
HAL Id: lirmm-00194235
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00194235

Submitted on 13 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PhySIC: A Veto Supertree Method with Desirable
Properties

Vincent Ranwez, Vincent Berry, Alexis Criscuolo, Pierre-Henri Fabre, Sylvain
Guillemot, Celine Scornavacca, Emmanuel J.P. Douzery

To cite this version:
Vincent Ranwez, Vincent Berry, Alexis Criscuolo, Pierre-Henri Fabre, Sylvain Guillemot, et al..
PhySIC: A Veto Supertree Method with Desirable Properties. Systematic Biology, 2007, 56 (5),
pp.798-817. �10.1080/10635150701639754�. �lirmm-00194235�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00194235
https://hal.archives-ouvertes.fr

August 1st, 2007

Running head: Desirable properties for veto supertrees.

PhySIC: a Veto Supertree Method with Desirable Proper-

ties

Vincent Ranwez1,∗, Vincent Berry2, Alexis Criscuolo1,2, Pierre-Henri Fabre1, Sylvain Guillemot2,

Celine Scornavacca1,2 and Emmanuel J. P. Douzery1

1 Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS), Université Montpellier II, Place

E. Bataillon - CC 064 - 34095 Montpellier Cedex 5, France

{ranwez,fabreph,douzery}@isem.univ-montp2.fr

tel: 00 33 4 67 14 36 97

fax: 00 33 4 67 14 36 10

2Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM,UMR

5506, CNRS), Université Montpellier II 161, rue Ada, 34392 Montpellier Cedex 5, France

{vberry,criscuol,sguillem,scornava}@lirmm.fr

∗ corresponding author.

1

Abstract

This paper focuses on veto supertree methods, i.e., methods that aim at producing a

conservative synthesis of the relationships agreed upon by all source trees. We propose

desirable properties that a supertree should satisfy in this framework, namely the non-

contradiction property (PC) and the induction property (PI). The former requires that

the supertree does not contain relationships that contradict one or a combination of the

source topologies, while the latter requires that all topological information contained in the

supertree is present in a source tree or collectively induced by several source trees. We

provide simple examples to illustrate their relevance and that allow a comparison with

previously advocated properties. We show that these properties can be checked in poly-

nomial time for any given rooted supertree. Moreover, we introduce the PhySIC method

(phylogenetic signal with induction and non-contradiction). For k input trees spanning a

set of n taxa, this method produces a supertree that satisfies the above-mentioned properties

in O(kn3 + n4) polynomial computing time. The polytomies of the produced supertree are

also tagged by labels indicating areas of conflict as well as those with insufficient overlap.

As a whole, PhySIC enables the user to quickly summarize consensual information of a set

of trees and localize groups of taxa for which the data requires consolidation. Lastly, we

illustrate the behaviour of PhySIC on primate datasets of various sizes, and propose a su-

pertree covering 95% of all primate extant genera. The PhySIC algorithm is available at

http://atgc.lirmm.fr/cgi-bin/PhySIC/physic.cgi.

2

Introduction

Building supertrees

Phylogenies are invaluable tools in various areas of biology to understand the evolution of

genes and taxa. Trees that incorporate an exhaustive sampling of taxonomic biodiversity pro-

vide crucial information about systematics, genomics, and diversification patterns of species (e.g.,

Davies et al., 2004). Large trees can be built using various approaches, including supermatrices

and supertrees. The former approach consists of combining the different source datasets into a su-

permatrix of characters, and then analyzing it under standard phylogenetic reconstruction criteria

(e.g., Delsuc et al., 2005). The supertree approach is an alternative methodology using trees rather

than character data as a primary source of information. It first involves inferring smaller, partially

overlapping, source phylogenetic trees from initial character data, and then assembling them into

a larger, more comprehensive supertree (Bininda-Emonds, 2004a). This approach is particularly

convenient when dealing with heterogeneous character sources, e.g., those scored from morphologi-

cal, transposable elements, DNA, or protein studies. Supertrees have become increasingly popular

(e.g., Bininda-Emonds, 2004b), notably since the seminal work involving the reconstruction of the

primate supertree (Purvis, 1995a). The widespread use of supertrees is explained by three useful

applications (Wilkinson et al., 2004): (i) they provide large phylogenetic frameworks for broad

comparative studies; (ii) they evaluate the congruence of sets of input trees, and reveal conflicts

due to outlier/unstable taxa; and (iii) they identify insufficient overlap among leaf sets of input

trees, and assign priorities for choosing the taxa to be subsequently sampled.

3

Different kinds of supertree methods

Supertree methods fall into three categories depending on their way of handling topological

conflicts, i.e., different arrangements of the same leaves among labeled source trees.

The first suite of methods do not handle incompatible source trees. The pioneering methods

that belong to this category are Build (Aho et al., 1981) and the strict consensus supertree (Gordon,

1986). Although they are important milestones, these methods appear “of limited use. As most

systematics know, phylogenies usually conflict with one another” (Bininda-Emonds, 2004b, p4).

The second suite of methods handle conflicts among input trees in a liberal way: they apply

a voting procedure. In order to extract their main phylogenetic signal, source trees are asked to

vote on various parts of the phylogeny to be inferred, with the most supported candidates being

elected and composing the output supertree. Voting methods are said to resolve conflicts (Thorley

and Wilkinson, 2003): for each conflict, they use some optimization criterion to make a decision

in favor of one of the topological alternatives. Most conflicts among input trees are expected to

be resolved because relationships displayed by the supertree are guided by source topologies on

the basis of weight of evidence. The most widespread voting method is Matrix Representation

with Parsimony (MRP) whereby nodes of each source tree are encoded as binary characters of

a matrix that is then analyzed with the maximum parsimony criterion to obtain the composite

tree (Baum, 1992; Ragan, 1992). Analyzing this binary encoding of source topological information

with other tree-building criteria leads to variants of MRP such as Matrix Representation with

Flipping (MRF; Chen et al., 2003) and Matrix Representation with Compatibility (MRC; Ross and

Rodrigo, 2004). Other methods of the voting kind, such as MinCut (MC; Semple and Steel, 2000)

and ModifiedMinCut (MMC; Page, 2002) extend Build. They encode source trees in a graph that

is progressively decomposed to get supertree clades. When conflicts hinder the decomposition,

4

the graph is cut by removing the least supported relationships. The Average Consensus (Lapointe

and Cucumel, 1997) and Super Distance Matrix (Criscuolo et al., 2006) methods implement the

voting approach in an alternative way. They average the initial distance matrices, converted from

source characters or valued topologies, into a superdistance matrix; a tree-building distance-based

approach is then used to infer a supertree from the matrix. Interestingly, voting methods like MRP

may generate novel clades, i.e., clades not present in any input tree alone (Purvis, 1995b; Bininda-

Emonds and Bryant, 1998; Sanderson et al., 1998). Unfortunately, when source trees conflict, novel

clades that are contradicted by each of the source trees can be present in the supertree inferred

by MRP (Goloboff and Pol, 2002; Goloboff, 2005; Cotton et al., 2006) and by MRF (Goloboff,

2005). The importance of this phenomenon is still debated, Bininda-Emonds (2003) reporting, on

the basis of simulations, that this situation is not very frequent for MRP, while Goloboff (2005)

shows selected case studies where “this situation is, clearly, not very unlikely”.

The third suite of methods handle conflicts among input trees in a conservative way. They

adopt a veto philosophy: the phylogenetic information of every source topology is to be respected,

and the supertree is not allowed to contain any group that a source tree would vote against. These

methods remove conflicts (Thorley and Wilkinson, 2003) because they either propose multifurca-

tions in the supertree (Goloboff and Pol, 2002), or prune rogue taxa (Berry and Nicolas, 2004).

In this framework, the supertree should not retain a single branching pattern within a given clade

when several valid topological alternatives are present in the source trees. The full agreement

required by veto methods provides an unambiguous phylogenetic framework that is, for instance,

well suited for taxonomic revisions. More specifically, such a conservative approach may be ap-

plied to automatically build or update parts of the Tree of Life (http://tolweb.org). Several

supertree methods akin to the veto philosophy have been proposed, all of which are inspired by

consensus approaches that operate on trees with identical leaf sets. For example, extensions of

5

the strict consensus (Gordon, 1986; Huson et al., 1999), semi-strict consensus (Goloboff and Pol,

2002), and maximum agreement subtree consensus (Berry and Nicolas, 2004) have been proposed

to infer veto supertrees.

Properties of supertree methods

To assess the relevance of supertree methods, it is most useful to have properties char-

acterizing the extent to which the supertrees they infer are reliable syntheses of source trees

(Bininda-Emonds and Bryant, 1998; Steel et al., 2000; Wilkinson et al., 2004; Goloboff, 2005). For

instance, Steel et al. (2000) suggest that the output supertree should (i) encompass every source

tree when possible, (ii) always contain every leaf (taxon) that occurs in at least one source tree,

and (iii) be computed under a running time that grows polynomially with respect to the total

number of leaves. These authors also showed that rooted input trees are more appealing than un-

rooted ones for supertree methods that aim to satisfy several desirable properties simultaneously.

Yet, even if supertree methods satisfy some desirable properties, the inferred supertrees often con-

tain polytomies which actually intermix two distinct phenomena: either a lack of overlap in the

topological information among source trees, or the occurrence of topological conflicts among them,

or a combination of these. We thus decided to develop a method that proposes supertrees with

unambiguous resolutions, and provides biologists with explanations about causes of polytomies.

For this purpose, we rely on two new formal properties.

On the one hand, we think that supertree methods should avoid arbitrary resolutions, i.e.,

resolutions that are not entailed by the source topologies. Indeed, novel relationships displayed by

a supertree “are worrying if they are not implied by combinations of the input trees” (Wilkinson

et al., 2005), and “should be identified as such, to highlight their lack of any known justification”

6

(Pisani and Wilkinson, 2002). Thus, we first request that every piece of phylogenetic information

displayed in the supertree be present in one or several source topologies, or be induced by their

interaction; we call this the induction property.

On the other hand, we focus on unanimous clades, thus adopting a veto point of view.

This means that the supertree is not allowed to contain a clade that conflicts either directly with a

source tree or indirectly with a combination of them. We call this the non-contradiction property.

Such a supertree, that incorporates only uncontradicted input relationships, provides a reliable

baseline for subsequent analyses (Goloboff and Pol, 2002; Goloboff, 2005).

Goloboff and Pol (2002) mentioned similar properties in a formal characterization involv-

ing triplets. They provide examples showing that supertree methods of the voting kind, such as

MRP, MC, understandably do not respect these properties. Although being appealing, the char-

acterization proposed by Goloboff and Pol (2002) can at times be too restrictive or permissive

(see following sections). Recently, Grunewald et al. (2006) provided another characterization of a

property related to arbitrary resolutions contained in the supertree with respect to source trees. In

both cases, there does not seem to be any straightforward algorithm that would always allow for

property verification. Note, however, that Goloboff and Pol (2002) proposed a supertree heuristic

algorithm that satisfies the desired properties in most cases.

