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Abstract

Given a set of leaf-labelled trees with identical leaf sets, the MAST problem, re-
spectively MCT problem, consists of finding a largest subset of leaves such that all
input trees restricted to these leaves are isomorphic, respectively compatible. In this
paper, we propose extensions of these problems to the context of supertree infer-
ence, where input trees have non-identical leaf sets. This situation is of particular
interest in phylogenetics. The resulting problems are called SMAST and SMCT.

A sufficient condition is given that identifies cases where these problems can be
solved by resorting to MAST and MCT as subproblems. This condition is met, for
instance, when only two input trees are considered. Then we give algorithms for
SMAST and SMCT that benefit from the link with the subtree problems. These
algorithms run in time linear to the time needed to solve MAST, respectively MCT,
on an instance of the same or smaller size.

It is shown that arbitrary instances of SMAST and SMCT can be turned in
polynomial time into instances composed of trees with a bounded number of leaves.

SMAST is shown to be W[2]-hard when the considered parameter is the number
of input leaves that have to be removed to obtain the agreement of the input trees.
A simlar result holds for SMCT. Moreover, the corresponding optimization prob-
lems, that is the complements of SMAST and SMCT, can not be approximated in
polynomial time within a constant factor, unless P = NP. These results also hold
when the input trees have a bounded number of leaves.

The presented results apply to both collections of rooted and unrooted trees.

Preprint submitted to Elsevier Science 17 November 2006



1 Introduction

Supertree problems and methods.

This paper proposes two new methods for building supertrees, i.e. trees inferred

from other trees. Building supertrees is a problem whose importance increased

markedly in the last decade in phylogenetics. Trees considered in this field are

called phylogenies or evolutionary trees because any such tree is an estimation

of the evolutionary history of a set of species or sequences (e.g. genes) called

taxa: the leaves of the tree are each labelled by a current taxon and the

branching pattern of the tree describes a speciation scenario leading from

ancestral taxa to current ones. In phylogenetics, the major work in progress is

the building of the so-called Tree of Life, a huge tree interrelating all species of

the living realm (see e.g. [39]). Currently, some trees of life are still assembled

by hand. According to systematic biologists, the key problem remains to obtain

reliable computational methods to assemble several source phylogenies into a

single supertree [10].

The input of any supertree building method is a collection of trees with differ-

ent but overlapping sets of leaves. The output is a tree whose leaf set includes

all (or most) species of the input trees and that displays as much as possible

⋆ Part of these results were briefly covered in a conference paper [8].
⋆⋆Supported by the Action Incitative Informatique-Mathématique-Physique en Bi-
ologie Moléculaire [ACI IMP-Bio].
∗ Corresponding author

Email address: vberry@lirmm.fr (Vincent Berry).

2



of the branching pattern of the input trees on these leaves. The input trees,

usually inferred from different datasets, often differ upon the position of some

leaves or groups of leaves. Current supertree methods can be divided into two

categories depending on the way they handle these conflicts: (i) optimization

methods tend to resolve conflicts, i.e. choose one of the proposed scenarii,

according to a specified optimization criterion (e.g. [3,35,33]); (ii) consensus

methods produce supertrees displaying only the parts of the species’ history

for which the input trees agree. The drawback of approach (i) is that output

supertrees sometimes contain undesirable or unjustified resolutions of conflicts

[33]. Approach (ii) has been poorly investigated in the supertree context, in

contrast with the many consensus methods available to deal with collection of

trees having identical leaf sets. The two known supertree methods of this kind

are the pioneering strict consensus [22] and reduced consensus [38]. Unfortu-

nately, strict consensus usually produces a supertree with a scant amount of

information [32,11] and only applies to the rare case of compatible input trees:

the trees can differ from one another but not actually conflict [10]. Moreover,

the use of reduced consensus is not widespread because a few conflicts only

will likely result in a whole set of complementary partial trees as output [38,

Section 4], instead of the single synthetic supertree that is sought. Below, we

propose alternative methods affiliated to approach (ii) that do not suffer from

the drawbacks just mentioned.
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Extending MAST and MCT to the supertree context.

Almost all supertree methods proposed so far focus on clusters (sets of leaves

under internal nodes). This is a problem whenever the input trees contain some

“rogue” leaves, i.e. leaves whose position differs greatly from one input tree to

the other. Indeed, changing the position of just one leaf in a tree can lead to a

completely different set of clusters. Unfortunately, this phenomenon happens

quite often in real supertree instances. Thus, several authors have suggested

that an alternative in designing supertree methods would be to focus on leaves

individually rather than to consider clusters of leaves [22,32,11]. The rational

for this is that, in a number of cases, removing a few leaves upon whose position

the input trees disagree is sufficient to produce a single informative supertree.

