellite, and finds its application
only in less polymorphic DNA sequences. All subsequent
experiments are performed without removal.

Second, we run the same type of experiments with the
ten non-recombinant data sets. In those cases,MS PhylPro
outputsP-values ranging from 0.14 to 1.00 with an aver-
age of 0.67 (see Table 2). These examples suggest that
MS PhylPro specifically detects recombination and not
simple allele dissimilarity generated through tandem du-
plications and point mutations.

In our last experiments, we testedMS PhylPro with
and without the procedure for selection of progenitors. Re-
sults are listed in Table 3. These illustrate the effect of the
procedureSP← SPD(T, d),which automatically selects a
subset of relatively dissimilar putative progenitors. The
smaller the subset the faster is the overall computation.
One observes that it divides the running time by at least
2 without sacrificing the sensitivity ofMS PhylPro for de-
tecting recombination.

Data Remove Don’t remove
set Polymorphic sites Polymorphic sites
1 0.944(N) W = 6 0.002(Y) W = 34
2 0.133(N) W = 10 0.000(Y) W = 114
3 1.000(N) W = 2 0.000(Y) W = 100
4 1.000(N) W = 2 0.000(Y) W = 100
5 1.000(N) W = 2 0.000(Y) W = 100
6 1.000(N) W = 2 0.000(Y) W = 100
7 1.000(N) W = 2 0.000(Y) W = 100
8 1.000(N) W = 2 0.000(Y) W = 100
9 1.000(N) W = 2 0.000(Y) W = 100
10 1.000(N) W = 2 0.000(Y) W = 100
11 1.000(N) W = 2 0.000(Y) W = 100

Table 1: Tests of MSPhylPro with eleven positive data sets in
which the test allele is a recombinant. Tests are performed with
(column2) and without (column3) the option for removal of poly-
morphic sites. In both cases, we give the P-value, the outcome
(Y/N), and the window length indicated with W. We consider that
recombination was significantly detected when P-value< 0.01.

Set # 1 2 3 4 5 6 7 8 9 10
P-value 0.52 0.97 0.25 0.14 0.69 0.83 0.33 0.98 1 1
Outcome N N N N N N N N N N

Table 2: Results of MSPhylPro with ten non-recombinant data
sets: the data set number on the first line, output P-value and
binary outcome on the second and third lines, respectively.Data
sets are described in Table 5 of the appendix.

Data WithoutSPD(T,depth) With SPD(T,depth)
set P-value Run time (s) P-value Run time (s)
1 0.023(Y) 10.92 0.017(Y) 4.23
2 0.000(Y) 448.72 0.000(Y) 190.11
3 0.000(Y) 76.44 0.000(Y) 34.25
4 0.000(Y) 74.90 0.000(Y) 33.72
5 0.000(Y) 79.33 0.000(Y) 33.79
6 0.000(Y) 81.89 0.000(Y) 34.20
7 0.000(Y) 88.15 0.000(Y) 34.32
8 0.000(Y) 76.85 0.000(Y) 34.22
9 0.000(Y) 75.24 0.000(Y) 33.05
10 0.000(Y) 75.82 0.000(Y) 33.04
11 0.000(Y) 84.80 0.000(Y) 34.28

Table 3: Effect of using or not using the progenitor selection SPD
(T ,depth) with a fixed window size. Here, polymorphic sites were
not removed. Results are given as in previous tables. The main
effect is an increase in the computational speed.
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5 CONCLUSION AND FUTURE WORK

We provide the first program,MS PhylPro, to detect re-
combinant sequences among a set of minisatellite data.
Our approach combines the multiple alignment pro-
gramMS Alimul [10] and adapts the phylogenetic profile
method of [14] for recombinant detection. Moreover, to
predict putative progenitors of a recombinant allele, we
propose a method to select a smaller set against which the
recombinant status of the test allele is evaluated. It avoids
an exhaustive exploration of all allele pairs, acceleratesthe
computations and does not impair correct predictions. Our
program was tested on real, positive and negative datasets
from the INS minisatellite, and in all cases yielded cor-
rect results. This human minisatellite was chosen because
cases of recombinant alleles were detected experimentally
and are well documented in the article where the rela-
tionships between the progenitors and the recombinant are
shown [4]. Test cases of this type are rare in the literature.
Positive test cases are sperm alleles for which one knows
the direct progenitor and not a descendant of this progeni-
tor. This definitely renders the detection of recombination
easier.

