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Abstract

Speeding up approximate pattern matching is a line of research in stringology since
the 80’s. Practically fast approaches belong to the class of filtration algorithms,
in which text regions dissimilar to the pattern are first excluded, and the remain-
ing regions are then compared to the pattern by dynamic programming. Among the
conditions used to test similarity between the regions and the pattern, many require
a minimum number of common substrings between them. When only substitutions
are taken into account for measuring dissimilarity, counting spaced subwords in-
stead of substrings improves the filtration efficiency. However, a preprocessing step
is required to design one or more patterns, called spaced seeds (or gapped seeds), for
the subwords, depending on the search parameters. Two distinct lines of research
appear the literature: one with probabilistic formulations of seed design problems,
in which one wishes for instance to compute a seed with the highest probability
to detect the desired similarities (lossy filtration), a second line with combinatorial
formulations, where the goal is to find a seed that detects all or a maximum number
of similarities (both lossless and lossy filtration). We concentrate on combinatorial
seed design problems and consider formulations in which the set of sought similari-
ties is either listed explicitly (RSOS), or characterised by their length and maximal
number of mismatches (Non Detection). Several articles exhibit exponential algo-
rithms for these problems. In this work, we provide hardness and inapproximability
results for several seed design problems, thereby justifying the complexity of known
algorithms. Moreover, we introduce a new formulation of seed design (MWLS), in
which the weight of the seed has to be maximised, and show it is as difficult to
approximate as Maximum Independent Set.

Key words: sequence comparison; alignment; string matching; filtration; spaced
seed; gapped seed; maximum independent set; Golomb ruler; tiling; maximum
coverage; approximability
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1 Introduction

1.1 Context

A routine task in computational genomics is to search among all known se-
quences those being similar to a sequence of interest. “Similar” means “that
can be aligned over reasonably long portions”. The similarity in sequence
helps in the annotation of the sequence of interest as it may reveal, e.g., if it
is a gene, a similarity in function, in regulation, in its interaction with other
molecules, in three dimensional structure of the protein product, or a common
evolutionary origin. This task is known as sequence similarity search.

1.1.1 Filtration

Since the 90’s, heuristic algorithms [2] are preferred to the direct application
of dynamic programming schemes, which require quadratic time. In practise,
as the sizes of the sequence databases grow exponentially, efficiency is achieved
by filtration. The underlying principle of filtration is to exclude in a first step
regions of the sequence database that are not similar to the query sequence by
testing a simple condition. The second step, or verification step, performs an
alignment procedure by dynamic programming with the few remaining regions.
Whenever the filter condition is a necessary condition, no potential match is
excluded and one achieves lossless filtration. Otherwise some true matches may
be missed and this is called lossy filtration. Note that in the latter, even an
exact dynamic programming algorithm used for the verification step cannot
recover the missed similarities.

Application of lossy filtration to sequence similarity searching occurs in soft-
ware like BLAST [2], which originally requires one common substring of a fixed
length between the two sequences, FLASH [3], which uses randomly chosen
spaced seeds to index the database, or QUASAR [4], which eliminates can-
didate sequences sharing less than a threshold number of common substrings
depending on the user-defined substring length.

This ubiquitous idea of filtration was developed for the problem of exact string
matching by using hash tables (lossy filtration) [5] and for approximate pattern
matching, using various necessary conditions, see for instance [6], to derive
sub-linear expected time algorithms [7] (lossless filtration).
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1.1.2 Seed design

Usual conditions rely on counting common contiguous subwords to the query
and the database sequence. Recently, several authors have emphasised that
the shape of the subwords plays a key role in filtration efficiency, and pro-
posed to use “carefully chosen arbitrary shapes” for the subwords [8–12]. The
shape of the subwords is given by a spaced seed, e.g. a pattern like ##-##--#

where the # symbol indicates which position should match between the query’s
and database sequence’s subword, and the - are “don’t care” positions. The
weight of a seed is its number of #. The key question is to choose such a seed
to optimise the filtration efficiency. In theory and in practise, the specificity
increases with the weight, while the sensitivity varies greatly with the posi-
tions of the jokers. Given a set of similarities (alignments) of interest, the goal
is to find the best seed or a family of seeds. (The latter is known as mul-
tiple seed design). Two axis of research have appeared in the literature. The
first one promotes probabilistic formulations of seed design problems, in which
the computed seed should maximise the probability of detecting or “hitting”
a similarity (the so-called hit probability) without sacrificing specificity. The
second axis explores combinatorial formulations of the problem, where one
seeks a seed that detects all given similarities. Probabilistic formulations deal
with lossy filtration.

The probabilistic approach. Following the line of [10], probabilistic for-
mulation of seed design has been thoroughly investigated (among others [13–
17]). Some approaches compute seeds specialised for coding regions detection
[14], other compare spaced seeds with contiguous seeds, or propose methods
to evaluate their sensitivity with different models of alignment [13,15–17]. For
instance, if the matches occur independently and with the same probability,
it was shown that computing the hit probability of a given spaced seed is NP-
hard, but can be approximated (admits a PTAS) [10,18,19]. Recently, some
authors seek to design seeds that accommodate not only mismatches, but also
indels, to search for similarities in non-coding genomic regions [20].

Noteworthy is the existence of at least two heuristic or exact algorithms to de-
termine a good or an optimal seed for a given search problem, see for instance
the Mandala [16] and Hedera [21] programs.

The combinatorial approach. In this work we concentrate on com-
binatorial seed design, which has also been addressed by several groups
[10,8,12,22,21,1]. We consider formulations in which the set of sought simi-
larities is either listed explicitly (RSOS, MWLS), or characterised by their
length and maximal number of mismatches (Non Detection). These prob-
lems are either decision or maximisation problems. In two formulations (Non
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Detection, MWLS), one searches for a seed that detects all similarities,
while in the third one (RSOS) one seeks a seed of maximal sensitivity for a
given specificity. Several algorithms whose complexities depend exponentially
on the length of the seed have been proposed to solve these combinatorial
problems [8,12,21], but it is not known to which complexity class the simplest
forms of the seed design problem belong. Our article answer these questions by
showing these problems are NP-hard, or even worse, difficult to approximate.

Results. In this paper, we consider both lossy and lossless filtrations. In [10],
the authors show the NP-hardness and the inapproximability of a region spe-
cific multiple seeds design problem, where both the set of similarities and the
weight of the seeds are constrained (see problem RSOS below). We improve on
these results by showing the inapproximability of RSOS even in the case of a
single seed (Section 4). Moreover, we prove the hardness of a general seed de-
sign problem: Non Detection as defined in [12] (Section 2). In this problem,
one considers the set of all similarities at a given Hamming distance from the
query. As by-product of our proof, we introduce and classify a tiling problem
(SSC). Several works [8,12,22] give empirical and theoretical evidences that
support the correlation between the weight of the seed and filtration efficiency.
Building on this idea, we propose an optimisation problem MWLS in which
the weight of the designed seed has to be maximised. We provide a proof of
NP-hardness and of inapproximability for MWLS (Section 3).

Organisation of the paper. In the remaining of this section, we intro-
duce a notation, define the investigated problems, and survey known results.
Sections 2, 3, and 4 are each dedicated to a problem listed above: Non Detec-

tion, MWLS, and RSOS, respectively. Section 2 is independent of Sections 3
and 4. In conclusion, we list open questions concerning combinatorial seed
design, as well as tiling problems.

1.2 Notations

Throughout this paper, ε denotes an arbitrarily small positive real number,
and e ≈ 2.71828183 denotes the base of the natural logarithm. The set of
all integers is denoted by Z. For every a, b ∈ Z, [a, b] denotes the discrete
line segment with endpoints a and b, that is the set of all n ∈ Z satisfying
a ≤ n ≤ b. For every finite set X, #X denotes the cardinality of X. For
every set Y and every integer q ≥ 0, a q-subset of Y is any subset of Y
with cardinality q. For every subsets X and Y of Z, X + Y denotes the set
{x + y : (x, y) ∈ X × Y }.
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1.2.1 Words

In this section, basic notions from combinatorics on words are recalled.