In this paper, we provide a characterization of non-contradiction and induction properties,

that differ from those of Goloboff and Pol (2002) and Grunewald et al. (2006). We also describe

simple and polynomial-time algorithms that enable users to check whether or not a given supertree

satisfies these properties. Then we propose an algorithm called PhySIC that improves the Build

algorithm (Aho et al., 1981) by always inferring a supertree and which, moreover, satisfies the

non-contradiction and induction properties. As far as we know, this is the first time that a

polynomial-time method is proposed that always satisfies properties related to induction and non-

7

contradiction. Moreover, improving the behavior of Build with respect to arbitrary decisions

can benefit the various methods that extend this algorithm for supertree purposes, e.g., MC

(Semple and Steel, 2000), MCC (Page, 2002), AncestralBuild (Daniel and Semple, 2004; Berry and

Semple, 2006) and RankedTree (Bryant et al., 2004). Next, we pinpoint the difference between

the behaviour of PhySIC and that of well-known supertree methods on a biological case study

on Primates. Lastly, we illustrate PhySIC on the reconstruction of the primate supertree at the

genus level from various source trees based on mitochondrial DNA, nuclear DNA and jumping

gene sequences. The supertree reconstructed appears to be useful for displaying phylogenetic

relationships among the major primate taxa (Goodman et al., 2005). Moreover, the produced

supertree displays label(s) on each of its polytomous nodes which identifies the cause(s) of these

polytomies (lack of cross-information and/or presence of contradictions). The PhySIC method has

been implemented in C++ using the Bio++ library (Dutheil et al., 2006) and is freely available as

a web service and for download at http://atgc.lirmm.fr/cgi-bin/PhySIC/physic.cgi.

Non-contradiction and induction properties

We first introduce vocabulary and notations required to formally define the properties of

non-contradiction (PC) and of induction (PI). Simple examples are then used to illustrate the

relevance of PC and PI as well as to relate them with previously proposed properties for supertree

methods (Steel et al., 2000; Goloboff and Pol, 2002). Then we show how to check in polynomial

time whether a supertree satisfies PC and PI for a given collection of source trees.

8

Topological description of trees

The definitions and notations used for trees and their topological description are mainly

the same as those used by Semple and Steel (2003). We only consider rooted phylogenies, due to

the fact that supertree methods cannot fulfill different desirable properties listed in Steel et al.

(2000) when considering unrooted trees. Hereafter, the terms phylogeny and tree are considered

synonymous. Given a tree T , L(T) denotes the set of taxa associated to its leaves. More generally,

given a collection T of trees, L(T) denotes the set of taxa appearing in at least one tree of T .

Given two phylogenies T and T ′ on the same leaf set (L(T) = L(T ′)), we say that T refines T ′

whenever T contains all clades of T ′. In other words, either T and T ′ are identical or T can be

transformed into T ′ by collapsing some of its internal edges.

A rooted tree on three leaves A, B, C has only three possible binary shapes, called triplets

and denoted by AB|C, resp. AC|B, resp. BC|A, depending on the innermost clade (AB, resp. AC,

resp BC). Given a triplet t, t̄ denotes any of the two other triplets on the same set of leaves.

Alternatively, a tree on three leaves can be a star tree, i.e., a unique internal node connected to

the leaves. Any rooted tree T can be equivalently described by the set of triplets homeomorphic

to subtrees of T connecting three leaves (e.g., Grunewald et al., 2006), rt(T) denotes this set.

Given a collection T of phylogenies, rt(T) =
⋃

Ti∈T
rt(Ti) denotes the set of triplets present in

these phylogenies. Note that it is possible that rt(T) contains two triplets t and t̄, namely when

T hosts two incompatible phylogenies. Clearly, two such triplets cannot be combined into a single

supertree of the collection.

Given a set R of triplets, L(R) denotes the set of taxa appearing in at least one tree in R.

A tree T is said to display a set R of triplets when R ⊆ rt(T); moreover, T strictly displays R if

additionally L(T) = L(R). A set R of triplets is compatible if there is a tree T that displays R. To

9

find a tree displaying R, it is useful to take into account that some triplets of the tree are induced

by R: a compatible set R of triplets induces a triplet t, denoted by R ⊢ t, if and only if R ∪ { t̄ }

is not compatible, or equivalently if any tree T that displays R contains t. For instance, any tree

displaying {AB|C, BC|D} also has to display the triplet AC|D, i.e., {AB|C, BC|D} ⊢ AC|D.

Bandelt and Dress (1986) and Dekker (1986) were among the first to investigate such induction

rules. The set of all triplets induced by a compatible set R is called the closure of R and is

denoted by cl(R). Source trees considered for supertree building are sometimes incompatible, and

then the set of triplets considered is incompatible. Nonetheless, we can characterize the set of

triplets induced by these collections by extending the preceding definition: we will say that a set

R of triplets induces a triplet t when there is a compatible subset R′ of R that induces t.

Characterizing non-contradiction and induction by triplets

Here we describe two important properties that veto method supertrees should satisfy.

They concern topological relationships that a supertree should not contain with respect to the

input trees : first, it should not contain relationships contradicting the source trees (PC property);

moreover, it should only contain relationships that are induced by the input trees (PI property).

Below we detail these two properties.

There are several ways for a supertree to contradict a collection of source trees. The

most direct contradiction occurs when only one resolution appears for a group of taxa in one or

several source trees, and the supertree contains a different resolution for the group. When different

resolutions appear in source trees, as soon as the supertree proposes a resolution for the concerned

taxa it contradicts at least one input tree. Contradictions are less direct when the supertree

proposes a resolution that contradicts no single input tree but does contradict a combination of

10

them.

A relationship contained in a supertree can present no contradiction with the input trees

and still not be desirable. For instance, Fig. 1 shows a collection of two source trees and four

possible supertrees, T ′, T ′′, T ′′′ and T , for this collection. Both B and C are sister taxa of A in the

source trees, but no information is present in these trees to resolve the clade A, B, C. Thus, the

fully resolved supertrees T ′, T ′′, T ′′′ all take arbitrary decisions by proposing one of the possible

resolutions for this clade. Here, T is the sole supertree not proposing an arbitrary resolution for

the clade. Arbitrary resolutions are misleading as they display relationships that are not entailed

by the input trees.

The above properties can be formalized in different ways depending on the kind of topolog-

ical relationship considered, e.g. clades, nestings, triplets, etc. Following Goloboff and Pol (2002)

and Grunewald et al. (2006), we chose to focus on triplets. Given a collection T of input trees and

a candidate supertree T , R(T, T) denotes the set of triplets of T for which T proposes a resolution.

More formally, R(T, T) =
{

AB|C ∈ rt(T) such that {AB|C, AC|B, BC|A} ∩ rt(T) 6= ∅
}

. The

set R(T, T) corresponds to all topological information present in collection T that is related to the

information present in supertree T . Using this notation, we can express the induction property

(PI) and the non-contradiction property (PC) as follows:

• T satisfies PI for T if and only if for all t ∈ rt(T), it holds that R(T, T) ⊢ t. In other words,

PI requires that each and every triplet of T is induced by R(T, T).

• T satisfies PC for T if and only if for all t ∈ rt(T) and all t̄, it holds that R(T, T) 6⊢ t̄. This

means that, for each and every triplet of T , R(T, T) induces no alternative resolution.

For instance, considering collection T = {T1, T2} in Fig. 2 and supertree T ′ of Fig. 3, the

set R(T ′, T) is {AC|E, AC|F, AB|E, AB|F, BC|E, BC|F, EF |A, EF |B, EF |C}. Note that the

11

triplet AD|C present in rt(T) due to T2 is not in this set because A, D, C are multifurcating in T ′.

When the source trees are incompatible, it is possible that R(T, T) contains two different triplets

for the same three taxa. For example, consider the supertree T in Fig. 3 proposed by the MC

and MMC voting methods (Semple and Steel, 2000; Page, 2002) on the collection T = {T1, T2}.

R(T, T) contains both AB|C (resulting from T2) and AC|B (resulting from T1). In this case, the

supertree T that contains the triplet t = AB|C does not satisfy PC, since t̄ = AC|B is in R(T, T)

(hence, R(T, T) ⊢ t̄). Indeed, in this example, supertree T includes topological information

contained in T2 that contradicts that of T1. This situation indirectly results from a difference in

the sizes of the clades of T1 and T2 which are incompatible: the clade containing more taxa (here

(A, B, D) in T2 versus (A, C) in T1) is favored in the MC-MMC supertree. Such a size bias effect

has been well-known in the field since Purvis (1995b) demonstrated it for the MRP voting method.

Here it is illustrated for another voting method, and one might wonder whether this size bias is

present in most voting methods. Note however that this size bias does not seem to have a major

impact on MRP’s accuracy (Baum and Ragan, 2004).

When the source trees are compatible, any reasonable method is expected to produce a

supertree satisfying PC. However, some methods usually propose a supertree that does not satisfy

PI. Indeed, compatible source trees can sometimes be displayed by an exponential number of

supertrees, and some methods arbitrarily propose only one of them, thus selecting some triplets

to the exclusion of other possible triplets. For instance, when considering the trivial case of two

source trees AB|E and CD|E, both MC and MMC propose the supertree ((A,B),(C,D),E), while

numerous supertrees are possible, e.g., ((A,C),(B,D),E). In such a case, it seems preferable to

output a consensus of all possible supertrees, as done by MRP (e.g. Bininda-Emonds and Bryant,

1998). Unfortunately, some topological information of the source trees (e.g. triplets) can be absent

from the obtained consensus as it can contain highly multifurcating nodes.

12

However, for some compatible collections of trees, it is possible to find a supertree that

displays all triplets of the collection and is also refined by all other possible supertrees. More

formally, a set R of triplets is said to identify a tree T if and only if T strictly displays R and T is

refined by every tree T ′ that strictly displays R. A set R can identify at most one tree, thus when

the triplet set R = rt(T) of a collection T of source trees identifies a tree, this tree is a canonical

representation of all possible supertrees.

Considering practical collections T of source trees, rt(T) will almost never identify a tree,

either because this set is incompatible, or because it does not identify a particular tree. Neverthe-

less, it is possible that a subset of the triplets in rt(T) identifies a tree T , and then the topological

information contained in T exactly corresponds to a subset of the topological information con-

tained in T . Such a subset is most interesting when the triplets t it contains do not have an

alternative resolution t̄ in rt(T). This situation occurs for the subset R(T, T) of rt(T) when the

supertree T satisfies PI and PC.

Proposition 1 A tree T satisfies PI and PC for a collection T of trees if and only if R(T, T)

identifies T .

The proof is given in Appendix. It is based on the fact that a set R identifies a tree T if and only

if rt(T) = cl(R) (Grunewald et al., 2006, Lem. 2.1). This proposition confirms the relevance of

PI and PC: having a supertree T that satisfies both of them highlights a part of rt(T) (namely

R(T, T)) that exactly corresponds to a tree, i.e. does not contain arbitrary topological information,

and moreover does not contradict any input tree. Such a feature is most desirable for supertrees

inferred by veto methods.

13

Links with other advocated properties

Properties similar to PI and PC were described in (Goloboff and Pol, 2002, p.519) as “the

property of [the supertree] displaying AB|C if it is found in some input tree or implied by some

combination of input trees and no input tree or combination of input trees displays or implies

AC|B or BC|A”. These properties were also pointed out as being desirable by Grunewald et al.

(2006). Using our formalism, they can be translated as follows for a supertree T representing a

collection T :

• PI ′: for any t ∈ rt(T), it holds that rt(T) ⊢ t

• PC ′: for any t ∈ rt(T) and for all t̄, it holds that rt(T)⊢/ t̄.

The essential difference between PI’-PC’ and PI-PC is whether we evaluate supertrees based

on triplets in the original set of trees, rt(T), or on the triplets commonly resolved the supertree

and at least one of the source trees, R(T, T). From the statement of the properties, it is clear that

PC’ implies PC and PI implies PI’. It is thus natural to wonder which version of the properties

is preferable. Below, we show an example where PC’ is too restrictive, and an example where PI’

is too permissive. In contrast, PI and PC behave correctly in these examples.

Example 1 Let T = {T1, T2} with T1 and T2 as shown in Fig. 4. rt(T) contains AE|B and

AC|E, therefore rt(T) ⊢ AC|B. We also have rt(T) ⊢ AB|C since AB|C ∈ rt(T1). Thus any

tree providing a triplet on {A, B, C} does not satisfy PC’. For analogous reasons PC’ does not

allow us to propose any triplet in the supertree. Thus PC’ rejects the tree T of Fig. 4. Yet T is a

reasonable and informative supertree for T and satisfies both PI and PC.