Here we respond to this suggestion by extending to the case of trees on over-

lapping sets of leaves a well-known classical consensus problem and one of its

variants. Given a set of leaf-labelled trees with identical leaf sets, the Maxi-

mum Agreement SubTree (MAST) problem consists of finding a subtree

homeomorphically included in all input trees and with the largest number of

leaves [18,2,24,31,15]. In other words, this involves selecting a largest set of

input leaves such that the source trees are isomorphic (i.e. agree) when re-

stricted to these leaves. Note that this problem is also considered in various

domains other than computational biology.

In phylogenetics, when input trees are non-binary, a node with more than
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two descendants usually represents uncertainty with respect to the branching

pattern of its descendants rather than a multi-speciation event. The Maxi-

mum Compatible Tree problem (MCT) is a variant of MAST that takes

this into account by seeking a largest set of leaves such that the source trees

restricted to these leaves are compatible [25,27,20,7] (note that this problem

is also called MRST in [27]). Compatibility allows a high-degree node of a

source tree to be resolved (split into several nodes) according to the informa-

tion present in other source trees. Note that this is a weaker constraint than

the isomorphism required by MAST, and thus allows inclusion of more input

leaves in the output tree.

We call SMAST and SMCT the respective variants of MAST and MCT con-

cerned with supertree inference, i.e. which allow input trees with differing leaf

sets. The use of SMCT rather than SMAST can be advocated when the edges

of the input trees are associated with confidence values (e.g. bootstrap values

in phylogenetic analysis). To obtain a more reliable supertree, edges with in-

sufficient support can be collapsed before the supertree inference is performed,

which gives rise to nodes of higher degree in some input trees. In this case,

SMCT is more propitious than SMAST for inferring a supertree, as it allows a

high degree node of an input tree to be resolved according to the highly sup-

ported branching patterns present in other input trees. In other words, highly

supported clusters that remain in some input trees will not be contradicted

by weakly supported alternatives collapsed in other input trees.
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Apart from inferring a partial estimate of the species’ history, SMAST and

SMCT can also be used to achieve the following goals in phylogenetics:

• to measure the topological similarity between the input trees considered

for a supertree reconstruction. The proportion of leaves not conserved in a

produced supertree when solving SMAST and SMCT measures the intrinsic

difficulty of the particular instance considered for supertree building. This

difficulty is currently assessed only through indirect measures, such as the

average number of triples or quartets common to two input trees.

• by explicitly indicating leaves upon whose position the input trees conflict,

SMAST and SMCT help to identify leaves that may be involved in horizon-

tal transfers of genes and to identify paralogous sequences in the original

datasets.

• to increase the accuracy of other supertree building methods. For instance,

the popular matrix representation with parsimony (MRP) method [3,35] has

relatively low accuracy when the input trees overlap moderately and [12]

recommends adding to the set of input trees a tree with leaves spanning

most input trees, that they call a seed tree. Any supertree that is a solution

of SMAST or SMCT most likely contains leaves from most, if not all, input

trees (see Theorem 3) and, moreover, fully agrees with all of these trees by

definition. Thus, it is a good candidate for being a seed tree.
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Related work

We first review known results on the complexity of MAST and MCT. The

MAST problem is NP-hard for three rooted trees of unbounded degree [2],

while MCT is already NP-hard for two rooted trees of unbounded degree [27].

When k rooted trees with n leaves are given as input, MAST can be solved

in O(nd + kn3) time provided that the degree of one of the input trees is

bounded by d [2,13], and MCT can be solved in O(22kdnk) time provided that

all input trees have degree bounded by d [20]. MCT is solvable in polyno-

mial time provided that the maximum degree of all input trees is bounded

[23]. Polynomial-time algorithms with sub-quadratic running times have been

obtained for MAST in the special case of two input trees [30,15,31].

MAST and MCT are known to be fixed-parameter tractable (FPT ) in p, the

smallest number of leaves to remove from the input set of leaves such that

the input trees agree. The latest result being an O(min{3pkn, 2.27p + kn3})

time algorithm for the case of rooted trees (considering unrooted trees adds

a p factor) [9]. The MAST problem (maximizing the number of leaves in an

agreement subtree) is hard to approximate on a bounded number of trees [27]

or on trees with a bounded height [21]. The same results hold for MCT [7].

However, the complement problem of MAST (i.e. minimizing the number of

leaves to remove so that input trees are isomorphic) can be approximated

within a constant ratio in polynomial time in both rooted and unrooted cases
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[2,7,28]. The same result holds for the complement problem of MCT [19,7].

The extension of MAST to supertree inference has also been considered in [24],

and very recently in [29]. However, the “supertrees” considered in [24] (and

subsequent papers) have a different meaning from that considered in phyloge-

netics and here. The work of [29] is independent of the results presented here,

but studies an extension of MAST similar to the one we present. [29] give an

algorithm for the case of two input rooted trees and present an approximation

result that is complementary to the results shown here. However, they neither

consider the case of unrooted trees, nor the extension of the MCT problem to

the supertree context.

Results.