MS PhylPro uses a multiple alignment of maps,
which we usually compute with the prototype program
MS Alimul, which to our knowledge, is the sole compu-
tational solution available to date for this task. As men-
tioned above, one must keep in mind that multiple align-
ment of sequences is a hard problem (both in the general
case as for VNTR alleles), for which only heuristic algo-
rithms are computationally practical. The multiple align-
ment reported byMS Alimul requires a posterior manual
editing to improve the legibility of the alignment, espe-
cially when applied to a set of divergent maps.

The mutation rate and turnover processes vary across
minisatellite loci and from species to species. Our method
yields satisfactory result on a variable human minisatellite,
INS, but may reveal unadapted to hypervariable VNTR
that undergo complex mutational processes (for instance
CEB1 [6] or at least for some haplotypes, MSY1 [19]).
However in such cases, simple pairwise alignment is often
inappropriate. Fortunately, this type of minisatellite loci
are exceptional and do not seem to exist in other mam-
malian species like mouse [20, 21]. This suggests that
MS PhylPromay be useful for a majority of VNTR loci.

Another present limitation is due to the single vari-
ant duplications/contractions we consider now. Indeed, in
VNTR loci, duplications may copy a complete block of
adjacent variants at once. Block duplications are rare com-
pared to single variant events, but are not accounted for in
our alignment model [9]. On a large dataset, they do not
hinder a correct analysis of the alleles evolutionary rela-
tionships as testified in [22]. However, such an event may
be erroneously detected as the product of a recombination.

A future line of research is to carry on testing
MS PhylProon a larger number of either simulated or real
data sets. We wish to test more thoroughly both the sen-
sitivity and the specificityMS PhylPro on different min-
isatellite data, like some polymorphic Mouse minisatellites
[3] or some hypervariable GC-rich human minisatellites
[23]. Because of length variation among alleles, it is some-

times difficult to align globally the recombinant with pu-
tative progenitors. A solution may be to use a local align-
ment algorithm to align the candidate recombinant with the
multiple alignment of the putative progenitors. However,
such an algorithm must first be designed. Further work
includes the detection of multiple recombination events in
a single sequence, a precise prediction of the progenitors,
and the incorporation ofMS PhylPro in a graphical user-
friendly interface.
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A APPENDIX A

Data allelet Set M
set length # alleles length
1 46 36 1524
2 46 113 12336
3 66 50 3433
4 58 50 3433
5 56 50 3433
6 56 50 3433
7 54 50 3433
8 51 50 3433
9 48 50 3433
10 47 50 3433
11 46 50 3433

Table 4: Positive data sets contain one recombinant allele (pa-
rametert of MS PhylPro), whose length is given in column 2,
and a set of putative progenitor alleles (parameterMS), the num-
ber of which and their cumulated lengths are stated in columns 3
and 4. The recombinant alleles are those mutant alleles detected
in sperm and displayed in Figure 5 of [4], while the subsets of
progenitor are taken from the subclasses of somatic alleles(see
Figure 1 of that reference).

Set # List of alleles ID Nb Size
1 ID39.1,38.2,38.1,s1-51.1 4 166
2 ID43.1,44.1,43.7,43.8,43.6,43.5,41.4,

42.4,43.9,41.2,42.5,42.3,39.3,41.3 14 590
3 ID39.1,38.2,38.1,39.4,40.4,41.5,39.2,

40.2,39.6,39.5,40.3,s2-66.1 12 498
4 ID38.4,40.1,41.1,43.4,44.2,42.1,43.2,

42.2,43.3,38.3,37,1,s2-66.1 12 517
5 IIIB143.3,145.3,145.1,142.1,144.3,

143.4,141.1,143.1,143.2,144.1,145.2,144.2 12 1722
6 IIIA138.1,139.1,138.2,146.3,145.3,

149.14 6 855
7 IIIA144.3,148.2,144.1,143.1 4 579
8 IIIA150.5,150.4,148.10,149.9,149.8,

149.7,147.1 7 1042
9 IIIA156.1,157.1,158.4,157.2,158.2,

159.2,158.3,158.1,159.1 9 1420
10 IIIA150.7,150.1,149.1 3 449

Table 5:Allele composition of the ten non-recombinant data sets.
The allele identifiers as in [4] are listed for each set, as well as the
number of alleles and their cumulated lengths.