We note that T is not a plenary supertree, i.e. it does not contain all input taxa, but this example

shows that removing rogue taxa is a way in which more informative supertrees can be obtained.

14

This is in line with the remark of Wilkinson et al. (2004), who stated that “non-plenary supertree

methods might be most useful for identifying unstable leaves”. For instance, such leaves might be

involved in lateral transfers. This example easily generalizes to cases where the supertree actually

contains more leaves than each source tree. Figure 5 depicts this generalization.

The next example shows a supertree satisfying both PI’ and PC’, while also displaying

irrelevant triplets.

Example 2 Let T = {T1, T2} with T1 and T2 as illustrated in Fig. 6. rt(T) = {AB|C, AB|X, BC|A}.

The tree T of Fig. 6 displays {AB|X, BC|X, AC|X}. AB|X is present in (thus induced by) rt(T)

but the two other triplets can also be induced from rt(T): {AB|X, BC|A} ⊢ {BC|X, AC|X}. It

follows that T satisfies PI’. Moreover, it is easily seen that no combination of triplets in rt(T),

other than {AB|X, BC|A}, induces triplets. Thus T also satisfies PC’. However, T is clearly

not an ideal supertree for T as no information in T induces group A, B, C to nest inside group

A, B, C, X. The property PI, not satisfied by T , detects this problem: here R(T, T) only contains

the triplet AB|X and thus it does not induce the triplet AC|X present in T .

The PI’ property quoted by Goloboff and Pol (2002) is stronger than the Pareto property (Neu-

mann, 1983; Wilkinson et al., 2004) on triplets, which requires that the output tree contain all

triplets that occur in all source trees. The Pareto property is appealing in general and has also

been advocated in the supertree context (property P6 of Steel et al., 2000). However imposing the

Pareto property on triplets may be problematic, even in the case of compatible source trees (Thor-

ley and Wilkinson, 2003). This is due to the possibility of having several candidate supertrees

that are both compatible with source trees and respect the Pareto property. In this case, no single

supertree exists that satisfies the Pareto property while having no arbitrary resolution. The strict

consensus of these supertrees does not necessarily satisfy the Pareto property. A solution is then to

15

return several trees, either all candidate supertrees or their reduced consensus (Wilkinson, 1994).

However, this solution may not well be suited when the aim is to summarize a collection of source

trees into a single supertree that is more easily dealt with for further analysis by biologists.

When source trees are incompatible, it may even be impossible to have a supertree satisfying

both the Pareto and non-contradiction properties (PC and PC’) as shown in the following example.

Example 3 Consider the collection T = {T1, T2} where T1 = (((A, D), B), ((C, F), E)) and T2 =

(((A, E), (B, F)), (C, D)). Triplets AB|C and EF |D are displayed by both trees of T . Thus any

supertree T for T must include all leaves in T in order to satisfy the Pareto property. Since rt(T)

contains AB|D and AD|B, any tree T displaying a triplet for the three leaves does not satisfy PC

(hence PC’). For similar reasons, no supertree T can display a triplet on the taxa A, C and D.

Thus, any supertree satisfying PC (or PC’) and including all taxa of T contains a multifurcating

node on taxa A, B, C, D, hence does not display the triplet AB|C, i.e. does not satisfy the Pareto

property.

In other words, imposing the Pareto property can lead the supertree to explicitly contradict

relationships present in some input trees. This shows that the Pareto property on triplets is

not compatible with the veto approach, where the proposed supertree must not contradict the

source trees. However, the Pareto property can be considered for other topological relationships

(Wilkinson et al., 2004). For example, there is always a supertree satisfying PI and PC as well as

the Pareto property on partial or full splits contained in the source trees.

The Pareto property specifies relations that the supertree must contain. The complemen-

tary co-Pareto property specifies relations that the supertree must not contain. The co-Pareto

property in the consensus context requires that the consensus tree contain no relationships that

are not present in at least one input tree. However, Wilkinson et al. (2004) point out that this

16

statement is not reasonable for supertrees, since “they might contain relashionships that are en-

tailed by the input trees in combination, but are not present in any of them singly”. Then they

propose a weaker version that requires that the supertree does not contain relationships that are

contradicted by all the input trees whose leaf set makes a contradiction possible. Note that, any

supertree satisfying PC also satisfies the latter version of co-Pareto.

Steel et al. (2000) list five other properties that might be requested from supertree methods:

changing the order of the trees in the input collection does not change the supertree (P1); renaming

the taxa of the source trees gives the same supertree, but with the taxa renamed accordingly (P2);

the output tree displays the source trees when they are compatible (P3); each leaf (taxon) that

occurs in at least one source tree is in the supertree (P4); the running time of the method grows

polynomially with respect to the total number of taxa (P5). The following example shows that

ensuring P3 can force the supertree to contain arbirtrary clades. Thus P3 can conflict with PI.

Example 4 Let T = {T1, T2} with T1 = ((A, B), W) and T2 = ((A, B), (X, (Y, Z))). A supertree

with taxon set {A, B, W, X, Y, Z} that satisfies P3 must display T2, hence must have a clade

including Y, Z but not X. However, it will contain arbitrary clades, no matter where taxon W

is attached. This is because any supertree satisfying PI must include a polytomy on W,X,Y,Z

since source trees include no information on the relative position of W and the group X, Y, Z. For

instance, the supertree ((A, B), (X, Y), W, Z) excludes the possibility for (A, B) and (X, Y) to be

intermixed.

Note that if polytomies of a supertree are interpreted in terms of an Adams consensus (Adams,

1972), then this example does not put P3 into question. However, this interpretation of polytomies

does not prevail in phylogenetics, as we discuss in further detail in the case study paragraph.

17

Checking PC and PI in polynomial time

Existing supertree methods can sometimes output trees that do not satisfy PC or PI. For

instance, the MC supertree obtained for the collection of Fig. 2 does not satisfy PC, while on

that of Example 4, it fails to satisfy PI. In contrast, for the collection {AB|C, BC|D} the MC

supertree satisfies bothPI and PC. The MRP method sometimes outputs supertrees not satisying

these properties (e.g. PC is not satisfied in Fig. 1 of Bininda-Emonds and Bryant, 1998), and

sometimes provides supertrees that satisfy them – e.g. when the source trees are compatible

(Steel, 1992). We now describe an algorithm to decide whether a candidate supertree satisfies

both PI and PC together. In case of a negative answer, it pinpoints those parts of the supertree

contradicting these properties. This algorithm relies on two properties equivalent to PC and PI,

whose formulation is less intuitive but whose checking is easy.

Definition 1 Let T be the collection of source trees and T be a proposed supertree for T . Define

PCeq and PI eq to be the following properties:

• PCeq: rt(T) ∪R(T, T) is compatible.

• PI eq: for any t ∈ rt(T) and for all t̄, the set { t̄ } ∪ R(T, T) is incompatible.

Proposition 2 (PI eq and PCeq) ⇔ (PI and PC).

Proof.

• PCeq ⇒ PC: PCeq ⇒ ∀t ∈ rt(T), {t}∪R(T, T) is compatible. This ensures that there is at

least one tree T ′ that displays R(T, T) ∪ {t}. It follows that T ′ displays R(T, T) but not t̄.

As t̄ is not displayed by every tree that displays the compatible set R(T, T), it follows that

R(T, T) 6⊢ t̄.

18

• PC⇒ PCeq: PC ⇒R(T, T) ⊆ rt(T) (cf proof of Prop. 1), this ensures that rt(T)∪R(T, T)

is compatible (since displayed by T).

• PI + PC ⇒ PI eq: PI and PC ⇒ cl(R(T, T)) = rt(T) by Prop. 1. This ensures PI eq.

• PI eq + PCeq ⇒ PI: PCeq ensures that R(T, T) is compatible. PI eq is exactly the definition

of the induction for a compatible set, thus ensuring PI.

�

Note that we do not prove a direct equivalence between PI and PI eq in this general case. The two

properties are only equivalent for a compatible set. In fact, PIeq is relatively uninformative without

PCeq, since PI eq holds as soon as R(T, T) is incompatible. Note also that another formulation of

PC, closer to that of PI eq but less concise, is as follows: for any t ∈ rt(T), the set {t} ∪ R(T, T)

is compatible.

PI eq and PC eq can easily be checked by using the Build algorithm, which indicates in

polynomial time whether a set of rooted trees is compatible or not. A similar procedure was

proposed by Steel (1992), and refined by Daniel (2004), to compute the strict consensus of all

supertrees displaying a collection of compatible source trees. The following lemma provides us

with an even faster way to check PCeq.

Definition 2 (Direct contradiction) A tree T directly contradicts a set of triplets R when

there is a triplet t in rt(T) such that ∃ t̄ ∈ R. A supertree T is said to directly contradict a

collection T of source trees if T directly contradicts rt(T).

Direct contradictions are linked with the PC property in the following way:

Lemma 1 If a tree T does not directly contradict a collection T of source trees then the three

following statements hold:

19

1. R(T, T) ⊆ rt(T);

2. R(T, T) is compatible;

3. T satisfies PCeq for T .

Proof. By definition, R(T, T) only contains triplets on 3-taxon sets for which there is a triplet in

rt(T). Since T does not directly contradict T , the triplets of R(T, T) are resolved as those in T . It

follows that R(T, T) ⊆ rt(T) (proving 1). R(T, T) is therefore compatible (proving 2). Moreover,

R(T, T) ⊆ rt(T) ensures that R(T, T) ∪ rt(T) is compatible, which is exactly the formulation of

PCeq (proving 3). �

Thus, to check that a supertree T satisfies PCeq, and hence PC, for a collection T , it suffices

to check that any triplet of rt(T) is not resolved in a different way in a tree of T . This can be

done by computing the set rt(T) of O(n3) triplets in T and then comparing rt(T) with the set of

triplets of each source tree Ti. If the collection T contains k source trees and a total of n taxa,

then this simple implementation requires O(kn3) computing time. However, it is possible to check

this condition in linear time for each pair T, Ti with Ti ∈ T : first restrict in O(n) time the trees T

and Ti to the taxa they share; then apply the algorithm of Berry et al. (2005) that, given two trees

with the same taxa, finds in O(n) time a triplet resolved differently in the trees, or states that this

situation does not arise. Thus, successively considering k source trees leads to a procedure that

checks PC in O(kn) computing time.

PhySIC : a polynomial-time veto supertree method

We introduced above the PI and PC properties, showed their relevance and described

algorithms to check whether a given supertree T satisfies them. In this section, we show that it

20

is possible to design a method that always produces supertrees that satisfy PI and PC. However,

this aim is not precise enough, as the star tree (the tree whose leaves are all children of a single

internal node) trivially satisfies these properties – simply because it does not resolve any triplet.

Thus, a reasonable aim is to design a method that always infers supertrees that satisfy PI and PC

and that contain as much resolution as possible, e.g., resolve as many triplets as possible. More

precisely, we require a method that, given any collection T , proposes a supertree T such that

R(T, T) identifies T and R(T, T) has maximum size over all such subsets of rt(T). Such a subset

of rt(T) is called a maximum identifying subset of triplets (MIST).

The difficulty of this problem cannot be simply deduced from previously known theoretical

results for optimization problems on triplets. Indeed, the MIST problem is a middle term be-

tween the NP-hard problem that consists of finding a maximum-sized compatible subset of triplets

(Bryant, 1997) and the polynomial-time problem that asks for the maximum-sized tree-like subset

of a complete set of triplets (Berry and Gascuel, 2000; Bryant and Berry, 2001). Unfortunately,

the MIST problem is NP-hard (Guillemot and Berry, 2007). This shows that it is highly unlikely

that a polynomial-time algorithm exists that could find the most resolved supertree satisfying PI

and PC. However, we can still rely on heuristic algorithms to find reasonable (but potentially

suboptimal) solutions, as is commonly done for other NP-hard problems such as finding a most

parsimonious tree or a maximum likelihood tree for a character matrix.