We show how to extend MAST and MCT in a natural way to obtain the

SMAST and SMCT problems on supertrees. We prove that the maximal degree

d of input trees does not play any role in solving SMAST and SMCT as any

instance of these problems can be reduced to an instance with small bounded

degree. This contrasts with MAST and MCT problems, for which polynomial-

time algorithms are available for input trees of bounded degree only (in the

case of more than two input trees).

We show that any leaf appearing in a single input tree will definitely be in-

cluded in all supertrees that are solutions of SMAST and SMCT. We give a

sufficient condition for SMAST and SMCT to be solved by using MAST and
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MCT as subproblems. This condition is always fulfilled for collections of only

two input trees but also applies to instances including more trees.

We give algorithms that take advantage of the link between these problems

and detail when this leads to polynomial cases for SMAST and SMCT. The

presented algorithms run in time linear to the algorithm solving MAST and

MCT, one of them generalizing the algorithm of [29]. The MergeTrees al-

gorithm we propose also enables computation of the strict consensus supertree

of two trees in O(n) time (where n is the total number of input leaves), which

improves the O(n3) bound stated in [22].

In general, SMAST and SMCT are NP-hard as they are equivalent to MAST,

respectively MCT, in the case of input trees with identical leaf sets. However,

by reduction from Hitting Set, we show that SMAST and SMCT are more

difficult than MAST and MCT, as they are W[2]-hard for p (the minimum

number of input leaves to remove from input trees to obtain their agreement,

respectively compatibility). This holds even when the instance only consists

of rooted triples (binary trees with three leaves) or unrooted quartets (trees

with four leaves).

This suggests that heuristic algorithms may be required to solve these su-

pertree problems in general. However, no heuristics with a tight approximation

ratio can exist for these problems: SMAST and SMCT are hard to approximate

(from the results of [27,21] for MAST), and the reduction from Hitting Set
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is approximation preserving, which proves that no polynomial-time algorithm

can approximate within a constant factor the complement of the SMAST and

SMCT problems (unless P = NP).

Note in passing that, compared to the reduction from Independent Set /

Vertex Cover given in [29], the reduction given here from Hitting Set

leads to tighter results on the parameterized complexity and approximabil-

ity of the complement of SMAST. Moreover, our result also applies to the

complement of SMCT and to the unrooted case. Note that the strong limita-

tions shown here on the approximability of SMAST and SMCT do not impede

the existence of approximation algorithms with non-constant ratio. E.g. [29]

provides a (n/ log n)-approximation algorithm for SMAST on rooted trees.

Organization of the paper.

In the following, Section 2 reviews definitions of MAST and MCT with associ-

ated results, and introduces the SMAST and SMCT supertree problems. Sec-

tion 3 presents algorithms to solve SMAST and SMCT in the particular cases

where MAST and MCT can be used as subproblems. A sufficient condition

for applying these algorithms is also stated there. Then, Section 4 details how

general instances of SMAST and SMCT can be polynomially transformed into

instances of trees having a bounded number of leaves (hence also a bounded

degree). On the basis of such instances, Section 5 shows the intractability and

inapproximability results.
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2 Definitions and preliminaries

The trees we consider are evolutionary trees (also called phylogenies). Such a

tree T has its leaf set L(T ) in bijection with a label set and is either rooted

(at a node denoted root(T )), in which case all internal nodes have at least two

children each, or unrooted, in which case internal nodes have a degree of at least

three. In the following, trees are denoted T , respectively R, respectively U , in

statements applying to both rooted and unrooted trees, respectively applying

only to rooted trees, respectively applying only to unrooted trees. When there

is no ambiguity, we identify leaves with their labels. Given a set S, Card (S)

denotes the cardinality of S. In particular, if L is a leaf set, Card (L) denotes

the number of leaves in L. The size |T | of a tree T is the number of its leaves:

|T | = Card (L(T )). For a node u in a rooted tree, we denote S(u) the subtree

rooted at u (i.e. u and its descendant nodes) and L(u) the leaves of this

subtree. See Figure 2 for an example.

The following definitions apply to rooted and unrooted trees.

Definition 1 (Restriction of a tree) Given a set L of labels and a tree T ,

the restriction of T to L, denoted T |L , is the tree obtained in the following

way: take the smallest induced subgraph of T connecting leaves with labels

in L ∩ L(T ), then remove any degree two (non-root) node to make the tree

homeomorphically irreducible. If T is a collection of trees, then define T |L :=

{T |L : T ∈ T }.
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Fig. 1. Three unrooted trees. A tree U , a tree U ′ such that U ′ = U | {a, c, e} and a
tree U ′′ such that U ′′ � U .

See trees U , U ′ in Figure 1 for an example. Note that for any tree T and any

two label sets L,L′, (T |L) |L′ = T | (L ∩ L′) = (T |L′ ) |L .

Definition 2 (Tree isomorphism and inclusion) Two trees T , T ′ are

isomorphic, denoted T = T ′, if and only if there is a graph isomorphism

T 7→ T ′ preserving leaf labels (and the root if both trees are rooted). Given two

trees T , T ′, T is homeomorphically included in T ′ if and only if T = T ′ |L(T ) .