An alphabet Σ is a finite set of symbols, also called its letters. A word or string
over Σ is a finite sequence of elements of Σ. The set of all words over Σ is
denoted by Σ?. Word concatenation is denoted multiplicatively. For any word
w over Σ, the length of w is denoted by |w|; for every index i ∈ [1, |w|], w[i]
denotes the ith letter of w: w = w[1]w[2] · · ·w[|w|].

Let t and w be two words over Σ. Given an index i ∈ [0, |t| − |w|], we say
that w occurs in t at position i if, for every index j ∈ [1, |w|], w[j] = t[i + j];
w is called a substring of t whenever there exists i ∈ [0, |t| − |w|] such that
w occurs in t at position i. According to the previous definition, the letter
t[i] occurs in t at position i − 1 for every i ∈ [1, |t|]. For every a ∈ Σ, |t|a :=
# {i ∈ [1, |t|] : t[i] = a} denotes the number of occurrences of letter a in t.

Note that all words involved in the sequel are elements of either {0, 1}? or
{#, -}?.

1.2.2 Seeds and similarities

Definition 1 (Weight, seed) The weight of a word w ∈ {#, -}?, denoted by
‖w‖, is the number of occurrences of the letter # in w: ‖w‖ = |w|

#
. A seed

is a non-empty word over {#, -} whose first and last letters are #’s ( i.e., an
element of # {#, -}?

# ∪ {#}).

Definition 2 (Similarity) A similarity is a word over {0, 1}. Let m and k
be two integers such that 0 ≤ k ≤ m. An (m, k)-similarity is a similarity of
length m with k occurrences of the symbol 0 and m − k occurrences of the
symbol 1 ( i.e., an element of {s ∈ {0, 1}m : |s|

0
= k}).

Definition 3 (Detection) Let w be a word over {#, -} and let s be a simi-
larity. Let i be an index in [0, |s| − |w|]. We say that w detects s at position
i if, for every index j ∈ [1, |w|], w[j] = # implies s[i + j] = 1.

We say that w detects s whenever there exists i ∈ [0, |s| − |w|] such that w
detects s at position i.

Note that the previous definition applies in particular if w is a seed.

Example 4 The word g := #-##--#-## is a seed with weight 6, the word
s := 101101101101100 is a (15, 6)-similarity, and g detects s at positions 0
and 3.

Remark 5 summarises elementary properties related to similarity detection.
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Remark 5 Let w be a word over {#, -} and let s be a similarity.

(i). If w detects s then w is not longer than s.
(ii). If w and s have the same length then w may only detect s at position 0.

(iii). If w detects s then any substring of w detects s.
(iv). If w detects a substring of s then w detects s.
(v). For every integer m ≥ |w|, w detects 1

m.

1.3 Problems

Our aim is to study the computational complexity of three problems.

In Section 2, we consider the decision problem [12]:

Name: Non Detection

Instance: A seed g, two integers m and k satisfying 0 ≤ k ≤ m.
Question: Does there exist an (m, k)-similarity that is not detected by g?

We show that Non Detection is NP-complete in Theorem 15. Note that
we assume that any instance (g, m, k) has size Θ(|g| + m), i.e., that the inte-
gers m and k are encoded in unary. If encoded in binary (as usual), (g, m, k)
would have size only Θ(|g|+log m). In other words, we demonstrate that Non

Detection is strongly NP-complete.

In Section 3, we investigate the difficulty to approximate the maximisation
problem:

Name: region specific Maximum Weight Lossless Seed (MWLS)

Instance: A finite set S of similarities.

Solution: A seed g that detects all similarities in S.

Measure: The weight of g.

Theorem 25 proves there does not exist any polynomial-time approximation
algorithm for MWLS with bound (#S)0.5−ε, unless P = NP.

In Section 4, we study the maximisation problem [10]:

Name: Region Specific Optimal Seed (RSOS)

Instance: An integer $ ≥ 1 and a finite set S of similarities.

Solution: A seed g of weight $.

Measure: The number of similarities in S detected by g.

7



DR
AF

T
Theorem 28 shows that RSOS is not approximable within bound e

e−1
− ε,

unless P = NP.

1.4 Related works

1.4.1 Concerning Non Detection

Let m and k be two integers with 0 ≤ k ≤ m, and let Γ be a set of seeds.

• Denote by U(Γ, m, k) the number of (m, k)-similarities left undetected by
all seeds in Γ.

• Denote by T(Γ, m, k) the largest integer t ≥ 0 satisfying: for every (m, k)-
similarity s, there exist t distinct ordered pairs (g1, i1), (g2, i2), . . . , (gt, it)
such that, for any j ∈ [1, t], gj ∈ Γ, ij ∈ [0, |s| − |gj|], and gj detects s at
position ij.

Informally, T(Γ, m, k) is the minimal number of positions at which any (m, k)-
similarity is detected by the seeds in Γ.

In [12], one finds dynamic programming algorithms to compute U(Γ, m, k) and
T(Γ, m, k) in time proportional to

m ×
k
∑

j=0

(

λ

j

)

(k − j + 1) + (#Γ) ×
k
∑

j=0

(

λ

j

)

with λ := max
g∈Γ

|g| .

A simple bound [8] guarantees that these algorithms have complexities

O
(

2λ × (mk + #Γ)
)

, and are thus Fixed Parameter Tractable (FPT) for pa-

rameter λ (see [23] for details on parameterised complexity). The algorithm
that computes T(Γ, m, k) described in [12] generalises to a family of seeds the
one for the case of a single seed given in [8, Section 4].

Solving Non Detection on an instance (g, m, k) means to decide whether
U({g}, m, k) is non-zero, resp. whether T({g}, m, k) equals zero. Hence, The-
orem 15 implies that, even if we restrict ourselves to the case of a single seed
(#Γ = 1), any algorithm computing U(Γ, m, k), resp. T(Γ, m, k), requires in
the worst case exponential time. Thus, the algorithms given in [8,12] have the
best time complexities one can hope.

1.4.2 Concerning Region Specific Optimal Seed

The authors of [10] consider the following more general version of RSOS:

Name: Region Specific Optimal Seeds (RSOSs)

8



DR
AF

T
Instance: Three integers d, $, and `. A finite set S of similarities.

Solution: A set Γ of d seeds, each of weight $ and of length at most `.

Measure: The number of similarities in S detected by at least one seed in Γ.

RSOS is the variation of RSOSs where one seeks a single (instead of several)
seed and where the length of the seed is unconstrained. Formally, RSOS can be
seen as the restriction of RSOSs to the instances (d, $, `, S) satisfying d = 1
and ` ≥ maxs∈S |s| (see point (i) of Remark 5). RSOS is thus a simpler version
of RSOSs. The following two results are shown in [10].

• RSOSs is not approximable within bound e
e−1

− ε, unless P = NP.
• The restriction of the decision version of RSOSs to instances (d, $, `, S)

satisfying ` ≥ maxs∈S |s| is NP-hard.

Theorem 28 improves on both of these results. Indeed, it states for RSOS an
inapproximation lower bound larger than 1 under the condition that P 6= NP,
which implies also its NP-hardness [24].

2 Hardness of Non Detection

To show the hardness of Non Detection, we introduce an auxiliary prob-
lem:

Name: Soapy Set Cover (SSC)
Instance: A finite subset G ⊆ Z, two non-negative integers N and q.
Question: Does there exist a q-subset T ⊆ Z such that G + T contains at

least N consecutive integers?

It is related to tiling problems (see Section 5.1). We assume that any instance

(G, N, q) of SSC has size Θ
(

∑

γ∈G |γ| + N + q
)

. In other words, we assume
that all input integers, N , q, and the elements of G, are encoded in unary.

First, in the proof of Theorem 6, we reduce a well-known NP-complete prob-
lem, namely Exact cover by 3-sets (shortened into X3C hereafter) [25,
Problem SP2], to SSC. Then, in the proof of Theorem 15, SSC is reduced to
Non Detection.