We present below a polynomial-time heuristic method that always outputs a supertree that

satisfies PI and PC. The method tries to produce a supertree that contains as many input triplets

as possible under this constraint. The method is a variant of the well-known Build algorithm and

is called PhySIC– Phylogenetic Signal with Induction and non-Contradiction. Supertrees inferred

by the method have a degree of resolution that can be close to that of supertrees inferred by voting

methods (see next section), while only containing clades that are not arbitrary with respect to the

21

source trees nor contradicting them as detected by PC.

Inferring a supertree that satisfies PC

This section introduces algorithms, based on the Build algorithm, to produce non-trivial

trees that satisfy PC.

The Build algorithm

The Build algorithm is a yes-or-no algorithm that tells whether a collection of triplets or

larger trees is compatible or not. To achieve its goal, the algorithm tries to build a tree displaying

the triplets; if the process is blocked at some step, this means that the input triplets are not

compatible. This tree is built recursively, from the root to the leaves. First, the largest clades

are identified, then clades included in the first ones, and so on. The composition of the clades

is guided by the structure of a graph, that is a set of objects (called vertices) with links (called

edges) between pairs of them.

The graph used by Build, called here the Aho Graph, is defined as follows: let R be

a collection of triplets on a taxon set X, the Aho Graph G for R is the undirected graph with

vertices X and with edges (A, B) between two taxa A and B whenever there is a triplet AB|C ∈ R.

Thus, an edge between two taxa means that at least one triplet sees these two taxa in the same

clade. The vertices of G are denoted by v(G) (in the present description v(G) = X). For instance,

Fig. 7a shows the Aho graph built from R = rt({T1, T2}), where T1, T2 are the source trees of

Fig. 2, and e.g., the edge between taxa B and D is due to the triplet bd|c ∈ rt(T2).

A connected component Ci of a graph is a maximal set of taxa linked to one another, i.e.,

such that for any pair A, B of taxa in Ci, there is a set of edges that links A to B. For instance,

the graph in Fig. 7a contains two connected components: C1 = {E, F} and C2 = {A, B, C, D}.

22

The connected components of graph G are denoted by CC(G). The vertices of a component Ci

of G are denoted by v(Ci). When the Aho graph contains several connected components, each

of them corresponds to a clade of the tree representing the input collection of triplets (if such a

tree exists). Once these clades are known, the clades contained in each of these primary clades

are found by recursively processing Aho graphs for subsets of triplets that respectively concern

the taxa of these clades: the restriction of R to taxa of a component Ci is denoted by R|v(Ci)

and defined as
{

AB|C ∈ R such that {A, B, C} ⊆ v(Ci)
}

. For example Fig. 7b shows the Aho

graph obtained from R|v(C2) where R is the set of triplets due to source trees in Fig. 2, and C2

is the component of the initial Aho graph shown in Fig. 7a. The recursive calls stop when dealing

with components containing less than 3 taxa, since there is no triplet (hence incompatibility) on

so few taxa. However, if at some point in the recursive process, the Aho graph for a set of at least

three taxa has only one connected component, this means that the input trees are conflicting on

the resolution of these taxa. When this happens, the algorithm states that the collection of source

trees is incompatible. Otherwise, when all recursive calls return, the algorithm concludes that the

source trees are compatible. For instance, when run on the collection of Fig. 2, Build first finds

two connected components, C1 = {E, F} and C2 = {A, B, C, D}, but the recursive call on C2

leads to a graph containing only one connected component (Fig. 7b), which leads the algorithm

to detect the incompatibility of the source trees.

A first simple modification of Build

We first describe here a simple modification of Build that infers a supertree from a collection

of source trees T . This subroutine, called BuildPC (see Fig. 8), takes as input the triplet set

R = rt(T) of a collection T of source trees and the list S of taxa contained in these trees.

BuildPC mainly differs from Build when the Aho graph contains one connected component on the

23

set S of taxa currently considered (line 1). In this case, BuildPC returns the star tree on S (i.e.,

a single polytomy on S, thus contradicting no input triplet), whereas Build simply concludes that

the sources trees are incompatible. This star tree is then grafted as a subtree of the tree built

by the previous recursive call. Thus, we can now output a supertree even when the source trees

are incompatible. As an example, from the collection of Fig. 2, BuildPC infers the supertree T ′

displayed in Fig. 3.

Proposition 3 Given a collection R of triplets on a taxon set S, BuildPC returns a tree T on S

that satisfies the PC property for R.

The proof of this proposition can be found in appendix.

A more involved algorithm to infer a supertree satisfying PC

BuildPC sometimes produces poorly resolved trees due to multifurcations returned in cases

where G contains a single connected component (i.e., when R contains conflicts covering the

considered subset of taxa). In the most extreme (though unlikely) case, this situation occurs at

the first step of the algorithm, which then outputs a star tree.

The most basic conflicts between triplets of R occurs when two different triplets t and

t̄ appear in R for a same set of three taxa. Such a direct contradiction cannot be present in

a tree that satisfies PC. Given Rdc, the set of triplets such that t, t̄ ∈ R it seems relevant to

consider the subset R′ = R − Rdc R. We define a variant of BuildPC, called PhySICPC, that

resorts to that subset whenever conflicts are detected. This enables the produced supertree T ′

to be generally much more resolved than the tree returned by BuildPC. For instance, Fig. 7b

shows the graph obtained for R|v(C2), where R are triplets of the collection in Fig. 2 and C2 is

the connected component shown in Fig. 7a. This graph is connected due to the direct conflicts

24

between AB|C (resulting from T1) and BC|A (resulting ftom T2). This situation leads BuildPC

to return a polytomy on A, B, C, D. In contrast, building the graph on the basis of R′ results in

two connected components, Ci and Cj , allowing PhySICPC to propose a tree with two subtrees

for taxa A, B, C, D.

The correctness of BuildPC ensures that T ′ satisfies PC with respect to R′ but without any

guarantee that this also holds with respect to R. To ensure the latter, and thus the correctness of

PhySICPC, T ′ must not resolve any triplet of Rdc. A way to ensure this is to collapse any branch

of T ′ that resolves a triplet of Rdc. The tree thus obtained is still always at least as resolved as

the one proposed by BuildPC and potentially contains supplementary branches. Indeed, direct

contradictions at the root of a clade no longer prevent the proposition of clades on subsets of its

taxa. For instance, on the collection of Fig. 2, the tree initially computed by PhySICPC is the

tree called T in Fig. 3. But as the branch leading to the clade (A, D, B) contradicts AC|B ∈ Rdc,

the branch above this clade is collapsed, and the final tree output by PhySICPC is then the tree

named T” in Fig. 3. This tree contains one clade more than the tree output by BuildPC (the tree

named T ′ in the figure).

These ideas are included in the PhySICPC algorithm whose pseudo-code is detailed in

Fig.9.

Theorem 1 Given a triplet set R = rt(T) from a collection T of source trees on a taxon set S

of n leaves, PhySICPC returns in O(n4) time a tree T satisfying PC for T .

The proof of this result can be found in appendix.

25

Ensuring that the supertree satisfies PI

The supertree TPC output by PhySICPC does not usually satisfy the PI property. The

PhySICPI algorithm transforms TPC so that it also satisfies PI. To that aim PhySICPI recursively

searches the tree and checks that for each branch each triplet is induced by R(TPC , T). The

theorem 3.1.1 of Daniel (2004) provides a useful characterisation to decide when a branch is

justified, directly or indirectly, thanks to triplets present in R(TPC, T). When considering the

branch linking u to a subtree Si, the theorem considers a graph Gij for any sibling subtree Sj of

Si. Any such graph Gij is the Aho graph with vertices L(Si), and with edges due to triplets of

R(TPC, T) whose three leaves are in L(Si) ∪ L(Sj). The theorem states that the branch from u

to the root of Si is justified if and only if Gij is connected, for any sibling subtree Sj .

Example 5 Consider for instance the simple example where T contains the trees ((A,B),X) and

((E,F),X). The Aho graph for rt(T) = {AB|X, EF |X} is made of three connected components:

C1 = {A, B}, C2 = {E, F} and C3 = {X}, therefore applying the PhySICPC algorithm gives the

tree TPC = ((A, B), (E, F), X). TPC displays AB|E even though this information is not induced by

T . Indeed, the branch defining the clade (A, B) is detected as not justified since the corresponding

connected component, C1, is not connected in the Aho graph when we consider only edges due to

triplets with taxa in C1 ∪ C2.

This Theorem is the basis of a decision algorithm called Identifies, that states whether a given

set of triplets identifies a given tree (Daniel, 2004). It is possible to design a simple variant of

this algorithm that always returns a tree (not just a yes or no answer): when a branch between

a node p and the root of a subtree Si is not justified, the idea is to replace Si by a star tree on

the taxa of the corresponding clade. This crude variant removes the unjustified branches, but also

potentially many other branches, i.e., those inside Si, those leading to sibling subtrees Sj of Si, and

26

those inside Sj subtrees. PhySICPI is a more refined variant that only collapses the unjustified

branches. See the pseudo-code in Fig. 10 for details. In this code, PhySICPI is given a tree T in

which unjustified branches are to be collapsed, and a collection T of source trees or, equivalently,

the corresponding set of triplets (as written in the pseudo-code). PhySICPI repeatedly calls the

CheckPI subroutine to detect unjustified branches that are then removed until none remain (note

that in the pseudo-code of CheckPI , S(T) denotes (complete) subtrees connected to the root of

T , i.e., the subtrees corresponding to the largest clades under the root of T).

From the collection of Fig. 2, PhySICPC infers the supertree T ′′ displayed in Fig. 3. and

none of the three internal branches of T ′′ are collapsed by CheckPI . For instance, consider the

step where CheckPI checks the subtree ((A,D),B,C) of T ′′, whose child subtrees are (A,D) plus

the two trivial subtrees on B and C. The sole branch that has to be checked in ((A,D),B,C) is

the one defining the clade (A,D). Here, CheckPI builds two Aho graphs with vertices {A, D}: one

with edges due to triplets on {A, D} ∪ {B} and one with edges due to triplets on {A, D} ∪ {C}.

Both graphs are connected thanks to triplets of the source tree T2; therefore, CheckPI does not

collapse any branch at this step.

Theorem 2 Given a collection T of trees and a tree satisfying PC for T , PhySICPI returns in

O(n4) time a tree T on L(T) that satisfies both PC and PI for T .

The proof of this Theorem can be found in the appendix.

The PhySIC algorithm (see pseudo-code) builds a supertree for a collection of k source

trees T by first computing the set rt(T) and then successively calling PhySICPC and PhySICPI.

Since rt(T) is computed in O(kn3), PhySIC runs in O(kn3 + n4) time.

Theorem 3 Given a collection T of k source trees on n leaves, PhySIC returns in O(kn3 + n4)

time a tree both satisfying PC and PI.

27

Lastly, we note that similar procedures can be designed to modify the supertree proposed

by any existing supertree method. If a method proposes a supertree T that does not satisfy

PC and PI, it is possible in polynomial time to transform T into a tree T ′ that satisfies these

properties. Indeed, the algorithm indicated previously to check PC indicates the triplets from

which the incompatibility arises. Then the branches of T inducing these triplets can be collapsed

to obtain a tree T ′ satisfying PC. Now, a procedure similar to PhySICPI can be applied to T ′ to

ensure that it also satisfies PI (without invalidating PC).