Definition 3 (Tree refinement) A tree T refines a tree T ′, and we write

T�T ′, whenever T can be transformed into T ′ by collapsing some of its internal

edges ( collapsing an edge means removing it and merging its extremities).

See Figure 1 for an example. More generally, a tree T refines a collection

T = {T1, T2, . . . , Tk}, denoted T � T , whenever T refines all Ti’s in T .

When considering a set of trees with different leaf sets, the preceding definition

can be extended [37]:

Definition 4 (Tree compatibility) Let T be a tree with leaf set L, let L′

be a subset of L and T ′ be a tree with leaf set L′. We say T displays T ′

whenever T |L′ � T ′. Furthermore, a collection T of trees with different leaf

sets is compatible if there is a tree T that displays every tree in T . In that
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case, T is said to display T .

Isomorphism and compatibility issues between rooted trees can also be ex-

pressed in terms of ancestor relationships. Given two nodes u and v in a

rooted tree R, u < v means that u is a proper ancestor of v and u ≤ v means

that u is either a proper ancestor of v, or v itself. The least common ancestor

(or lca) of a set of leaves L ⊆ L(R) is the unique node u such that u ≤ ℓ for

all ℓ ∈ L, and v < u for any other node v that is also an ancestor of every leaf

in L. The lca of L in R is denoted lcaR(L). More particularly, the lca of any

pair {ℓ, ℓ′} ⊆ L(R) is denoted lcaR(ℓ, ℓ′).

The following statements are directly derived from the definitions given previ-

ously and are implicitly or explicitly used in a number of works (for instance

[19,34]).

Observation 1 Let R and R′ be two rooted trees on the same leaf set L.

The following two statements are equivalent:

(i) R and R′ are isomorphic

(ii) ∀ℓ, ℓ′, ℓ′′ ∈ L, the two following equations hold

lcaR(ℓ, ℓ′) < lcaR(ℓ, ℓ′′) ⇐⇒ lcaR′(ℓ, ℓ′) < lcaR′(ℓ, ℓ′′) (1)

and lcaR(ℓ, ℓ′) = lcaR(ℓ, ℓ′′) ⇐⇒ lcaR′(ℓ, ℓ′) = lcaR′(ℓ, ℓ′′) (2)

Moreover, the following two statements are equivalent:

(iii) R refines R′

(iv) ∀ℓ, ℓ′, ℓ′′ ∈ L, the following holds:
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lcaR′(ℓ, ℓ′) < lcaR′(ℓ, ℓ′′)⇒ lcaR(ℓ, ℓ′) < lcaR(ℓ, ℓ′′) (3)

2.1 Agreement problems for trees with identical leaf sets

The well-known MAST problem is defined as follows:

Definition 5 (MAST problem) Given a collection T = {T1, T2, . . . , Tk} of

trees with identical leaf sets L, an agreement subtree of T is any tree T with

leaves in L such that ∀Ti ∈ T , T = Ti |L(T ) . The Maximum Agreement

SubTree problem (MAST) consists in finding an agreement subtree of T with

the largest number of leaves. Such a tree is denoted MAST (T ).

The MCT problem is a variant of MAST introduced in phylogenetics to deal

with cases where high-degree nodes represent uncertainty with respect to the

relative branching of their child subtrees.

Definition 6 (MCT problem) Given a collection T = {T1, T2, . . . , Tk} of

input trees with identical leaf sets L, a tree T with leaves in L is said to be

compatible with T if and only if ∀Ti ∈ T , T � Ti |L(T ) . The Maximum

Compatible Tree problem (MCT) consists in finding a tree compatible with

T having the largest number of leaves. Such a tree is denoted MCT (T ). If

there is a tree T compatible with T such that L(T ) = L, then the collection T

is said to be compatible.

Note that an evolutionary tree T properly refining another tree T ′, agrees with

the entire evolutionary history of T ′, while containing additional history absent
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MCT (R)

ca b ed
a c e

a b ec

u

a d b c e
L(u)

S(u)

R1 R2 MAST (R)

Fig. 2. A collection R = {R1, R2}, one of the MAST (R) trees and the MCT (R)
tree. S(u) denotes the subtree induced by a node u and L(u) the corresponding set
of leaves.

from T ′: at least one high degree node of T ′ is replaced in T by several nodes,

hence T specifies more speciation events than T ′. Figure 2 shows examples of

trees MAST (T ) and MCT (T ) for a collection T of two rooted trees. Note

that ∀T , |MCT (T )| ≥ |MAST (T )| and that MCT is equivalent to MAST

when input trees are binary. Note also that some instances of the MAST and

MCT problems have several optimum solutions.

2.2 Extending agreement problems to the supertree context

We now consider the case of supertree inference, where input trees are allowed

to have different sets of leaves. We first show how to extend MAST and MCT

to this context. Then we distinguish different kinds of leaves that appear in the

input trees, depending on the overlap of these trees. Without loss of generality,

the rest of the paper assumes that any input tree shares at least two leaves

with other input trees.