Recall the definition of X3C. Given a set V , an exact cover (also called a
partition) of V is a set C of non-empty subsets of V satisfying the following
property: for every v ∈ V , there exists exactly one set E ∈ C such that v ∈ E.

Name: Exact cover by 3-sets (X3C)
Instance: A finite set V and a set E of 3-subsets of V .

9
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Question: Is there a subset of E that is an exact cover of V ?

Theorem 6 SSC is NP-complete.

PROOF. SSC is in NP, since for any yes-instance (G, N, q) of SSC, any
subset T ⊆ [1 − max G, N − min G] of cardinality at most q satisfying [1, N ] ⊆
G+T is a polynomial certificate for SSC on (G, N, q). Let us now reduce X3C
to SSC.

Let (V, E) be an instance of X3C. If 3 does not divide the cardinality of V then
(V, E) is a no-instance of X3C, which we transform into (∅, 1, 0), a no-instance
of SSC. Without loss of generality, we can now assume that V has cardinality
3q for some integer q, and that

V = [q + 1, 4q]

after numbering the elements of V . Let us also number the sets in E : denote
by m the cardinality of E and write E as E = {E1, E2, . . . , Em}.

Compute
N := 2q2 + 4q

and set

G :=
m
⋃

i=1

q
⋃

j=1

(Gi,j + τi,j) ,

where for every i ∈ [1, m] and every j ∈ [1, q],

Fj := [(j − 1)(2q − 1) + 4q + 1, j(2q − 1) + 4q] ,

Gi,j := {j} ∪ Ei ∪ Fj ∪ {N − j + 1} ,

and
τi,j := 2N((i − 1)q + j − 1) .

The transformation of (V, E) into the instance (G, N, q) of SSC clearly takes
polynomial time. It remains to prove the correctness of the reduction. In order
to help understand the proof, we first give a brief overview of the gadgets
formally defined above.

Overview of the gadgets. All Gi,j’s are subsets of [1, N ], and the τi,j’s
are the mq multiples of 2N comprised between 0 and 2N(mq − 1) inclu-
sive. Thus, G is a subset of [1, 2Nmq]. Moreover, each of the mq segments
of length 2N partitioning [1, 2Nmq] (that is to say the segments of the form
[2N(k − 1) + 1, 2Nk] with k ∈ [1, mq]) contains a unique Gi,j + τi,j in their
left half and no elements of G in their right half.
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5 6 7 8 9 10 11 12 13 14 15 16

E1 · · · © © · · · · · © ·

E2 · © · · · · · · · © · ©

E3 · · © · · © · © · · · ·

E4 © © · · · · · · · © · ·

E5 · · · · · · © · © · · ©

E6 © · · · · · · © · · © ·

V © © © © © © © © © © © ©

Table 1
An illustration of an instance of X3C. A natural representation of the integer sets
V = [5, 16], E1 = {8, 9, 15}, E2 = {6, 14, 16}, E3 = {7, 10, 12}, E4 = {5, 6, 14},
E5 = {11, 13, 16} and E6 = {5, 12, 15}. Since {E1, E3, E4, E5} is an exact cover of
V , the pair (V, {E1, E2, E3, E4, E5, E6}) is a yes-instance of X3C. It is also easy to
see that (V, {E1, E2, E3, E5, E6}) is a no-instance of X3C.

Description of the structure of a Gi,j. The segments [1, q], V , F1, F2, . . . , Fq,
and [N − q + 1, N ] occur consecutively on the discrete line and they exactly
cover [1, N ]. Define F as F := F1 ∪ F2 ∪ · · · ∪ Fq = [4q + 1, N − q]. For any
(i, j) ∈ [1, m]× [1, q], each of the four segments [1, q], V , F , and [N − q + 1, N ]
contributes to Gi,j:

• the singleton {j} is included in [1, q],
• the 3-set Ei is included in V ,
• the segment Fj is included in F , and
• the singleton {N − j + 1} in [N − q + 1, N ].

An example of an instance of X3C is shown in Table 1, and the reduction of
this instance into an instance of SSC is illustrated in Table 2.

Now, let us prove:

Claim 7 (V, E) is a yes-instance of X3C if and only if (G, N, q) is a yes-
instance of SSC.

2.1 Proof of the “only if part” of Claim 7

Assume that (V, E) is a yes-instance of X3C. Then, there exists a subset C ⊆ E
that is an exact cover of V : C has cardinality q, and thus there exist i1, i2,
. . . , iq ∈ [1, m] such that C = {Ei1 , Ei2 , . . . , Eiq}.

11



DRAFT

[1, q] V = [q + 1, 4q] F1 F2 F3 F4 [N − q + 1, N ]

G1,1 © · · · · · · © © · · · · · © · ©© ©© © ©© · · · · · · · · · · · · · · · · · · · · · · · · ©

G1,2 · © · · · · · © © · · · · · © · · · · · · · · © ©© ©© ©© · · · · · · · · · · · · · · · · © ·

G1,3 · · © · · · · © © · · · · · © · · · · · · · · · · · · · · · ©© ©© ©© © · · · · · · · · © · ·

G1,4 · · · © · · · © © · · · · · © · · · · · · · · · · · · · · · · · · · · · · © ©© ©© ©© © · · ·

G2,1 © · · · · © · · · · · · · © · © ©© ©© © ©© · · · · · · · · · · · · · · · · · · · · · · · · ©

G2,2 · © · · · © · · · · · · · © · © · · · · · · · © ©© ©© ©© · · · · · · · · · · · · · · · · © ·

G2,3 · · © · · © · · · · · · · © · © · · · · · · · · · · · · · · ©© ©© ©© © · · · · · · · · © · ·

G2,4 · · · © · © · · · · · · · © · © · · · · · · · · · · · · · · · · · · · · · © ©© ©© ©© © · · ·

G3,1 © · · · · · © · · © · © · · · · ©© ©© © ©© · · · · · · · · · · · · · · · · · · · · · · · · ©

G3,2 · © · · · · © · · © · © · · · · · · · · · · · © ©© ©© ©© · · · · · · · · · · · · · · · · © ·

G3,3 · · © · · · © · · © · © · · · · · · · · · · · · · · · · · · ©© ©© ©© © · · · · · · · · © · ·

G3,4 · · · © · · © · · © · © · · · · · · · · · · · · · · · · · · · · · · · · · © ©© ©© ©© © · · ·

G4,1 © · · · ©© · · · · · · · © · · ©© ©© © ©© · · · · · · · · · · · · · · · · · · · · · · · · ©

G4,2 · © · · ©© · · · · · · · © · · · · · · · · · © ©© ©© ©© · · · · · · · · · · · · · · · · © ·

G4,3 · · © · ©© · · · · · · · © · · · · · · · · · · · · · · · · ©© ©© ©© © · · · · · · · · © · ·

G4,4 · · · © ©© · · · · · · · © · · · · · · · · · · · · · · · · · · · · · · · © ©© ©© ©© © · · ·

G5,1 © · · · · · · · · · © · © · · © ©© ©© © ©© · · · · · · · · · · · · · · · · · · · · · · · · ©

G5,2 · © · · · · · · · · © · © · · © · · · · · · · © ©© ©© ©© · · · · · · · · · · · · · · · · © ·

G5,3 · · © · · · · · · · © · © · · © · · · · · · · · · · · · · · ©© ©© ©© © · · · · · · · · © · ·

G5,4 · · · © · · · · · · © · © · · © · · · · · · · · · · · · · · · · · · · · · © ©© ©© ©© © · · ·

G6,1 © · · · © · · · · · · © · · © · ©© ©© © ©© · · · · · · · · · · · · · · · · · · · · · · · · ©

G6,2 · © · · © · · · · · · © · · © · · · · · · · · © ©© ©© ©© · · · · · · · · · · · · · · · · © ·

G6,3 · · © · © · · · · · · © · · © · · · · · · · · · · · · · · · ©© ©© ©© © · · · · · · · · © · ·

G6,4 · · · © © · · · · · · © · · © · · · · · · · · · · · · · · · · · · · · · · © ©© ©© ©© © · · ·

Table 2. An illustration of the reduction from X3C to SSC for the X3C instance given in Table 1. The gadget sets G i,j corresponding to
the instance (V, {E1, E2, E3, E4, E5, E6}) of X3C, where the integers sets V , E1, E2, E4, E5 and E6 are as in Table 1: q = 4, N = 48,
F1 = [17, 23], F2 = [24, 30], F3 = [31, 37], F4 = [38, 44] and [N − q + 1, N ] = [45, 48].
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The integer set

T :=
{

−τi1,1,−τi2 ,2, . . . ,−τiq ,q

}

has cardinality q, and for every j ∈ [1, q], one has

Gij ,j = (Gij ,j + τij ,j) − τij ,j ⊆ G − τij ,j ⊆ G + T .