Biological case studies on Primates

To illustrate the impact of the PC and PI properties on supertree inference, and to com-

pare the behavior of veto methods like PhySIC to that of voting methods like MRP and MMC,

we present two case studies centered on Primates. This mammalian order is one of the first tax-

onomic groups for which a large-scale supertree approach has been conducted (Purvis, 1995a).

The first example is designed to show the desirable properties of PhySIC compared to other su-

pertree methods on a smaller, understandable taxonomic scale. The second example addressing

the question of the primate supertree at the genus level shows how PhySIC performs on a larger

taxonomic scale–approaching what supertree studies tend to be performed on–, and shows that

varying degrees of resolution are achieved in the supertree depending upon the nodes retained

from the input trees.

First example: illustration of supertree desirable properties

Source trees.—We focused on a subsample of Primates IRBP (Interphotoreceptor Retinoid

Binding Protein) and ADRA2B (α2B-Adrenergic Receptor) gene sequences, respectively from

28

Poux and Douzery (2004) and Poux et al. (2006), with a rodent (Mus) and lagomorph (Oryctola-

gus) outgroup. For ADRA2B, the hominoid representative was Pan, with the sequence downloaded

from the chimp ENSEMBL project. The ADRA2B and IRBP source trees were inferred by max-

imum likelihood (ML) analysis of the corresponding alignments, using PHYML (Guindon and

Gascuel, 2003), version 2.4.4, under a GTR+Γ4+INV model of DNA evolution. The node support

was estimated after 1000 bootstrap replicates using the same software, and expressed as boot-

strap percentages (BP). Denser taxonomic and phylogenetic information for Strepsirrhines (i.e.,

Lemurs and Galagos) was sought from a study of presence-absence of short interspersed nuclear

elements (SINE) integrations in primate genomes (Roos et al., 2004, Fig. 2). Sixty-one monolocus

SINE characters detected by these authors were subjected to a maximum parsimony analysis using

PAUP* (Swofford, 2002), version 4b10, with 1000 bootstrap replicates using a heuristic search,

with 10 random additions of taxa, and TBR branch swapping. We only retained the best sup-

ported nodes of source trees, i.e., those showing at least 50% bootstrap (cf. also Daubin et al.,

2002).

Comparison of supertrees inferred from PhySIC, MMC and MRP.—Starting from the three

source trees (Fig. 11), supertrees were built using the MMC, MRP, and PhySIC methods. For

MRP, the matrix representation of the three source topologies resulted in 47 characters. Parsi-

mony analysis was conducted under PAUP*, with a heuristic search with 1000 random addition

sequences, and TBR branch swapping, resulting in 864 equally parsimonious trees, a strict consen-

sus of which provided the MRP supertree. The MMC supertree was obtained using the program

distributed by Rod Page. Fig. 12 shows the supertrees respectively reconstructed by MMC, MRP,

and PhySIC with its PhySICPC intermediate step.

The supertrees produced all contain some soft polytomies, each of them representing un-

certainty about the resolution of a node’s child subtrees or lineages. A soft polytomy can have two

29

distinct interpretations, differing in the set of admissible fully-resolved phylogenies it encompasses.

Consider the case of the polytomous node P in the MMC tree of Fig. 12. This node has three

child subtrees S1 =(Homo, Hylobates), S2=(Pan,(Cercopithecus, Macaca)) and S3, the Platyrrhinii

clade. The most widespread meaning of a soft polytomy accepts any fully-resolved tree on sub-

trees S1, S2, S3 that keeps their monophyly: ((S1, S2), S3), ((S1, S3), S2) or ((S2, S3), S1). Strict

consensus, majority-rule consensus, and hence MRP, interpret polytomies in this way (Margush

and McMorris, 1981). Polytomies proposed by PhySICPC are also to be interpreted in this way.

A second interpretation of soft polytomies was introduced by the Adams consensus (Adams, 1972)

and is also intended by MC (Semple and Steel, 2000) and MMC (Page, 2002). This interpretation

accepts as possible phylogeny any fully-resolved tree that maintains the structure of each subtree

respectively, no matter whether or not S1, S2, and/or S3 are kept monophyletic (i.e., their leaves

can be interleaved). Thus, the polytomy P of the MMC tree in Fig. 12 can indeed give rise to

fully-resolved trees grouping Pan and Homo without Hylobates, as long as Pan is kept outside the

clades containing Cercopithecus and Macaca (which is the structure imposed by S2). Under this

interpretation, a soft polytomy represents a much wider range of fully-resolved phylogenies than

with the first interpretation, and is harder to interprete in a phylogenetic context. (In particular,

this means that simulation studies on supertree methods that use the Robinson and Foulds dis-

tance to evaluate the performance of MC or MMC are misleading: on the previous example, the

MMC method would have been considered to propose the incorrect clades Homo + Hylobates, and

Pan + Hylobates).

The contribution of PhySICPC to the supertree inference may be illustrated by the sit-

uation among platyrrhines. Here, ADRA2B indicates that Ateles is the sister-group of Pithecia,

Callithrix, and Cebus, whereas IRBP indicates that Ateles and Cebus are the closest relatives

(Fig. 12: boxed areas). This conflict is detected by PhySICPC. As a result, the PhySICPC and

30

PhySIC supertrees display all four platyrrhines within a multifurcation. By contrast, MRP and

MMC give priority to the Callithrix + Cebus grouping present in the ADRA2B source tree, and

thus contradicts the Ateles + Cebus grouping present in the IRBP source tree. Resolution of this

conflict between the source trees reflects the voting approach followed by MRP and MMC. For

instance, consider the case of MRP: the ADRA2B source topology comprises two nodes within

platyrrhines, against one node for the IRBP topology. Therefore, MRP favors the node Callithrix

+ Cebus involved in a topological conflict but belonging to a larger and more resolved clade

(Bininda-Emonds and Bryant, 1998). The behavior of MRP and MMC on platyrrhines is prob-

lematic. Indeed, it favors one source topology while contradicting another, just on the basis of

their respective levels of resolution, and despite the fact that both contain the same number of taxa

for the Platyrrhine subtree. MRP has already been criticized on this point (e.g., Goloboff, 2005).

Note that source trees also conflict on the position of Propithecus with respect to Microcebus and

Lemur. However, in this case, MRP behaves as PhySICPC and PhySIC, i.e., displays a polytomy

on groups containing these three taxa (Fig. 12: letters A-B-C). By contrast, MMC groups to-

gether the Propithecus and Lemur clades, following the SINE information, but contradicting the

IRBP information.

The complementary contribution of PhySICPI to the supertree inference may be illustrated

by the situation among Catarrhines + Platyrrhines. Although not contradicting the source trees,

the PhySICPC supertree contains two topological errors. First, man and chimp do not group

together relative to the gibbon, as would be expected from a plethora of data (Goodman et al.,

2005). Homo is instead associated with Hylobates, whereas Pan branches with the two cercop-

ithecoids, Cercopithecus and Macaca. This situation results from the taxon sampling of the source

topologies. More precisely, man and chimp are not simultaneously present in any source tree, i.e.,

the former clusters with the gibbon (IRBP) and the latter with cercopithecoids (ADRA2B). These

31

two source clades are reproduced in PhySICPC and MMC supertrees.

In the case of PhySICPC, these two clades are involved in a polytomy with the platyrrhines.

This polytomy means that (Homo, Hylobates) is a sister clade of the clade containing Pan. How-

ever, although these clades are correct when considered separately, they should not be sister groups

in the supertree. PhySICPI detects this situation of arbitrary resolution and collapses the cor-

responding branches, thus the final PhySIC supertree allows for a group (Pan, Homo). MMC

displays the same polytomy as PhySICPC but with a different meaning: the interleaving inter-

pretation of this soft polytomy means that MMC does not reject the expected resolution, namely

grouping (Pan, Homo) as a sister clade of Hylobates. In conclusion, both MMC and PhySIC al-

lows for the expected group (Pan, Homo), but note that the PhySIC supertree is more accurate,

as its polytomy does not allow the catarrhine taxa Homo, Hylobates or Pan to branch within

the platyrrhines. Here, MRP does not introduce arbitrary resolutions, and proposes a polytomy

involving the 5 catarrhine taxa.

Another problem of MMC and PhySICPC supertrees is that Lepilemur is the sister-group

of all Lemuriformes but Daubentonia, whereas this topological information is not present in the

only source tree (SINEs) for which Lepilemur is scored. This result is explained by the fact that

the restriction of IRBP and ADRA2B source topologies to taxa lettered A-B-C-X leads to the

situation described on Fig. 6. Thanks to the PI property, the PhySIC algorithm again corrects

this problem, and displays a polytomy involving the major clades of lemuriformes, together with

Lepilemur (Fig. 12). The same polytomy is also proposed by MRP. Overall, this first case study

illustrates that the two properties introduced in the present work help to identify and manage the

potential arbitrary and conflicting resolutions arising in supertrees when combining independent

source topologies.

32

Second example: a PhySIC supertree of primate genera

Primary data and source tree inference.—We used 24 datasets to reconstruct the primate

phylogeny: two mitochondrial DNA (mtDNA), 19 nuclear DNA, and three transposable elements

datasets. All sequences used in this study were retrieved from EMBL-Genbank databases. The

sampling of genes and other molecular markers is detailed in Table 1. The corresponding data

are available under TreeBASE accession numbers XXXXX. This combined dataset encompasses

95% of all primate extant genera (Wilson and Reeder, 2005), i.e., 66 genera. Two subfossil genera

from ancient DNA analyses were also included (Karanth et al., 2005). All genes were aligned with

Clustal X (Thompson et al., 1997) with subsequent manual refinement. We used Mus and Rattus

as outgroups in all analyses for which sequence data was available. Each gene was analyzed with

the ML criterion under the best fitting model (Table 1). Separate ML phylogenetic reconstructions

and bootstrap analyses were performed with PHYML (Guindon and Gascuel, 2003) as described in

previous section. Maximum parsimony phylogenetic reconstruction and bootstrap analysis on the

three transposable element datasets were also conducted using PAUP* as described in previous

section. Clades of the source trees with BP values above a specified threshold were retained.

To evaluate the influence of this parameter, five PhySIC supertrees were inferred by respectively

considering BP ≥ 50%, 60%, 70%, 80%, and 90%. Each run of PhySIC took less than 4 seconds

on an Intel MacBook.

The major clades of primate genera.—The most resolved supertree reconstructed by PhySIC

is obtained when source trees were restricted to nodes supported by more than 70% bootstrap

(Fig. 13, BP≥ 70%). This topology conforms to current ideas on primate phylogeny, and is close

to the informal supertree of Primates at the genus level proposed by Goodman et al. (2005). In

addition, we here extend their taxon sampling with the three extant genera Euoticus, Piliocolobus,

33

and Simias, and the two subfossil genera Megaladapis and Paleopropithecus. Our supertree displays

the fundamental dichotomy among Primates between Strepsirrhini and Haplorrhini. Strepsirrhines

then split into Lorisiformes (Lorises and Galagos) and Lemuriformes (lemurs and Daubentonia, the

aye-aye). Haplorrhines also split into Tarsiers and Anthropoids. The latter clade subsequently di-

vides into monophyletic New World primates (Platyrrhini) and Old World primates (Catarrhini).

Platyrrhini display a trifurcation involving the three families Atelidae (the Ateles + Alouatta

clade), Pitheciidae (the Pithecia + Callicebus clade), and Cebidae (the Cebus + Saimiri + Aotus

+ Saguinus clade). Catarrhines split into Hominoidea (gibbons and apes) and Cercopithecoidea

(colobines and cercopithecines).