Definition 7 (Leaf set of a collection) Given a collection T =

{T1, T2, . . . , Tk} of trees, we denote L(T ) :=
⋃

Ti∈T
L(Ti) the set of all

leaves appearing in at least one tree of T .
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Definition 8 (SMAST problem) Given a collection T = {T1, T2, . . . , Tk}

of trees, an agreement supertree of T is a tree T with L(T ) ⊆ L(T ) such

that ∀Ti ∈ T , T |L(Ti) = Ti |L(T ) . An agreement supertree of T that is of

maximum size is called a maximum agreement supertree of T and is denoted

SMAST (T ). The corresponding optimization problem is stated as follows:

Name: Maximum Agreement Supertree (SMAST)

Instance: A finite collection T of trees (all rooted or all unrooted).

Solution: An agreement supertree T of T .

Measure: |T |, to be maximized.

In a similar way, we define:

Definition 9 (SMCT problem) Given a collection T = {T1, T2, . . . , Tk} of

trees, a supertree compatible with T is a tree T with L(T ) ⊆ L(T ) such

that ∀Ti ∈ T , T |L(Ti) � Ti |L(T ) . A supertree compatible with T that is of

maximum size is called a maximum compatible supertree of T and is denoted

SMCT (T ). The corresponding optimization problem is stated as follows:

Name: Maximum Compatible Supertree (SMCT)

Instance: A finite collection T of trees (all rooted or all unrooted).

Solution: A supertree T compatible with T .

Measure: |T |, to be maximized.
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RMR1 R2

Fig. 3. A collection R = {R1, R2} of two source trees on tomatoes taken from [4]
and a supertree RM . In this example, the supertree both represents a SMAST (R)
and a SMCT (R). Leaves appearing in only one source tree are displayed in white.
Correspondance between numbers and species: 1 – L. lycopersicoides, 2 – L. juglan-
difolium, 3 – L. peruvianum, 4 – L. chilense, 5 – L. pennellii, 6 – L. hirsutum, 7 –
L. chmielewskii, 8 – L. esculentum, 9 – L. pimpinellifolium, 10 – L. cheesmanii, 11
– L. rickii.

Figure 3 shows a collectionR of two source trees of species of tomato (Lycoper-

sicon) and a supertree, that both is a SMAST (R) and a SMCT (R). Figure 7

shows an example where these two supertrees differ. The two problems stated

above are natural extensions of the problems defined in Section 2.1. More

precisely, SMAST, respectively SMCT, is equivalent to MAST, respectively

MCT, when all input trees have the same set of leaves.

Remark 1 Let T be a collection of trees.

Any restriction of an agreement supertree of T is also an agreement supertree

of T and any restriction of a supertree compatible with T is also a supertree

compatible with T .

Hence, SMAST (T ) and SMCT (T ) can potentially contain less leaves than

some trees in T .

Let T be a collection of trees with identical leaf set L. Given any subset

L′ ⊆ L, there can be only one agreement subtree of T with leaf set L′. This
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contrasts with what can happen for agreement supertrees, due to the lack of

cross information between source trees:

Remark 2 Given a collection T = {T1, T2, . . . , Tk} of trees and a subset L ⊆

L(T ), there may be more than one agreement supertree, respectively compatible

supertree, of T with leaf set L.

For instance, consider the collection R = {R1, R2} where R1 := ((a, c), b) and

R2 = ((a, d), b), in parenthetical notation (e.g. Newick format). Any tree in the

set {(((a, c), d), b), (((a, d), c), b), ((a, (c, d)), b), ((a, c, d), b)} is a SMAST (R)

or a SMCT (R).

Definition 10 (Types of leaves) Let T = {T1, T2, . . . , Tk} be a collection

of trees. Leaves in L(T ) can be partitioned in three subsets:

(1) leaves appearing in every tree of T . We note L∩(T ) :=
⋂

Ti∈T
L(Ti) this

subset of leaves;

(2) leaves appearing in several but not all trees of T . This subset of leaves is

denoted L∆(T );

(3) leaves specific to a tree of T , i.e. leaves appearing in a single tree of T .

This subset of leaves is denoted LS(T ).
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3 Computing SMAST and SMCT

We first study, in Section 3.1, the particular case of a collection of only two

trees with different leaf sets but such that one refines (respectively, is equal to)

the other when restricted to common leaves. In that case, it is always possible

to efficiently produce a tree that displays the collection, i.e. a maximum com-

patible supertree (respectively, a maximum agreement supertree). We provide

a linear-time algorithm that fulfills this purpose.

Then, Section 3.2 shows that for a collection containing an arbitrary number of

trees, any maximum agreement supertree or maximum compatible supertree

includes all specific leaves, i.e. leaves that appear in a single tree of the col-

lection. Based on this property, Section 3.3 shows cases where the MAST and

MCT problems can be used to solve SMAST and SMCT problems, respec-

tively, describing appropriate algorithms. The link between subtree problems

and supertree problems induces polynomial cases for the latter, as listed in

Section 3.4.