Therefore G + T includes

q
⋃

j=1

Gij ,j =
q
⋃

j=1

{j} ∪
q
⋃

j=1

Eij ∪
q
⋃

j=1

Fj ∪
q
⋃

j=1

{N − j + 1}

= [1, q] ∪ V ∪ F ∪ [N − q + 1, N ] = [1, N ] .

It follows that (G, N, q) is a yes-instance of SSC.

2.2 Proof of the “if part” of Claim 7

Lemma 8

∀t ∈ Z ∃(i, j) ∈ [1, m] × [1, q] (G + t) ∩ [1, N ] ⊆ Gi,j + τi,j + t .

PROOF. Let t be an integer. The set G + t is the union of the sets of the
form Gi,j + τi,j + t with (i, j) ∈ [1, m]× [1, q]. However, the τi,j’s are chosen in
such a way that the Gi,j + τi,j’s, and thus, the Gi,j + τi,j + t’s, are at least N
positions apart from each other. It follows that [1, N ] cannot contain elements
from two distinct Gi,j + τi,j + t’s. This concludes the proof of Lemma 8. 2

Assume that (G, N, q) is a yes-instance of SSC, and let us prove that (V, E) is
a yes-instance of X3C.

Lemma 9 There exist (i1, j1, u1), (i2, j2, u2), . . . , (iq, jq, uq) ∈ [1, m]×[1, q]×Z

such that the sets Gi1,j1 + u1, Gi2,j2 + u2, . . . , Giq ,jq
+ uq are pairwise disjoint

subsets of [1, N ].

PROOF. Since (G, N, q) is a yes-instance of SSC, there exist q integers t1,
t2, . . . , tq satisfying

[1, N ] ⊆ G + {t1, t2, . . . , tq} =
q
⋃

k=1

(G + tk) .

13
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It follows:

[1, N ] =
q
⋃

k=1

(G + tk) ∩ [1, N ] . (1)

Moreover, Lemma 8 ensures that, for each k ∈ [1, q], there exist ik ∈ [1, m]
and jk ∈ [1, q] satisfying

(G + tk) ∩ [1, N ] ⊆ Gik,jk
+ uk (2)

where uk is defined as uk := τik,jk
+ tk.

Combining Equations (1) and (2) yields

[1, N ] ⊆
q
⋃

k=1

(Gik,jk
+ uk) .

Besides, for every (i, j) ∈ [1, m]× [1, q], Gi,j has cardinality 2q+4. Indeed, Gi,j

is the disjoint union of the set Ei, whose cardinality is 3, of the segment Fj,
whose cardinality equals 2q − 1, and of two singletons. Hence, [1, N ], whose
cardinality equals N = q×(2q+4), is covered by the Gik,jk

+uk’s, which are at
most q and have each cardinality 2q +4. The Gik,jk

+uk’s are thus necessarily
pairwise disjoint subsets of [1, N ]. This concludes the proof of Lemma 9. 2

Lemma 10
∀k ∈ [1, q] − q < uk < q .

PROOF. The integers j and N − j + 1 are respectively the smallest and
largest elements of Gi,j. Therefore, for every k ∈ [1, q], one has:

min(Gik,jk
+ uk) = jk + uk and max(Gik,jk

+ uk) = N − jk + 1 + uk .

As Gik,jk
+ uk is included in [1, N ] by Lemma 9, we obtain

1 ≤ jk + uk and N − jk + 1 + uk ≤ N ,

which implies 1−jk ≤ uk ≤ jk−1. As jk is at most q, one gets 1−q ≤ uk ≤ q−1.
This concludes the proof of Lemma 10. 2

Lemma 11
{j1, j2, . . . , jq} = [1, q] .

PROOF. By definition of the jk’s (Lemma 9), {j1, j2, . . . , jq} is a subset of
[1, q]. Thus, it suffices to show that the q indexes j1, j2, . . . , jq are pairwise
distinct. The proof relies on the following claim:

14
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Claim 12 If S is a segment of length 2q − 1 and if u is an integer satisfying
−q < u < q then the centre of S, i.e., (max S + min S)/2, belongs to S + u.

By way of contradiction, assume there exist two distinct indexes k, l ∈ [1, q]
such that jk = jl. Lemma 10 ensures −q < uk, ul < q, and thus, by Claim 12,
both Fjk

+ uk and Fjl
+ ul contain the centre, denote it by c, of Fjk

= Fjl
.

Hence, c belongs to both sets Gik,jk
+ uk and Gil,jl

+ ul: contradiction with
Lemma 9. This concludes the proof of Lemma 11. 2

Lemma 13

∀k ∈ [1, q] uk = 0 .

PROOF. Lemma 11 allows to renumber the q triples (i1, j1, u1), (i2, j2, u2),
. . . , (iq, jq, uq) in such a way that jk = k for every k ∈ [1, q]. Now, assume
that the set K := {k ∈ [1, q] : uk 6= 0} is non-empty, and set κ := min K. The
following claim will lead to a contradiction.

Claim 14 Let S and X be two subsets of Z with X ⊆ S and such that
min X = min S and max X = max S. Then X is the unique translate of
X included in S, i.e., for every u ∈ Z, X + u ⊆ S if and only if u = 0.

For any j ∈ [1, κ − 1], none of j and N − j +1 belongs to Giκ,κ +uκ. Indeed, j
and N − j +1 are elements of Gij ,j, Gij ,j is equal to Gij ,j +uj since j /∈ K, and
Gij ,j+uj has an empty intersection with Giκ,κ+uκ by Lemma 9. Hence, Giκ,κ+
uκ, which is a subset of [1, N ] by Lemma 9, is in fact a subset of [κ, N − κ + 1].
Now, applying Claim 14 with X := Giκ,κ and S := [κ, N − κ + 1] yields
uκ = 0, which contradicts κ ∈ K. This concludes the proof of Lemma 13. 2

Now, u1 = u2 = · · · = uq = 0 (Lemma 13), and thus the q sets Gi1,j1, Gi2,j2, . . . ,
Giq ,jq

are pairwise disjoint (Lemma 9). It follows that their respective 3-subsets

Ei1 , Ei2 , . . . , Eiq are also pairwise disjoints. Therefore,
{

Ei1 , Ei2, . . . , Eiq

}

is

an exact cover of V , and (V, E) is a yes-instance of X3C. This concludes the
proof of Theorem 6. 2

Theorem 15 Non Detection is NP-complete.

PROOF. Non Detection is in NP, since for any yes-instance (g, m, k) of
Non Detection, an (m, k)-similarity left undetected by g is a polynomial
certificate for Non Detection on (g, m, k).

Now, reduce SSC to Non Detection in order to apply Theorem 6.