Identifying and labeling the causes of supertree polytomies.—Since veto methods are used

for evaluating the topological congruence of source trees, and for measuring their degree of leaf

overlap, the PhySIC program outputs labels on each polytomous node. A label “C” (standing for

Contradiction) indicates that the polytomy results from contradictions among the source trees on

phylogenetic relationships of corresponding taxa: proposing a resolution for the polytomy would

contradict at least one source tree, i.e., would not respect the PC property. A label “I” (standing

for Induction) indicates a lack of cross-information in the source trees: any dichotomous resolution

of the clade would be at least partially arbitrary, thus would not respect the PI property. Note

that a given label applies only to the node to which it is assigned but not to other nodes in its

subtrees. For instance, in the primate genera supertree (Fig. 13), the platyrrhine trifurcation

(Atelidae, Pitheciidae, Cebidae) with a C label indicates that there is topological contradiction

among the source trees about the sister-group relationships of these three families. However, the

C label does not put the monophyly of Atelidae, Pitheciidae, and Cebidae into question. Note

also that a same polytomy can be characterized by both C and I labels. This means that the

unability of the supertree to propose a dichotomous resolution is partly due to a lack of taxonomic

34

overlap, and partly due to contradictions. For example, Fig. 13 shows that the clade Cercopithecus,

Erythrocebus, Chlorocebus, and Miopithecus is tagged by both C and I, reflecting two problems.

On the one hand, source topologies disagree about the placement of Erythrocebus: this genus is

either related to Cercopithecus (as suggested by IRBP exon 1) or to Chlorocebus (cf. the TSPY

and chromosome Xq13.3 markers, and the Alu of Xing et al. (2005)). On the other hand, the

input trees analyzed here do not provide the information required to know whether Miopithecus

is the sister group of Cercopithecus, or is that of Erythrocebus + Chlorocebus, or is the most basal

genus in the clade.

Impact of the robustness of source trees on veto supertree resolution.—The number of clades

retained from the original source trees depends on the bootstrap threshold imposed to select them

for supertree inference. Choosing a low threshold thus increases the number of retained source

clades, hence lowers the number of polytomies due to a lack of cross-information among source

trees, but increases the number of polytomies due to conflicts among source trees. Increasing the

threshold has the opposite effect. The primate supertree of Fig. 13 was obtained with BP ≥ 70%.

Lowering the threshold to BP ≥ 50% or BP ≥ 60%, PhySIC yields a completely multifurcating

supertree, due to weakly supported clades that conflict among source trees. When the bootstrap

stringency is increased from the BP ≥ 70% to BP ≥ 80% threshold, a similar level of resolution

in the genus level phylogeny is obtained with the exception of two additional polytomies: the first

involves Indriidae (Indri + Avahi + Propithecus + Paleopropithecus) relative to other lemuri-

formes, and the second involves Allenopithecus relative to the Cercopithecus clade (white stars in

Fig. 13 refer to disappearing branches). Interestingly, increasing the threshold removes a topolog-

ical conflict among Lophocebus, Papio and Theropithecus: with the PC property being satisfied,

then the PhySIC supertree groups together the latter two genera. At the BP ≥ 90% threshold, 7

additional polytomies with respect to the BP ≥ 70% topology appear (Fig. 13: black stars refer

35

to node collapsing). This reflects the fact that less source nodes (i.e., the nodes of source trees)

are available for supertree inference. The PI property is thus less often satisfied in the PhySICPC

supertree, leading to a greater number of irresolutions in the PhySIC supertree.

Overall, two reasons can lead the PhySIC method to propose a poorly resolved supertree.

First, it is possible that the source trees contain too little cross information for the method to

decide how the taxa of the respective source trees branch relatively to each other. In this case, all

methods, including voting methods, will produce unresolved supertrees. Obtaining more resolved

supertrees can then only be achieved by adding new source trees containing new clades on the

key taxa. The second reason why the PhySIC supertree can lack resolution is the presence of

topological conflicts among source trees. Like other veto methods, PhySIC is very sensitive to

incongruences in the source trees. Thus, to obtain a well-resolved tree, a preliminary process

whereby unreliable clades are collapsed in the source trees is usually necessary before applying the

method. This collapsing can be done on the basis of the support values provided on the clades

by most phylogenetic inference methods (e.g., bootstrap values, Bayesian posterior probabilities,

Bremer support). We showed that a well-resolved supertree of Primates can be obtained with such

an approach from a non-trivial number of gene trees. Note that on some datasets, contradicting

clades showing high support values can occur, e.g., due to lateral gene transfers. In such cases,

veto methods will still produce unresolved supertrees (as long as they are not allowed to exclude

rogue taxa). This can be seen as a drawback or as a way to pinpoint such events. In such cases,

outlier source trees can be identified (Shimodaira and Hasegawa, 1999; Lerat et al., 2003) and then

curated or removed from the collection of source trees, leading to a more resolved supertree.

36

Conclusion

Veto supertree methods are of interest for combining source topologies containing reliable

clades. Their study also brings insight for the characterization of what we expect from voting

methods. Indeed, when source trees are not conflicting, there is no fundamental difference between

the two approaches. In such cases, veto and voting approaches should lead to reasonable supertrees.

What reasonable means can be characterized by several formal properties. In the present work, we

showed pitfalls of some previously proposed supertree properties, and also proposed new properties.

In the general case of conflicting source trees, we believe there is still room for improvement, e.g.,

detecting arbitrary clades of a supertree even when it partially conflicts with some source trees,

as usually happens in the voting context. With the new theoretical material at hand we believe

that this is a reasonable goal.

References

Adams, E. 1972. Consensus techniques and the comparison of taxonomic trees. Syst. Zool. 21:390–

397.

Aho, A. V., Y. Sagiv, T. G. Szymanski, and J. D. Ullman. 1981. Inferring a tree from lowest

common ancestors with an application to the optimization of relational expressions. SIAM J.

Comp. 10:405–421.

Bandelt, H.-J. and A. W. M. Dress. 1986. Reconstructing the shape of a tree from observed

dissimilarity data. Adv. in Appl. Math. 7:309–343.

Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference,

and the desirability of combining gene trees. Taxon 41:3–10.

37

Baum, B. R. and M. A. Ragan. 2004. The MRP method. Pages 17–34 in Phylogenetic supertrees:

combining information to reveal the Tree of Life (O. Bininda-Emonds, ed.). Kluwer.

Berry, V. and O. Gascuel. 2000. Inferring evolutionary trees with strong combinatorial evidence.

Theor. Comput. Sci. 240:217–298.

Berry, V., S. Guillemot, F. Nicolas, and C. Paul. 2005. On the approximation of computing

evolutionary trees. in Proceedings of the 11th International Computing and Combinatorics

Conference (COCOON’05) (L. Wang, ed.) LNCS.

Berry, V. and F. Nicolas. 2004. Maximum agreement and compatible supertrees. Pages 205–219

in Proceedings of CPM (S. C. Sahinalp, S. Muthukrishnan, and U. Dogrusoz, eds.) vol. 3109 of

LNCS.

Berry, V. and C. Semple. 2006. Fast computation of supertrees for compatible phylogenies with

nested taxa. Syst. Biol. 55:U108–U126.

Bininda-Emonds, O. R. P. 2003. Novel versus unsupported clades: assessing the qualitative support

for clades in mrp supertrees. Syst. Biol. 52:839–848.

Bininda-Emonds, O. R. P. 2004a. The evolution of supertrees. Trends Ecol. Evol. 19:315–322.

Bininda-Emonds, O. R. P. 2004b. Phylogenetic supertrees (combining information to reveal the

tree of life) vol. 4 of computational biology series. Kluwer academic publishers.

Bininda-Emonds, O. R. P. and H. N. Bryant. 1998. Properties of matrix representation with

parsimony analyses. Syst. Biol. 47:497–508.

Bryant, D. 1997. Building trees, hunting for trees and comparing trees: theory and method in

phylogenetic analysis. Ph.D. thesis University of Canterbury, Department of Mathemathics.

38

Bryant, D. and V. Berry. 2001. A structured family of clustering and tree construction methods.

Adv. in Appl. Math. 27:705–732.

Bryant, D., C. Semple, and M. Steel. 2004. Supertree methods for ancestral divergence dates and

other applications. chap. 6, Pages 129–150 in Phylogenetic supertrees: combining information

to reveal the Tree of Life (O. Bininda-Emonds, ed.) vol. 4 of Computational Biology Series.

Kluwer academic publishers.

Chen, D., L. Diao, O. Eulenstein, D. Fernández-Baca, and M. J. Sanderson. 2003. Flipping: A

supertree construction method. Pages 135–160 in Bioconsensus vol. 61 of Series in Discrete

Math. and Theoretic Computer Science DIMACS Am. Math. Soc., Providence.

Cotton, J. A., C. S. C. Slater, and M. Wilkinson. 2006. Discriminating supported and unsupported

relationships in supertrees using triplets. Syst. Biol. 55:345–350.

Criscuolo, A., V. Berry, E. J. P. Douzery, and O. Gascuel. 2006. SDM: a fast distance-based

approach for (super)tree building in phylogenomics. Syst. Biol. 55:740–755.

Daniel, P. 2004. Supertree methods: some new approaches. Master’s thesis University of Canter-

bury.

Daniel, P. and C. Semple. 2004. Supertree algorithms for nested taxa. chap. 7, Pages 151–171 in

Phylogenetic supertrees: combining information to reveal the Tree of Life (O. Bininda-Emonds,

ed.) vol. 4. Kluwer academic publishers.

Daubin, V., M. Gouy, and G. Perrière. 2002. A phylogenomic approach to bacterial phylogeny:

Evidence of a core of genes sharing a common history. Genome Res. 12:1080–1090.

Davies, T. J., T. G. Barraclough, M. W. Chase, P. S. Soltis, D. E. Soltis, and V. Savolainen. 2004.

39

Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl. Acad.

Sci. USA 101:1904–1909.

Dekker, M. C. 1986. Reconstruction methods for derivation trees. Master’s thesis University of

Amsterdam.

Delsuc, F., H. Brinkmann, and H. Philippe. 2005. Phylogenomics and the reconstruction of the

tree of life. Nat. Rev. Genet. 6:361–375.

Dutheil, J., S. Gaillard, E. Bazin, S. Glemin, V. Ranwez, N. Galtier, and K. Belkhir. 2006. Bio++:

a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population

genetics. BMC Bioinformatics 7:188.

Goloboff, P. A. 2005. Minority-rule supertrees? MRP, compatibility, and MinFlip may display the

least frequent groups. Cladistics 21:282–294.

Goloboff, P. A. and D. Pol. 2002. Semi-strict supertrees. Cladistics 18:514–525.

Goodman, M., L. I. Grossman, and D. E. Wildman. 2005. Moving primate genomics beyond the

chimpanzee genome. Trends Genet. 21:511–517.

Gordon, A. G. 1986. Consensus supertrees: the synthesis of rooted trees containing overlapping

sets of labelled leaves. J. Classif. 3:335–348.

Grunewald, S., M. A. Steel, and M. S. Swenson. 2006. Closure operations in phylogenetics math-

ematical Biosciences (in press).

Guillemot, S. and V. Berry. 2007. Finding a largest subset of rooted triples identifying a tree is an

NP-hard task. Tech. rep. LIRMM, Univ. Montpellier 2.

40

Guindon, S. and O. Gascuel. 2003. A simple, fast and accurate method to estimate large phyloge-

nies by maximum-likelihood. Syst. Biol. 52:696–704.

Huson, D. H., S. M. Nettles, and T. J. Warnow. 1999. Disk-covering, a fast-converging method for

phylogenetic tree reconstruction. J. Comput. Biol. 6:369–386.

Karanth, K. P., T. Delefosse, B. Rakotosamimanana, T. J. Parsons, and A. D. Yoder. 2005. Ancient

DNA from giant extinct lemurs confirms single origin of Malagasy primates. Proc. Natl. Acad.