3.1 Merging two rooted trees in linear time

Let R = {RI , RA} be a compatible collection of two rooted trees with

L(RI) 6= L(RA), such that RA|L(RI)�RI |L(RA). In other words, RA (loosely

or strictly) refines RI when they are both restricted to their common leaves.

This section describes an algorithm called MergeTrees that returns a tree
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R displaying R. By definition, R contains all leaves of the two trees and R

is a maximum compatible supertree of R. Moreover, when RA|L(RI) loosely

refines RI |L(RA), i.e. when both restricted trees are isomorphic, then the tree

R output by MergeTrees is a maximum agreement supertree of R. To com-

pute a SMCT (R) or SMAST (R) of a collection R of more than two trees,

repeated calls to MergeTrees operating on two trees will be used, as de-

scribed in Section 3.3. For the rest of Section 3.1, trees are considered to be

rooted.

Definition 11 (Specific subtree) Let R be a collection of trees and RI ∈

R. A specific subtree of RI is any maximal tree of the form S(vi), where vi

is a node of RI such that L(vi)∩
(

L(R)− L(RI)
)

= ∅. Here, maximal means

that if pi is the parent node of vi, then L(pi)∩
(

L(R)−L(RI)
)

6= ∅. A leaf in

a specific subtree is called a specific leaf.

r

y1 c y2e y3b

RA R
v′i

vi
v′ava

ri

a
a x ecb

v′′i

RI

y3y2ecy1a x b

Fig. 4. Two rooted trees RI and RA with overlapping sets of leaves such that
RA|L(RI)�RI |L(RA), and the tree R returned by the call MergeTrees (RI , RA).
Specific leaves are indicated by white circles.

For instance, consider the collection {RI , RA} displayed in Figure 4. RI hosts

two specific subtrees: the leaf {y1} and the subtree rooted at node v′′
i . The

leaf {x} is the only specific subtree of RA. In a collection R = {RA, RI}

of two trees, leaves are either specific to RI , specific to RA, or common to
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both trees. To obtain the desired tree R, MergeTrees proceeds by grafting

specific subtrees of RI into RA. In a way, its goal is similar to the grafting

step of the well-known algorithm of Gordon for computing a strict consensus

supertree [22]. However, Gordon’s algorithm attaches, one by one, specific

leaves of the input trees to a “backbone” tree, while the algorithm detailed

here proceeds by grafting each time a whole specific subtree. Using this idea

and two simple data structures, we can achieve linear running time when the

grafting step of [22] runs in cubic time. As the tree R output by MergeTrees

has to display RI , the specific subtrees of RI have to be grafted in RA so as

to respect the ancestor-descendant constraints of RI between lcas of leaves

(see Observation 1). Sometimes there is a unique place where a subtree can

be grafted in order to respect these relationships, and sometimes there can

be several. However, a correspondence between some nodes of RI and some

nodes of RA can be maintained such that a correct place is always easily

identified. This correspondence is explained by the fact that, when restricted

to common leaves L∩({RA, RI}), RI is refined by RA. This ensures that for

any node vi ∈ RI |L(RA) there is a unique node va ∈ RA|L(RI), such that

L(vi) = L(va). This correspondence between nodes of the restricted trees

RA|L(RI) and RI |L(RA) can be translated as a correspondence between nodes

of the complete input trees RI and RA:

Definition 12 Let R and R′ be two trees. To any node v in R such that

v := lcaR(S) with S ⊆ L∩({R, R′}), Card (S) ≥ 1, we associate an anchor
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node v′ in R′, defined as v′ := lcaR′(S). Nodes of R with an anchor in R′ are

called anchored nodes.

Note that the previous definition allows both internal nodes and leaf nodes of

R to have an anchor in R′. However, note that some nodes of R can have no

anchor in R′ and that some nodes of R′ are not anchors of any node in R.

Remark 3 Let RI and RA be two rooted trees such that RA|L(RI)�RI |L(RA)

and vi ∈ RI be a node with an anchor node va ∈ RA. We have L(vi) ∩

L∩({RA, RI}) = L(va) ∩ L∩({RA, RI}).

If the root ri of RI has no anchor in RA according to the previous definition,

then algorithm MergeTrees artificially anchors it to a node in RA to enable

grafting of specific subtrees hanging from ri or between ri and the highest

anchored node in RI . This artificial anchor is set in the following way: if the

root ra of RA is not anchored to any node in RI then it is used as the anchor

for ri. Otherwise, the anchor of ri is set at a new node that is added as a

parent of ra (the algorithm will graft some specific subtrees to this new node

that will hence not remain of degree 1). In Figure 4, leaves {a, b, c, e} of RI

are respectively anchored at similarly labelled leaves in RI ; the internal nodes

vi, respectively v′
i, is anchored at va, respectively v′

a. The root ri of RI is

artificially anchored to a node added as parent of the original root v′
a of RA

(not shown in the figure).
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The position of any specific subtree of RI can be considered w.r.t. anchored

nodes: either (i) the subtree is hanging from an anchored node, or (ii) it is

hanging from a node that is in between two anchored nodes. Thanks to the

corresponding anchors between RI and RA, any specific subtree of RI can be

grafted in RA so as to respect ancestor/descendant relationships needed for

the produced tree to display RI (see Observation 1). Algorithm 1 details in

pseudo-code how this is done given two preprocessed data structures:

• Anchor that associates nodes of RI to their respective anchors in RA.