15



DR
AF

T
Let (G, N, q) be an instance of SSC. If needed, we may translate G in such a
way that min G = 0; from now on we make this assumption: G is a subset of
[0, max G]. Compute the word g of length max G + 1 over {#, -} defined by:
for every j ∈ [1, |g|], g[j] = # if and only if |g| − j ∈ G. As G contains both
|g|−1 = max G and |g|−|g| = 0 = min G, we have g[1] = g[|g|] = #, or in other
words, the first and last letters of g are #’s. Compute m := N − 1 + |g| and
k := min{m, q}. The transformation of (G, N, q) into the instance (g, m, k)
of Non Detection clearly takes polynomial time. It remains to check the
correctness of our reduction, that is:

Claim 16 (G, N, q) is a yes-instance of SSC if and only if (g, m, k) is a yes-
instance of Non Detection.

First, remark that N − 1 = m − |g| and thus,

[0, N − 1] = [0, m − |g|] . (3)

2.3 Proof of the “if part” of Claim 16

Assume that (g, m, k) is a yes-instance of Non Detection. Then, there exists
an (m, k)-similarity s that is not detected by g.

Let us set T := {j ∈ [1, m] : s[j] = 0} − |g|. Clearly, T is an integer set with
cardinality |s|

0
= k ≤ q. Moreover, let i be any element of [0, N − 1]. The

index i is in [0, m − |g|] by Equation (3), and g does not detect s at position
i by hypothesis. Therefore, there exists j ∈ [1, |g|] satisfying both g[j] = #

and s[i + j] = 0: one gets |g| − j ∈ G and i + j − |g| ∈ T . Hence, i =
(|g| − j) + (i + j − |g|) is in G + T . We have thus shown [0, N − 1] ⊆ G + T .

It follows that (G, N, q) is a yes-instance of SSC.

2.4 Proof of the “only if part” of Claim 16

Assume that (G, N, q) is a yes-instance of SSC. Then, there exists a q-subset
T ⊆ Z satisfying [0, N − 1] ⊆ G + T .

Let s be the similarity of length m defined by: for every i ∈ [1, m], s[i] = 0

if and only if i ∈ T + |g|. We check below that g does not detect s, but
first, remark that |s|

0
≤ min{m, q} = k. Indeed, |s|

0
is bounded both by

m, which is the total length of s, and by q, which equals the cardinality of
T + |g|. However, |s|

0
may be less than k. (For instance, consider the case of

G = {0, 2}, N = 4 and q = 3: g = #-#, m = 6, and k = 3. For every integer

16
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t /∈ {0, 1}, T := {0, 1, t} is a q-subset of Z satisfying [0, N − 1] ⊆ G+T . If t is
less than −2 or if t is greater than 3 then s = 110011, and thus |s|

0
= k − 1.)

Anyway, s can be transformed into an (m, k)-similarity by replacing enough
of its 1’s by 0’s.

Consider any index i in [0, m − |g|] and let us show that g does not detect
s at position i. According to Equation (3), i is in [0, N − 1], and thus there
exist γ ∈ G and t ∈ T such that i = γ + t. Let us set j := |g| − γ. On
the one hand, |g| − j = γ is in G, and thus g[j] = #. On the other hand,
i + j = (γ + t) + (|g| − γ) = t + |g| is in T + |g|, and thus s[i + j] = 0. Hence,
g does not detect s at position i.

It follows that (g, m, k) is a yes-instance of Non Detection and this con-
cludes the proof of Theorem 15. 2

3 Hardness and inapproximability of MWLS

In order to demonstrate the approximation hardness of MWLS, we reduce
Maximum Independent Set to it.

Recall that a (simple) graph is an ordered pair G = (V, E), where V is a finite
set and where E is a set of 2-subsets of V . The elements of V are called the
vertices of G, the ones of E are called the edges of G, and for any edge E ∈ E ,
the two vertices belonging to E are called its endpoints. An independent set
(also called a stable set) of G is a subset I ⊆ V such that, for every edge
E ∈ E , E is not a subset of I. In other words, I satisfies that no pair of its
vertices is joined by an edge of E .

Name: Maximum Independent Set (MIS)

Instance: A graph G = (V, E).

Solution: An independent set I of G.

Measure: The cardinality of I.

Many hardness results have been established so far on the approximability
of MIS under various complexity assumptions. In particular, it is known that
MIS is not approximable within bound (#V )1−ε, unless P = NP [26].

Our reduction, as well as the reduction of Section 4, rely on Golomb rulers
[27]. Formally, a Golomb ruler is a subset R ⊆ Z satisfying: for each integer
d ≥ 1, there exists at most one ordered pair (µ, ν) ∈ R×R such that d = ν−µ.
The integers belonging to a Golomb ruler are called its marks. Informally, a
Golomb ruler is a ruler such that no two pairs of distinct marks measure the
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same distance.

We first define a specific class of Golomb rulers appropriate for our purposes.

Definition 17 Let n be a positive integer. For each index i ∈ [1, n], define

µ
(n)
i := (i − 1)n2 + i2, and set Rn :=

{

µ
(n)
1 , µ

(n)
2 , . . . , µ(n)

n

}

.

It is clear that 1 = µ
(n)
1 < µ

(n)
2 < · · · < µ

(n)
i < · · · < µ(n)

n = n3, and that
Rn is computable in a time polynomial in n. For instance, in the case of
n = 5, we have: µ

(5)
1 = 1, µ

(5)
2 = 29, µ

(5)
3 = 59, µ

(5)
4 = 91, µ

(5)
5 = 125, and

R5 = {1, 29, 59, 91, 125}.

Lemma 18 For every integer n ≥ 1, the integer set Rn is a Golomb ruler.

PROOF. It suffices to check that for any ordered pair (i, j) of indexes with
1 ≤ i < j ≤ n, (i, j) can be written as a function of the difference m :=

µ
(n)
j − µ

(n)
i . More precisely, we show the following two equalities:

i =
1

2

(

m mod n2

bm / n2c
−
⌊

m / n2
⌋

)

and j =
1

2

(

m mod n2

bm / n2c
+
⌊

m / n2
⌋

)

. (4)

Set q := j − i and r := j2 − i2. It is clear that both i and j can be written as
functions of q and r:

i =
1

2

(

r

q
− q

)

and j =
1

2

(

r

q
+ q

)

. (5)

Furthermore, q and r clearly satisfy m = qn2 + r and 0 ≤ r ≤ n2 − 1. Hence,
q and r are respectively the quotient and the remainder of the division of m
by n2:

q =
⌊

m / n2
⌋

and r = m mod n2 . (6)

Combining Equations (5) and (6) yields Equation (4). This concludes the proof
of Lemma 18. 2

The sequel of the paper could be easily adapted to accommodate any choice of
function (n, i) 7→ µ

(n)
i provided that the following two requirements are met:

• the function is polynomial-time computable if the input and output integers
are encoded in unary, and

•
{

µ
(n)
1 , µ

(n)
2 , . . . , µ(n)

n

}

is a Golomb ruler with an n marks, for every integer
n ≥ 1.

From now on until Theorem 25 on page 21, n denotes a given positive integer.
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Gadget overview: The following gadget defines words over {#, -} that en-
codes marks of a Golomb ruler with symbols # and the remaining positions
with symbols -. More precisely, for each subset X ⊆ [1, n], it defines a word

w
(n)
X of length n3 that encodes the marks of Rn having an index in X. From

each word w
(n)
X , one can derive a unique longest seed, g

(n)
X , by deleting the

leading and trailing - symbols. Conversely, any subset X ⊆ [1, n] with cardi-

nality at least two is completely determined by any of the two words w
(n)
X and

g
(n)
X (see Lemma 21).

Definition 19 (Gadgets) Let X be a subset of [1, n]. Define w
(n)
X as the word

over {#, -} satisfying:

∣

∣

∣w
(n)
X

∣

∣

∣ = n3,
∥

∥

∥w
(n)
X

∥

∥

∥ = #X, and w
(n)
X [µ(n)

x ] = # for every x ∈ X.

Denote by g
(n)
X the seed obtained from w

(n)
X by deleting the leading and trailing

- symbols.

For instance, in the case of n = 5 and X = {2, 3, 5}, we have: w
(n)
X =

(-)28
#(-)29

#(-)65
# and g

(n)
X = #(-)29

#(-)65
#.