Sci. USA 102:5090–5095.

Lapointe, F.-J. and G. Cucumel. 1997. The average consensus procedure: Combination of weighted

trees containing identical or overlapping sets of taxa. Syst. Biol. 46:306–312.

Lerat, E., V. Daubin, and N. A. Moran. 2003. From gene trees to organismal phylogeny in prokary-

otes: The case of the gamma-proteobacteria. PLoS Biology 1:101–109.

Margush, T. and F. McMorris. 1981. Consensus n-trees. Bull. Math. Biol. 43:239–244.

Neumann, D. A. 1983. Faithful consensus methods for n-trees. Matematical Biosciences 63:271–

287.

Page, R. D. M. 2002. Modified mincut supertrees. Pages 537–552 in Proceedings of the 2nd

International Workshop on Algorithms in Bioinformatics (WABI’02) (R. Guigó and D. Gusfield,

eds.).

Pisani, D. and M. Wilkinson. 2002. Matrix representation with parsimony, taxonomic congruence,

and total evidence. Syst. Biol. 51:151–155.

Poux, C., P. Chevret, D. Huchon, W. W. de Jong, and E. J. P. Douzery. 2006. Arrival and

41

diversification of caviomorph rodents and platyrrhine primates in South America. Syst. Biol.

55:228–244.

Poux, C. and E. J. P. Douzery. 2004. Primate phylogeny, evolutionary rate variations, and diver-

gence times: A contribution from the nuclear gene IRBP. Am. J. Phys. Anthropol. 124:1–16.

Purvis, A. 1995a. A composite estimate of primate phylogeny. Philos. Trans. R. Soc. Lond. B Biol.

Sci. 348:405–421.

Purvis, A. 1995b. A modification to baum and ragan’s method for combining phylogenetic trees.

Syst. Biol. 44:251–255.

Ragan, M. A. 1992. Matrix representation in reconstructing phylogenetic relationships among the

eukaryots. Biosystems 28:47–55.

Roos, C., J. Schmitz, and H. Zischler. 2004. Primate jumping genes elucidate strepsirrhine phy-

logeny. Proc. Natl. Acad. Sci. USA 101:10650–10654.

Ross, H. A. and A. G. Rodrigo. 2004. An assessment of matrix representation with compatibility

in supertree construction. in Phylogenetic supertrees (combining information to reveal the tree

of life) (O. R. P. Bininda-Emonds, ed.) vol. 4. Kluwer academic publishers.

Sanderson, M. J., A. Purvis, and C. Henze. 1998. Phylogenetic supertrees: assembling the trees

of life. Trends Ecol. Evol. 13:105–109.

Semple, C. and M. Steel. 2000. A supertree method for rooted trees. Discrete Appl. Math. 105:147–

158.

Semple, C. and M. A. Steel. 2003. Phylogenetics vol. 24 of Oxford Lecture Series in Mathematics

and its Applications. Oxford University Press.

42

Shimodaira, H. and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications

to phylogenetic inference. Mol. Biol. Evol. 16:1114–1116.

Singer, S. S., J. Schmitz, C. Schwiegk, and H. Zischler. 2003. Molecular cladistic markers in New

World monkey phylogeny (Platyrrhini, Primates). Mol. Phylogenet. Evol. 26:490–501.

Steel, M. A. 1992. The complexity of reconstructing trees from qualitative characters and subtree.

J. Classif. 9:91–116.

Steel, M. A., A. W. M. Dress, and S. Böcker. 2000. Simple but fundamental limitations on supertree

and consensus tree methods. Syst. Biol. 49:363–368.

Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods).

Version 4b10. Sinauer Associates, Sunderland, Massachusetts version 4.0b2.

Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The clustalX

windows interface: flexible strategies for multiple sequence alignment aided by quality analysis

tools. Nucl. Acids Res. 24:4876–4882.

Thorley, J. L. and M. Wilkinson. 2003. A view of supertrees methods. Pages 185–194 in Biocon-

sensus (M. F. Janowitz, F.-J. Lapointe, F. R. McMorris, and F. S. Roberts, eds.) vol. 61 of

Discrete Mathematics and Theoretical Computer Science DIMACS.

Wilkinson, M. 1994. Common cladistic information and its consensus representation: reduced

adams and reduced cladistic consensus trees and profiles. Syst. Biol. 43:343–368.

Wilkinson, M., D. Pisani, J. A. Cotton, and I. Corfe. 2005. Measuring support and finding unsup-

ported relationships in supertrees. Syst. Biol. 54:823–831.

43

Wilkinson, M., J. Thorley, D. Pisani, F.-J. Lapointe, and O. McInerney. 2004. Some desiderata for

liberal supertree. Pages 227–246 in Phylogenetic supertrees (combining information to reveal

the tree of life) (O. R. P. Bininda-Emonds, ed.) vol. 4. Kluwer academic publishers.

Wilson, D. E. and D. M. Reeder. 2005. Mammal species of the world. Johns Hopkins University

Press, Baltimore.

Xing, J., H. Wang, K. Han, D. A. Ray, C. H. Huang, L. G. Chemnick, C.-B. Stewart, T. R.

Disotell, O. A. Ryder, and M. A. Batzer. 2005. A mobile element based phylogeny of old world

monkeys. Mol. Phylogenet. Evol. 37:872–880.

Acknowledgments

We thank J. Cotton, R. Page, O. Bininda-Emonds and an anonymous reviewer for many

invaluable remarks on a first version of this manuscript. This work has been supported by the“ACI

Informatique-Mathématique-Physique en Biologie Moléculaire [ACI IMP-Bio]”, by the “Action

incitative BIOSTIC-LR”, by IFR119 “Biodiversité Continentale Méditerranéenne et Tropicale”

(Montpellier) and by the Research Networks Program in BIOINFORMATICS of the High Council

for Scientific and Technological Cooperation between France and Israël. This publication is the

contribution No 2007-053 of the Institut des Sciences de l’Évolution de Montpellier (UMR 5554 -

CNRS).

44

Appendix

Proof of Proposition 1

Proof. The proof is based on the fact that a set R identifies a tree T if and only if rt(T) = cl(R)

(Grunewald et al., 2006, Lem. 2.1).

⇒ By definition, R(T, T) only contains triplets on 3-taxon sets for which there is a resolution

in T . Moreover, PC ensures that any such triplet cannot be resolved in R(T, T) differently

than that in T . It follows that R(T, T) ⊆ rt(T). R(T, T) is therefore compatible and

cl(R(T, T)) ⊆ cl(rt(T)) = rt(T). Meanwhile, having proved that R(T, T) is compatible, it

is clear from PI that cl(R(T, T)) ⊇ rt(T).

⇐ HavingR(T, T) identifying T ensures thatR(T, T) is compatible. On one hand, cl(R(T, T)) =

rt(T) implies that for all t ∈ rt(T), t ∈ cl(R(T, T)), i.e., R(T, T) ⊢ t and therefore PI holds.

On the other hand, given t ∈ rt(T), if R(T, T) ⊢ t̄ then, by definition of the closure,

t̄ ∈ cl(R(T, T)) = rt(T) so that both t and t̄ are in rt(T), which is not possible. This proves

that R(T, T) 6⊢ t̄ for any t ∈ rt(T), i.e., PC holds.

�

Proof of Proposition 3

Proof. Let AB|C ∈ rt(T) be a triplet of the output supertree T and consider the recursive step

where the tree returned in line 3 hosts A, B in the same subtree Ti, while C is in another subtree,

say Tj. This means that A, B are vertices in a connected component Ci of the current Aho graph

G, while C is in another component Cj of CC(G). If R contained AC|B or BC|A, then Ci and Cj

45

would not have been distinct connected components (in such cases, graph G would have contained

the edge (A, C) or (B, C)). Thus, for any triplet t of rt(T), we know that no triplet t̄ is in R, i.e.,

T does not directly contradict R. This ensures that BuildPC returns a tree satisfying PC (lem. 1).

�

Proof of Theorem 1

Proof. Correctness of the algorithm: The triplets present in the tree TPC returned by PhySICPC

depend on the internal branches of this tree. Any internal branch of TPC is created at line 10

during some recursive step, thus linking a subtree Ti to the root of the tree returned by this step.

Thanks to Lem. 1, we just have to prove that every branch created at this line does not generate

a triplet that directly contradicts R.

At this line, either (i) CPC corresponds exactly to the connected components of G (we have

|CC(G)| > 1) and then, from Prop. 3, the triplets created are not in direct contradiction with

R; or (ii) CPC corresponds to a partition of the vertices of G based on R′. Two cases are then

possible. In the first case (line 4), G′ is connected and the current call returns a multifurcation

that generates no triplet and hence does not invalidate PC. In the second case, the Repeat loop

ensures that for each set of three taxa A, B, C ∈ v(G), CPC does not contain two elements Ci

and Cj with A, B ∈ Ci and C ∈ Cj such that either AC|B or BC|A belongs to R = R′ ∪ Rdc.

Indeed, AC|B (and BC|A) cannot be in Rdc since Ci would have been removed from CPC (line 9).

Moreover, if AC|B (resp. BC|A) was in R′, then A and C (resp. B and C) would have been in

the same component of CPC contradicting Ci 6= Cj . This proves that the tree TPC built in line 10,

and whose subtrees bijectively correspond to the elements of CPC , is such that no triplet of rt(TPC)

46

directly contradicts R.

Time complexity of the algorithm. The most time consuming operations in PhySICPC are

the computation of R′|v(Ci) and G′
i (line 8), and that of the connected components of this graph

(line 9). Obtaining R′|v(Ci) and constructing G′
i requires considering each triplet of R at most

once and thus has a time complexity of O(n3). Determining the CC(G′
i)s costs O(n2) (which is

the maximum number of edges for a graph with n vertices). During the whole set of recursive

calls to PhySICPC, CPC is modified at most O(n) times (proportional to the number of clades of

a tree with n leaves). Lines 8 and 9 are executed as many times as CPC is modified, i.e., O(n)

times. Thus, for the whole set of recursive calls to PhySICPC, the computation time required by

these critical lines is O(n4), which is also the complexity of the entire procedure. �

Proof of Theorem 2

Proof. Correctness of the algorithm: we first prove that PhySICPI always returns a tree, denoted

by TPI , and then that TPI satisfies both PC and PI. By hypothesis, PhySICPI is called with a tree

TPC that satisfies PC. Since PhySICPI modifies this tree by only collapsing some of its branches

(possibly none), the tree considered in any execution CheckPI never directly contradicts T . This

ensures that the CheckPI subroutine never exits in line 12, i.e., PhySICPI always returns a tree.

Moreover, being a contraction of TPC , this tree satisfies PC.

CheckPI differs from the Identifies algorithm in that Return "tree not identified" in the

latter is replaced by line 14 in the former. Given a tree T and a set R of triplets, Identifies (T,R)

returns yes iff R identifies T (otherwise it returns no) (Daniel, 2004, Thm. 3.1.1). This ensures

that when a call to CheckPI (T,RPI) issued by PhySICPI in line 11 collapses no branch of TPI ,

47

then the set RPI identifies this tree. Since the tree TPI returned by PhySICPI is such that it is

not modified by the last run of CheckPI , then TPI is identified by R(TPI , T) = RPI . In other

words, TPI satisfies both PI and PC for T (Prop. 1).

Time complexity of the algorithm. As for PhySICPC, the most time consuming operations

done by PhySICPI are the construction of the Aho graph Gij and the computation of its connected

components in the CheckPI subroutine. The Gi graphs that may be used in CheckPI can be

precomputed in the PhySICPI part of the pseudo-code (i.e., before calling CheckPI), knowing

rt(T) and the current tree TPI to be examined in CheckPI . This preprocess clearly requires O(n4)

time, since there are O(n) such graphs (one for each clade of T), each of which is obtained by

examining the O(n3) triplets of R(TPI , T). Each Gij graph can be obtained from a copy of the

corresponding Gi graph, completed by the edges due to triplets ab|c having a, b ∈ Ci and c ∈ Cj.