• SpecificChildren that associates to each node of RI the list of its children

that are roots of specific subtrees.

Algorithm 1: MergeTrees (RI , RA)

Input: Two rooted trees RI and RA with overlapping sets of leaves and such
that RA|L(RI) � RI |L(RA).

Result: A tree R on L(RA)∪L(RI) such that R|L(RA) = RA and R|L(RI)�

RI |L(R)

R← RA

1 Compute the Anchors of RI in R and the SpecificChildren for R and RI

(i) Graft specific subtrees to anchored nodes of R
2 for each node v ∈ RI such that Anchor(v) 6= ∅ do

for each node c ∈ SpecificChildren(v) do
Add a copy of S(c) as a new child of Anchor(v) in R

(ii) Graft specific subtrees on the path between two anchored nodes
of R

3 for each non-root node v ∈ RI such that Anchor(v) 6= ∅ do
vi ← parent node of v ; va ← Anchor (v)

4 while Anchor(vi) is ∅ do
Insert a new node vnew between va and its parent node in R

5 for each c ∈ SpecificChildren(vi) do
Add a copy of S(c) as a new child subtree of vnew

va ← vnew ; vi ← parent node of vi

return R

23



For an example of an execution of MergeTrees, consider the trees RI and

RA displayed in Figure 4. The algorithm progressively builds tree R, starting

from a copy of the tree RA. Then anchors between RI and R are computed.

During this process, the initial root of R (corresponding to the node labelled

v′
a in RA) is given a parent node (called r) to serve as an artificial anchor for

ri ∈ RI . During step (i) of the algorithm (i.e. loop in line 2), a copy of the

specific subtree S(v′′
i ) of RI is grafted to the anchor r of ri in R. Then during

step (ii) (i.e. loop in line 3), the specific leaf-subtree y1 hanging in RI from the

parent of the anchored node b is grafted in R to a new node inserted between

the leaf labelled b and its parent. Figure 4 shows the resulting tree R.

Theorem 1 Given a collection R = {RI , RA} of two rooted trees such that

RA|L(RI) � RI |L(RA), the algorithm MergeTrees (RI , RA) returns a tree

R such that L(R) = L(R) and such that R is a SMCT (R). In the particular

case where RA|L(RI) = RI |L(RA), then R is a SMAST (R).

Proof. First, it is easy to see that L(R) = L(RI) ∪ L(RA): R is initially set

at RA and copies of all specific subtrees of RI , i.e. containing all leaves in

L(R)− L(RA), are then grafted into R. Hence, if R displays these two trees,

then it is a SMCT (R), because there is no tree larger than R with leaves in

L(R).

The output tree R displays RA, because R is initially set at RA, and the only

modifications made to this tree are additions of subtrees containing leaves not
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belonging to RA, i.e. not changing R|L(RA).

To show that R is a SMCT (R), it remains to be proven that R displays

RI . To that aim, we prove that R|L(RI) � RI |L(R) because, together with

L(RI) ⊆ L(R), this proves that R displays RI . R|L(RI) � RI |L(R) is proven

by induction on the number of grafts performed by the algorithm. The initial

step of the induction holds as, before the first graft, R = RA, and we know

by assumption that RA|L(RI) � RI |L(RA). Now suppose the result holds for

the first g ≥ 0 grafts and that a g + 1th specific subtree Sp of RI is grafted

into R, and for the needs of the proof, let R′ be the resulting tree. We have

to prove that R′|L(RI) � RI |L(R′) which, by Observation 1, is equivalent to

showing that for all ℓ, ℓ′, ℓ′′ in L(R′) ∩ L(RI) the following holds:

lcaRI
(ℓ, ℓ′) < lcaRI

(ℓ, ℓ′′)⇒ lcaR′(ℓ, ℓ′) < lcaR′(ℓ, ℓ′′) (4)

There are several cases depending on the number of these leaves already

present in R before Sp is grafted:

(1) Card ({ℓ, ℓ′, ℓ′′} ∩ L(R)) = 0: then the three leaves belong to Sp ∈ RI and,

since an exact copy of Sp is grafted into R, the relationships between lcas

of leaves in L(Sp) are reproduced in R′ as they are in RI , hence (4) holds.

(2) Card ({ℓ, ℓ′, ℓ′′} ∩ L(R)) = 3: this means that the three leaves belong to

R before the grafting of Sp, hence (4) holds by induction hypothesis since

grafting a subtree does not alter lca relationships between already present

leaves in R.