Remark 20 For every X ⊆ [1, n], both w
(n)
X and g

(n)
X have weight #X.

Next lemma means that the g
(n)
X ’s with weight at least two and the subsets

X ⊆ [1, n] with cardinality at least two are in one-to-one correspondence. It
builds on Lemma 18.

Lemma 21 Let X1 and X2 be two subsets of [1, n] with cardinalities at least

two. Then, g
(n)
X1

= g
(n)
X2

if and only if X1 = X2.

PROOF. For each α ∈ {1, 2}, set gα := g
(n)
Xα

and wα := w
(n)
Xα

.

Note that Xα can be written as a function of wα:

Xα =
{

x ∈ [1, n] : wα[µ(n)
x ] = #

}

. (7)

Let pα ∈ [0, n3 − |gα|] be such that

wα = (-)pαgα(-)n3−|gα|−pα . (8)

As the first letter of gα is a #, one has wα[pα + 1] = #, and thus there exists
iα ∈ Xα such that

pα + 1 = µ
(n)
iα

. (9)
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In the same way, wα[pα + |gα|] is a #, as it is the last letter of gα, and thus

pα + |gα| = µ
(n)
jα

for some jα ∈ Xα. It follows that

µ
(n)
jα

− µ
(n)
iα

= (pα + |gα|) − (pα + 1) = |gα| − 1 .

Moreover, gα is of length at least ‖gα‖ = #Xα ≥ 2, and thus µ
(n)
jα

− µ
(n)
iα

is
positive.

Assume that g1 = g2. Then, the two differences µ
(n)
j1

− µ
(n)
i1

and µ
(n)
j2

− µ
(n)
i2

are

equal and positive. It follows successively: µ
(n)
i1

= µ
(n)
i2

by Lemma 18, p1 = p2

by Equation (9), w1 = w2 by Equation (8), and eventually, X1 = X2 by
Equation (7). This concludes the proof of Lemma 21. 2

Definition 22 (Some more gadgets) Let v be an element of [1, n]. Define
t(n)
v as the similarity satisfying:

∣

∣

∣t(n)
v

∣

∣

∣ = n3,
∣

∣

∣t(n)
v

∣

∣

∣

1

= n − 1, and t(n)
v [µ(n)

x ] = 1 for every x ∈ [1, n] such that

x 6= v.

For instance, in the case of n = 5 and v = 2, we have t(n)
v = 10

57
10

31
10

33
1.

Gadget overview: The gadget above defines the similarities needed for the
reduction from MIS to MWLS. Like the words w

(n)
X , they also have length n3

and encode marks of the Golomb ruler Rn (by a symbol 1 instead of a #). For
any element v of [1, n], we define a similarity t(n)

v that encodes over {0, 1} all
the marks of Rn except the one of index v. In general, t(n)

v can be obtained

from w
(n)
[1,n]\{v} in the following way: replace each letter # in w

(n)
[1,n]\{v} by a 1,

and each letter - by a 0.

Next claim links the t(n)
v ’s and the w

(n)
X ’s: it means that the words of length

n3 over {#, -} detecting a fixed t(n)
v are exactly the w

(n)
X ’s with v /∈ X.

Claim 23 For any v ∈ [1, n] and any word w of length n3 over {#, -}, the
following three statements are equivalent:

(i) w detects t(n)
v ,

(ii) w detects t(n)
v at position 0, and

(iii) w = w
(n)
X for some subset X ⊆ [1, n] satisfying v /∈ X.

PROOF. Since w and t(n)
v have the same length, points (i) and (ii) are

equivalent (point (ii) of Remark 5). Moreover, it is easy to see that point
(iii) implies point (ii). Eventually, if w detects t(n)

v at position 0, then
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X :=

{

x ∈ [1, n] : w[µ(n)
x ] = #

}

is such that w = w
(n)
X and v /∈ X. Indeed,

t(n)
v [µ(n)

v ] = 0 requires w[µ(n)
v ] = -. Hence, point (ii) implies point (iii). 2

Next lemma means that the seeds detecting a fixed t(n)
v are exactly the g

(n)
X ’s

with v /∈ X. It is a corollary of the previous claim.

Lemma 24 Let v be an element of [1, n] and let g be a seed. Then, g detects

t(n)
v if and only if there exists a subset X ⊆ [1, n] such that v /∈ X and g = g

(n)
X .

PROOF. Assume that there exists X ⊆ [1, n] such that v /∈ X and g = g
(n)
X .

Then, g is a substring of w
(n)
X , and according to Claim 23, w

(n)
X detects t(n)

v .
Hence, g also detects t(n)

v (point (iii) of Remark 5).

Conversely, suppose that g detects t(n)
v : there exists p ∈

[

0,
∣

∣

∣t(n)
v

∣

∣

∣− |g|
]

such

that g detects t(n)
v at position p. Then, w := (-)pg(-)n3−|g|−p detects t(n)

v at

position 0. According to Claim 23, w can be written as w = w
(n)
X for some

X ⊆ [1, n] satisfying v /∈ X, and thus g = g
(n)
X . 2

Theorem 25 The MWLS problem has no polynomial-time approximation al-
gorithm with bound (#S)0.5−ε, unless P = NP.

PROOF. The MIS problem is reduced to MWLS in such a way that suitable
approximation properties are preserved.

Let G = (V, E) be a graph. Denote by n the cardinality of V . After number-
ing the vertices of G, we can assume that V = [1, n]. For each edge E ∈ E ,

compute the similarity sE := t
(n)
minE0

n3

t
(n)
max E (note that, according to our no-

tation, min E and max E are the two endpoints of E). Then, build the set of
similarities S := {1n3

} ∪ {sE : E ∈ E}. The transformation of the instance G
of MIS into the instance S of MWLS clearly takes a time polynomial in n.

Overview of the reduction. The set of similarities includes 1n3

. Any seed
not longer than n3 detects this similarity (Remark 5), but no seed longer
than n3 can detect it. By this mean, we limit the length of feasible seeds.
For each edge E ∈ E , the similarity sE is the concatenation of three strings
each of length n3: t

(n)
minE , 0n3

, and t
(n)
max E . No seed can detect 0

n3

. Hence, a
(non trivial) seed that detects both 1

n3

and sE, is at most n3 long, and must

therefore detect either t
(n)
min E or t

(n)
max E, since it cannot overlap both of them. It

follows that a seed detects both 1
n3

and sE if and only if it is of the form g
(n)
I ,

where I is a subset of [1, n] such that E is not fully contained in I (Lemma 24).
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Lemma 26 For any non-empty independent set I of G, there exists a seed of
weight #I that detects all similarities in S.

PROOF. Clearly, g
(n)
I is a seed of weight #I detecting 1

n3

(point (v) of
Remark 5). Moreover, let E ∈ E be any edge of G. As I is an independent set
of G, some endpoint v ∈ E is such that v /∈ I. Hence, according to Lemma 24,
g

(n)
I detects t(n)

v , and all the more reason for g
(n)
I to detect its superstring sE

(point (iv) of Remark 5). 2

Lemma 27 For any seed g detecting all similarities in S, there is an inde-
pendent set I of G with cardinality ‖g‖. Moreover, I is computable from g and
G in polynomial time.

PROOF. If g has weight 1 then it suffices to choose I := {1}. Hence, we may
assume ‖g‖ ≥ 2 throughout the remaining of the proof.

Let E ∈ E be an edge of G. Let fE be a substring of sE detected by g and
with the same length as g. Since g starts and ends with a #, fE starts and ends
with a 1. Moreover, the presence of 1n3

in S implies |fE| = |g| ≤ n3 (point (i)

of Remark 5). Hence, the block 0
n3

that lies between t
(n)
minE and t

(n)
max E in sE

is at least as long as fE. This requires fE to fully occur either in t
(n)
minE or in

t
(n)
max E : there exists an endpoint vE ∈ E, such that g detects t(n)

vE
. According

to Lemma 24, it follows that there exists XE ⊆ [1, n] such that g = g
(n)
XE

and
vE /∈ XE.