All the Gij graphs required during the recursive calls to CheckPI resulting from an execution of

line 11 in PhySICPI can also be precomputed in the PhySICPI pseudo-code part. This can be

done just before line 11, provided that CheckPI is modified to end as soon as an edge is collapsed

(line 14) – it is clear that this slight modification does not modify the correctness of the algorithm.

Indeed, the only Gijs that are then required by CheckPI are those corresponding to two sibling

clades Ci and Cj of the current TPI tree. Computing all of these Gijs before line 11 of PhySICPI

is done in O(n3) since each triplet ab|c of rt(TPI) adds an edge between A and B in the one and

only graph Gij, such that Ci and Cj are sibling clades in TPI and A, B ∈ Ci and C ∈ Cj.

Note also that the only information used by CheckPI on graph Gi and Gij is the number

of their connected components. The total number of edges present in the Gij graphs is in O(n3):

precomputation of the number of connected components for this set of graphs is thus globally

O(n3) time. As this has to be done at each pass of the Repeat loop, and as this loop is done at

48

most O(n) times (each pass results in the collapsing of one of the O(n) clades of T), this part of

the computation is globally (on the whole for PhySICPI) in O(n4) time. Determination of the

number of connected components of each Gi is done only once just before the Repeat loop. For

each of these O(n) graphs, this requires examining O(n3) triplets. Thus, this preprocess also costs

O(n4) time. The preprocesses done for Gi and Gij graphs thus requires O(n4) time and reduces

the running time of CheckPI . The modification of CheckPI , consisting of returning to PhySICPI

as soon as an edge is collapsed, also simplifies the algorithm (e.g., the Repeat loop is no longer

required).

Thanks to the preprocessing, the only time-consuming operation in CheckPI for the current

tree TPI is the examination of the O(n2) pairs of sibling clades Ci and Cj of this tree. Operations

performed for each of this pair of clades is in O(1) (the number of connected components of useful

graphs G, Gi and Gij have been preprocessed). Since a new tree TPI can only be obtained by

collapsing one of the O(n) edges (line 14) of TPI , this can at most occur O(n) times. Therefore,

all executions of CheckPI issued by a run of PhySICPI are in O(n3) time. Thus, the whole com-

plexity of the PhySICPI algorithm is no more than the cost of the preprocessing, i.e., O(n4) time.

�

49

Figure 1:

50

Figure 1: Supertrees can contain arbitrary resolution.

Example of a collection T = {T1, T2} of two source trees and several possible supertrees T ′, T ′′,

T ′′′ and T . Unlike T , the supertrees T ′, T ′′, T ′′′ propose an arbitrary resolution for the clade A, B,

C.

51

Figure 2:

52

Figure 2: Example of a collection T = {T1, T2} of two source trees.

53

Figure 3:

54

Figure 3: Various supertrees for the collection of Fig. 2.

T is the supertree proposed by the MC (Semple and Steel, 2000) and MMC methods (Page, 2002).

T ′ and T ′′ are the supertrees respectively proposed by the BuildPC and PhySICPC algorithms

described in this paper.

55

Figure 4:

56

Figure 4: Excluding rogue taxa from the analysis can lead to informative su-

pertrees.

57

Figure 5:

58

Figure 5: Another example with rogue taxa.

This figure presents a generalization of the example displayed in Fig. 4 to the case of a supertree

containing more taxa than each input tree.

59

Figure 6:

60

Figure 6: Contradiction in the source trees can lead to arbitrary resolution.

An example where the presence of contradiction in the source trees (namely, AB|C in T1 versus

BC|A in T2) can lead to the inferrence of arbitrary clades (namely excluding X from the clade

{A, B, C} in the supertree T). This problem is detected by PI but not by PI’ nor PC’.

61

Figure 7:

62

Figure 7: Examples of graphs.

(a) The initial Aho graph G created from the triplets rt(T) of the collection T displayed in Fig. 2.

The two connected components of G are C1 = {E, F} and C2 = {A, B, C, D}. (b) the Aho graph

obtained from R|v(C2). This graph is connected, showing that the input trees conflict on the

resolution of {A, B, C, D}, hence are incompatible. (c) the Aho graph obtained from R|v(C2)

when removing the triplets Rdc = {AB|C, AC|B}.

63

Algorithm BuildPC (S,R)

if S contains less than 3 taxa then return the trivial tree on S

Let G denote the Aho graph for R
if G has only one connected component then

return the star tree on L(R)1

else
CPC ← CC(G)
foreach Ci ∈ CPC do

if (R|v(Ci)) = ∅ then Ti ← star tree on v(Ci)2

else Ti ← BuildPC (v(Ci),R|v(Ci))

Return the tree made of a root node connected to T1, T2, ..., T|CPC |3

Figure 8:

64

Figure 8: Details of the BuildPC subroutine taking a set S of taxa and a set R

of triplets on S as input.

65

Algorithm PhySICPC (S,R)

if S contains less than 3 taxa then return the trivial tree on S

Let G denote the Aho graph for R
if G has several connected components then CPC ← CC(G)
else

Let Rdc be the set of triplets t s.t. t, t̄ ∈ R
R′ ← R −Rdc

Let G′ be the Aho graph for R′

if G′ is connected then CPC ← v(G)4

else
CPC ← CC(G′)
repeat5

foreach AB|C ∈ Rdc do6

if A, B ∈ Ci and C ∈ Cj (with Ci, Cj ∈ CPC and i 6= j) then7

Build G′
i the Aho graph for R′|v(Ci)8

if G′
i is connected then CPC ← (CPC − {Ci}) ∪ v(Ci)

else CPC ← (CPC − {Ci}) ∪ CC(G′
i)9

until CPC no longer changes

foreach Ci ∈ CPC do
if (R|v(Ci)) = ∅ then Ti ← star tree on v(Ci)
else Ti ← PhySICPC(v(Ci),R|v(Ci))

Return the tree made of a root node connected to T1, T2, ..., T|CPC |10

Figure 9:

66

Figure 9: Details of the PhySICPC subroutine taking a set S of taxa and a set

R of triplets on S as input.

67

Algorithm PhySICPI (T, T)

TPI ← T

repeat
RPI ←R(TPI , T)
TPI ← CheckPI (TPI ,RPI)11

until TPI no longer changes
Return TPI

Algorithm PhySIC (T)

Let S be the taxa appearing in T
R ← rt(T)
TPC ← PhySICPC (S,R)
Return PhySICPI (TPC,R)

Algorithm CheckPI (T,R)

if T is made of a single leaf then return T

Let G be the Aho graph for R
if |CC(G)| = 1 then return “error, R is12

incompatible”
repeat13

foreach Ti ∈ S(T) do
Let Gi be the Aho graph for R|L(Ti)
foreach Tj ∈ S(T) s.t. Ti 6= Tj do

Build Gij from Gi and R|(L(Ti) ∪ L(Tj))
if Gij is not connected then

Collapse the branch between the root14

of T and Ti

until no branch of T is collapsed
foreach Ti ∈ S(T) do

T ′
i ← CheckPI (Ti,R|L(Ti))

Return the tree made of a root node connected to
T ′

1, T
′
2, ..., T

′
|S(T)|

Figure 10:

68

Figure 10: Details of the PhySIC algorithm and PhySICPI and CheckPI sub-

routines.

69

Figure 11:

70

Figure 11: Three source trees for the case study on primates.

Majority rule consensus source trees derived from the bootstrap analysis of ADRA2B and IRBP

sequences (in maximum likelihood), and SINE characters (in maximum parsimony). Bootstrap

percentages are indicated on nodes, and only nodes defined by more than 50% are considered.

Thin branches lead to the outgroup. Taxa in bold are handled differently by the different supertree

algorithms and illustrate three different situations (arrows, letters, box: see main text). The two

Tarsius species are T. bancanus (B) and T. syrichta (S).

71

Figure 12: Comparison of supertrees inferred by three methods: MMC, MRP

and PhySIC (the PhySICPC intermediate step of the latter is also displayed).

Thin branches lead to the outgroup. Taxa in bold are handled differently by the different supertree

algorithms and illustrate three different situations. (i) Arrows indicate the surprising positioning

of Homo and Pan under the MMC and PhySICPC algorithms ; (ii) A-B-C-X letters correspond

to taxa arbitrarily grouped by MMC and PhySICPC (cf. Fig. 2); (iii) boxes contain platyrrhine

taxa for which MMC and MRP contradict the IRBP source topology. The P label on MMC

and PhySICPC supertrees refers to the polytomy involving catarrhine and platyrrhine clades.

The taxonomic frame for Primates is given on the PhySIC supertree. Hatched rectangles repre-

sent Anthropoidea (Catarrhini + Platyrrhini). White and black rectangles respectively represent

Haplorrhini (Tarsiiformes + Anthropoidea) and Strepsirrhini (Lorisiformes + Lemuriformes).

72

Figure 13: Primate PhySIC supertree including 95% of all extant genera and

containing no contradiction nor arbitrary resolution with respect to the source trees,

as defined by the PI and PC properties.

The genus-level primate supertree has been reconstructed from 24 molecular source trees restricted

to nodes supported by more than 70% bootstrap. When the bootstrap threshold is increased to

80% – respectively 90% – the supertree topology changes: disappearing branches as well as one

appearing clade (Papio + Theropithecus) are indicated by white – respectively black – stars.

Polytomies are labelled by tags pointing out the properties (PI, PC, or both) that would not be

satisfied if the corresponding clade was more resolved. The taxonomic frame and clade names

for Primates are given. Hatched rectangles represent Anthropoidea (Platyrrhini + Catarrhini).

White and black rectangles respectively represent Haplorrhini (Tarsiiformes + Anthropoidea) and

Strepsirrhini (Lorisiformes + Lemuriformes).

73

Table 1: Molecular markers used to infer the primate source trees.

The best-fitting model and the number of primate genera per marker are indicated. (mtDNA:

mitochondrial DNA).

74

Figure 12:

75

Figure 13:

76

MARKERS MODEL GENERA
α-2B Adrenergic Receptor HKY+Γ 16
Albumin gene introns 3 and 4 K80+I 20
ATPase 7A HKY+Γ 11
Breast and Ovarian Cancer Susceptibility 1 HKY+Γ 12
Cytochrome b [mtDNA] GTR+Γ+I 68
α-1,2 fucosyltransferase HKY+Γ 21
β globin GTR+I+Γ 22
γ globin exons 1 and 2 HKY+Γ 26
ǫ globin HKY+Γ 33
Glucose-6-Phosphate Dehydrogenase introns 4 and 5 HKY+Γ 18
Glucose-6-Phosphate Dehydrogenase introns 7 and 8 HKY+Γ 12
Interphotoreceptor Retinoid Binding Protein exon 1 HKY+Γ 34
Interphotoreceptor Retinoid Binding Protein intron 1 K80+Γ 24
Lysozyme Gene HKY+Γ 19
Membrane Cofactor Protein gene HKY+Γ 13
β2 microglobulin precursor exons 1 and 2 HKY+Γ 18
NADH dehydrogenase subunit 5 [mtDNA] GTR+Γ+I 24
Phospholipase C β4 gene GTR 13
Testis-Specific Protein Gene HKY+Γ 21
von Willebrand gene introns 11 and 12 HKY+Γ 37
9.3 kb chromosome Xq13.3 fragment HKY+Γ 13
SINE (Roos et al., 2004) – 20
ALU (Singer et al., 2003) – 8
SINE (Xing et al., 2005) – 15

Table 1:

77