The vertex set J := [1, n] \ {vE : E ∈ E} is clearly an independent set of G.
Moreover, for every edge E ∈ E , XE has cardinality ‖g‖ (Remark 20) and the
weight of g is at least two. Hence, Lemma 21 implies that all sets of the form
XE with E ∈ E are equal to a same subset of J . Therefore, J has cardinality
at least ‖g‖, and removing #J − ‖g‖ elements from J yields an independent
set I whose cardinality is exactly ‖g‖.

We now check that I is computable from g and G in polynomial time. For
each E ∈ E , compute t

(n)
minE and check whether g detects t

(n)
minE to obtain vE:

if g detects t
(n)
minE then vE := min E, otherwise vE := max E. The previous

procedure computes the vE’s from g and G in polynomial time. With the vE’s
in hand the computations of J and then I easily follow. 2

One has #S = #E+1 ≤ (#V )2; so, if there exists an approximation algorithm
for MWLS with bound (#S)0.5−ε then Lemmas 26 and 27 ensure that it can be
transformed into an approximation algorithm for MIS with bound (#S)0.5−ε ≤
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(

(#V )2
)0.5−ε

= (#V )1−2ε. But, this is possible only if P = NP [26]. This
concludes the proof of Theorem 25. 2

4 Hardness and inapproximability of RSOS

As in [10], we prove the approximation-hardness result for RSOS by reduction
from the Maximum k-Cover problem [28]. However, our reduction is much
more complicated than the one in [10] since it works even for a single seed.
The Maximum k-Cover problem (also termed Maximum Coverage [24])
is:

Name: Maximum k-Cover (Max k-Cov)

Instance: A tuple (E1, E2, . . . , Em) of finite sets, an integer k ∈ [1, m].

Solution: Any k-subset I ⊆ [1, m].

Measure: The cardinality of the set union
⋃

i∈I

Ei.

Whereas a simple greedy algorithm achieves an approximation ratio of e
e−1

[24,28], Feige showed that Max k-Cov is NP-hard to approximate within
ratio e

e−1
− ε [28]. The result is even slightly stronger: there is no polynomial-

time approximation algorithm with bound e
e−1

− ε for the evaluation problem
associated with Max k-Cov, unless P = NP [28]. The approximation lower
bound for (the evaluation problem associated with) RSOS is derived from the
latter result.

Let us clarify the terminology. Let Π be a maximisation problem and let
ρ be a real number greater than or equal to one. For each instance X of
Π, let opt(X) denote the maximum measure, over all solutions of Π on X.
We say that a polynomial-time algorithm A approximates within ratio ρ the
evaluation problem associated with Π, if on any instance X of Π taken as
input, A outputs a number comprised between 1

ρ
opt(X) and opt(X) inclusive.

Theorem 28 The (evaluation problem associated with the) RSOS problem
has no polynomial-time approximation algorithm with bound e

e−1
− ε, unless

P = NP.

PROOF. According to the above-mentioned approximation-hardness result
from Feige [28], it suffices to exhibit an optimum-preserving reduction from
Max k-Cov to RSOS.
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4.1 Presentation of the reduction

Claim 29 The Max k-Cov problem can be exactly solved in polynomial time
on instances ((E1, E2, . . . , Em), k) with bounded m − k.

PROOF. The number of k-subsets of [1, m] equals
(

m

k

)

=
(

m

m−k

)

= O(mm−k).
Hence, if m − k is bounded then the set of all solutions of Max k-Cov on
((E1, E2, . . . , Em), k) can be enumerated in polynomial time. 2

Let ((E1, E2, . . . , Em), k) be an instance of Max k-Cov. According to
Claim 29, we may assume

k ≤ m − 2 (10)

without loss of generality (the role played by this assumption is clarified be-
low). Let n denote the cardinality of the ground set E1 ∪ E2 ∪ · · · ∪ Em, and
let v1, v2, . . . , vn be an enumeration of its elements:

E1 ∪ E2 ∪ · · · ∪ Em = {v1, v2, . . . , vn} .

For each j ∈ [1, n], let Fj denote the set of all indexes i ∈ [1, m] such that
vj ∈ Ei:

∀i ∈ [1, m] ∀j ∈ [1, n] vj ∈ Ei ⇐⇒ i ∈ Fj . (11)

Compute a Golomb ruler R with cardinality #F1 + #F2 + · · · + #Fn such
that all marks in R are positive odd numbers. (According to Lemma 18,
2R#F1+#F2+···+#Fn

− 1 is a suitable choice for R.) Then, partition R in the
following way: compute n pairwise disjoint subsets Q1, Q2, . . . , Qn ⊆ R such
that Qj has the same cardinality as Fj for each j ∈ [1, n].

For each j ∈ [1, n], compute a similarity sj := sj,1sj,2 · · · sj,lj , where lj denotes
the greatest element of Qj and where the substrings sj,1, sj,2, . . . , sj,lj satisfy:

• for every h ∈ [1, lj] \ Qj, sj,h = 0
m3

, and
• as h takes all values in Qj, the set of sj,h is the set of all similarities of

the form t
(m)
i with i ∈ Fj. (Remind that t

(m)
i is defined in Definition 22 on

page 20.)

Compute $ := m− k and S := {s1, s2, . . . , sn}. It is easy to see that ($, S) is
computable from ((E1, E2, . . . , Em), k) in polynomial time. Moreover, accord-
ing to Equation (10), $ is a positive integer, and thus ($, S) is an instance
of RSOS.

Table 3 summarises the reduction. Note that the last two lines of the table
sketch the correspondence between the solutions of RSOS and those of Max
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Max k-Cov RSOS

instance ((F1, F2, . . . , Fn), k) instance ($,S)

element vj similarity sj

vj is an element of Ei t
(m)
i is a substring of sj

vj is an element of
⋃

i∈I Ei the seed g
(m)
[1,m]\I detects sj

I is a k-subset of [1,m] g
(m)
[1,m]\I is seed with weight $

Table 3
Informal presentation of the reduction from Max k-Cov to RSOS.

k-Cov. They are clarified in the next section.

4.2 Correctness of our reduction

We have to prove that the measure of an optimum solution of Max k-Cov

on ((E1, E2, . . . , Em), k) equals the measure of an optimum solution of RSOS
on ($, S).

Let I be a k-subset of [1, m]. The measure of I as a solution of Max k-Cov

on ((E1, E2, . . . , Em), k) equals the number of indexes j ∈ [1, n] such that
vj ∈

⋃

i∈I Ei. Let g be a seed with weight $. The measure of g as a solution of
RSOS on ($, S) equals the number of indexes j ∈ [1, n] such that g detects
sj. Indeed:

Claim 30 The n similarities s1, s2, . . . , sn are pairwise distinct.

PROOF. For any j ∈ [1, n], |sj,1| = |sj,2| = · · · =
∣

∣

∣sj,lj

∣

∣

∣ = m3, and thus sj has

length m3lj. Besides, the integers l1, l2, . . . , ln are pairwise distinct since they
belong to the pairwise disjoints sets Q1, Q2, . . . , Qn, respectively. Therefore,
the sj’s have pairwise distinct lengths. 2

Now, to prove Theorem 28, it suffices to check that the following two assertions
are equivalent for any non-empty subset J ⊆ [1, n]:

(A) there exists a k-subset I ⊆ [1, m] such that vj ∈
⋃

i∈I Ei for every j ∈ J ,
and

(B) there exists a seed g with weight $ such that g detects similarity sj for
every j ∈ J .
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4.2.1 Proof of (A) ⇒ (B)

Assume that assertion (A) holds. Let I be k-subset of [1, m] such that vj ∈
⋃

i∈I Ei for every j ∈ J .

The seed g := g
(m)
[1,m]\I has weight ‖g‖ = #([1, m]\I) = m−k = $ (Remark 20).

Moreover, let j be an element of J . Then, there exists i ∈ I such that vj ∈ Ei.

It follows from Equation (11) that i is an element of Fj. Therefore, t
(m)
i is a

substring of sj. Since g detects t
(m)
i (Lemma 24), g detects also its superstring

sj (point (iv) of Remark 5).

Hence, assertion (B) holds.

4.2.2 Proof of (B) ⇒ (A)

Since sj is obtained as the concatenation of the m3 symbols long strings sj,1,
sj,2, . . . , sj,lj in this order, we may state:

Remark 31 For every j ∈ [1, n] and every η ∈ [1, |sj|], sj[η] occurs in sj,h

where h := dη / m3e, and more precisely sj[η] = sj,h[η − m3(h − 1)].

Assume that assertion (B) holds. Let g be a seed with weight $ such that, for
every j ∈ J , g detects similarity sj at some position pj.

For every j ∈ J , define hj := d(pj + 1) / m3e and h′
j := d(pj + |g|) / m3e.

Claim 32 For every j ∈ J , hj and h′
j are elements of Qj.

PROOF. According to Remark 31, sj[pj + 1] and sj[pj + |g|] occur in sj,hj

and sj,h′

j
, respectively. Besides, the first letter and the last letter of g are #’s,

requiring sj[pj + 1] = 1 and sj[pj + |g|] = 1, respectively. It follows that
both sj,hj

and sj,h′

j
are distinct from 0

m3

, requiring hj ∈ Qj and h′
j ∈ Qj,

respectively. 2

Claim 33 The differences of the form h′
j − hj with j ∈ J are all equal.

PROOF. Recall that for any two real numbers x and y, dxe − dye equals
either bx − yc or dx − ye. Hence, for any j ∈ J , h′

j − hj equals either bρc or
dρe, where ρ := (|g|−1)/m3. However, h′

j and hj are odd numbers as they are
elements of R (Claim 32), and thus h′

j − hj is even. Since the two integers bρc
and dρe are either equal or consecutive, exactly one of them, say d, is even:
h′

j − hj = d for every j ∈ J . 2
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Note that if J is reduced to a singleton then assertion (A) clearly holds.

Claim 34 If J is not reduced to a singleton then hj = h′
j for every j ∈ J .

PROOF. By way of contradiction assume both that there exists j0 ∈ J such
that hj0 6= h′

j0
, and that J is not reduced to a singleton. Then, there exists

an element j1 ∈ J with j0 6= j1. Consider the two ordered pairs (h′
j0

, hj0) and
(h′

j1
, hj1): according to Claim 32, both are elements of R×R, and in addition,

(h′
j1

, hj1) is distinct from (h′
j0

, hj0) since Qj0 and Qj1 are disjoint. However,
according to Claim 33, h′

j1
− hj1 equals h′

j0
− hj0 and the latter difference is

non-zero by hypothesis. Hence, R cannot be a Golomb ruler: contradiction. 2

Claim 35 If J is not reduced to a singleton then for every j ∈ J , g detects
sj,hj

.

PROOF. Let γ be any index in [1, |g|]. It is clear that d(pj + γ) / m3e lies
between hj and h′

j inclusive. Now, assume that J is not reduced to a singleton.
It follows from Claim 34, that the three integers d(pj + γ) / m3e, hj, and h′

j

are equal; thus Remark 31 yields: sj,hj
[pj−m3(hj−1)+γ] = sj[pj +γ]. Thence

we deduce that g detects sj,hj
at position pj − m3(hj − 1). 2

For each j ∈ J , hj is an element of Qj (Claim 32), and thus there exists

ij ∈ Fj such that sj,hj
= t

(m)
ij

. Since we may assume that J is not reduced to a

singleton, g detects t
(m)
ij

(Claim 35), and thus g is of the form g = g
(m)
Xj

where
Xj is a subset of [1, m] such that ij /∈ Xj (Lemma 24). Besides, all Xj’s are
equal to a same set, denoted by X below. Indeed, the cardinality of Xj equals
the weight $ of the seed g (Remark 20), and $ is at least two (Equation (10)).

Hence, Lemma 21 applies: g = g
(m)
X for some $-subset X ⊆ [1, m]\{ij : j ∈ J}.

Now, I := {ij : j ∈ J} has cardinality m − $ = k as the complement of X in
[1, m]. Moreover, for any j ∈ J , ij ∈ Fj requires vj ∈ Eij (Equation (11)) and
ij ∈ I ensures Eij ⊆

⋃

i∈I Ei: vj ∈
⋃

i∈I Ei.

Hence assertion (A) holds.

This concludes the proof of Theorem 28. 2

5 Conclusion

In this work, we have demonstrated the hardness of a tiling problem and
of three combinatorial problems related to spaced seed design: the decision
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problem Non Detection, and the two optimisation problems Maximum

Weight Lossless Seed and Region Specific Optimal Seed. However,
some questions remain open about spaced seed design since up to now, little
is known about the structure of optimal seeds. Below, we list some directions
for future work.

5.1 Tiling problems

In Section 2, we introduced the problem SSC and showed in Theorem 6 that
SSC is NP-complete. This result raises several questions about the tiling of a
finite one-dimensional figure.

Let d be a positive integer and Z
d denote the d-dimensional integer lattice.

Let F be a subset of Z
d, and let P be a set of subsets of Z

d. Let us call figure
the set F , and tiles the elements of P. We say that P tiles F (by translation)

if there exists a subset of
{

P + t : (P, t) ∈ P × Z
d
}

that is an exact cover of
F .

Name: d-dimensional Finite Region Tiling (d-DFRT)
Instance: A finite subset F ⊆ Z

d and a finite set P of finite subsets of Z
d.

Question: Does P tile F by translation?

This problem clearly belongs to NP. Moreover, when restricted to tiles of
cardinality 2, d-DFRT reduces to the perfect matching problem which can
be solved in polynomial time [29]. However, consider H2 := {(0, 0), (1, 0)},
V3 := {(0, 0), (0, 1), (0, 2)}, and P23 := {H2, V3}: the tiles H2 and V3 are called
horizontal domino and vertical triomino, respectively. The restriction of 2-
DFRT to instances (F,P) satisfying P = P23 has been shown NP-hard [30].
Thus, deciding whether two sets of cardinalities at most 3 tile a finite two-
dimensional figure is NP-complete.

Now focus on the one-dimensional case. The proof of Theorem 6 can be easily
adapted to settle the complexity of 1-DFRT. Consider the transformation that
maps each instance (V, E) of X3C to ([1, N ] , {Gi,j : (i, j) ∈ [1, m] × [1, q]}),
where N and the Gi,j’s are as in the proof of Theorem 6: it induces a Karp-
reduction from X3C to 1-DFRT. Hence, 1-DFRT is NP-complete, even if the
figure is constrained to be a segment. Nevertheless, this reduction does not
enable one to answer the following two open questions. Is 1-DFRT still NP-
hard on a bounded number of input tiles? Does 1-DFRT remain NP-complete
when the input tiles have bounded cardinalities?
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5.2 Concerning the maximisation of the seed weight

Theorem 25 shows that MWLS is hard to approximate within bound
(#S)0.5−ε. We conjecture that, for any real δ ≥ 0, MWLS is not approximable
within bound (#S)δ.

Moreover, it is difficult to make any hypothesis on the form of the similarities
without restraining the generality of the approach. So, we propose another
formulation of lossless seed design with weight optimisation that seems in-
teresting: “Let m and k be integers satisfying 0 ≤ k ≤ m. Find a seed of
maximal weight that detects all (m, k)-similarities”. This problem has been
partially addressed in the literature [22,12].

5.3 Concerning the approximation of Region Specific Optimal Seed

On the one hand, RSOS admits a trivial approximation algorithm with bound
#S. Indeed, let ($, S) be an instance of RSOS.

• If there exists a similarity s ∈ S with |s|
1
≥ $, then return a seed of weight

$ that detects s.
• Otherwise, return any seed of weight $.

On the other hand, Theorem 28 guarantees that RSOS is NP-hard to approx-
imate within ratio e

e−1
− ε. The existence of a constant-ratio approximation

algorithm for RSOS is still open.
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