25



(3) Card ({ℓ, ℓ′, ℓ′′} ∩ L(R)) = 1: w.l.o.g. suppose ℓ ∈ L(R), that is ℓ /∈ L(Sp),

hence lcaRI
(ℓ, ℓ′) = lcaRI

(ℓ, ℓ′′) < lcaRI
(ℓ′, ℓ′′). As R′ is obtained by

adding a copy of Sp (containing leaves ℓ′ and ℓ′′) by a new edge (v, v′)

as a new child subtree of a node v ∈ R, this means that lcaR′(ℓ, ℓ′) =

lcaR′(ℓ, ℓ′′) ≤ v < v′ ≤ lcaR′(ℓ′, ℓ′′), hence (4) holds.

(4) Card ({ℓ, ℓ′, ℓ′′} ∩ L(R)) = 2: numerous but simple sub-cases arise here.

For the sake of readability, this part of the proof is presented in Appendix

B.

In the particular case where RA|L(RI) = RI |L(RA), we also have to show that

the equivalent of equation (1) of Observation 1 holds for R′ and RI . This proof

strictly follows the proof given above for (4), and is thus omitted. 2

Theorem 2 Algorithm MergeTrees(RI , RA) runs in O(n) time, where n =

Card (L(RI) ∪ L(RA)).

Proof. We first detail the cost of preprocessing the data structures used by the

algorithm (line 1). To initialize the SpecificChildren data structure, a simple

O(n) search of each tree RI and RA enables us to know which leaves of each

tree are specific. Then an O(n) postorder search of each tree enables us to

identify the children of each node that are specific. To initialize the Anchor

data structure, leaf-nodes of RI with a label in L∩({RA, RI}) are directly

anchored at nodes of RI sharing the same label. Then lca relationships are

preprocessed in RI and RA in O(n) time [26]. Let O be the left-right order

26



in which the leaves of L∩({RA, RI}) appear in RI . The O(n) pairs (ℓi, ℓi+1)

of successive leaves in O are then considered. For each of these pairs, a single

query for vi := lcaRI
(ℓi, ℓi+1) and for va := lcaRA

(ℓi, ℓi+1) is performed, each

time costing only O(1) thanks to the preprocessing step. Only these pairs of

leaves have to be considered to span all internal nodes vi of RI for which an

anchor has to be determined, and to obtain the anchor va for each of them (see

Appendix A for more details). Hence, initializing the Anchor data structure

costs O(n) time.

Step (i) of the MergeTrees algorithm is performed by a recursive search of

the tree RI , during which O(n) nodes vi are considered. Knowing whether a

given node vi has an anchor in RA is O(1) time, thanks to the Anchor data

structure. If so, knowing each specific child of vi is also O(1) time thanks to the

SpecificChildren data structure. Note that each tree contains O(n) specific chil-

dren. For each specific child c of vi, a copy of S(c) is grafted under Anchor(vi),

which costs a time proportional to the size of this subtree, O(|L(c)|). Since

non-intersecting subtrees S(c) are considered over all examined nodes vi, the

total size of grafted subtrees is bounded by the number of nodes in the tree,

i.e. by O(n), which is then the cost of step (i).

Step (ii) is performed by a recursive postorder search of RI . Every time an

anchored node v is met, the edges on the path from vi to its closest ascendant

that is also anchored are explored (note that O(n) such edges exist in RI).

During this upward walk, each time a non-anchored node vi is met, copies
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of specific subtrees hanging from vi are grafted into RA to a place identified

in O(1) (nodes va and vnew). Specific subtrees S(c) to be grafted are each

identified in O(1) and grafted in O(|L(c)|). This costs
∑

c |L(c)| ∈ O(n) total

time. Hence, step (ii) also costs O(n) time. 2

Corollary 1 The strict consensus supertree [22] of two trees containing n

leaves in total can be computed in O(n) time.

Proof. Computing the strict consensus supertree T of a collection T = {T1, T2}

of two trees involves four steps:

(1) computing the restrictions T ′
1 and T ′

2 of the input trees to L∩(T );

(2) computing the strict consensus tree T ′ of the trees T ′
1, T

′
2 (having the

same set of leaves);

(3) collapsing suitable edges (by joining their two extremities) in T1 and T2

such that T1|L∩(T ) = T ′ and T2|L∩(T ) = T ′;

(4) T is obtained by grafting specific subtrees of the modified T1 and T2

in tree T ′, then collapsing edges in the parts of T ′ where both specific

subtrees of T1 and T2 have been inserted.

Step 1. is clearly done in O(n) by traversals of the trees. Several O(n) algo-

rithms are known for Step 2. (e.g. [6]). Step 3 is done by first anchoring nodes

of T ′
1 and T ′

2 in T ′, then jointly traversing T1 and T ′ and similarly for T2 and T ′,

hence requiring O(n) time. Step 4. first performs two calls to MergeTrees,

obtaining a tree T in O(n) time. When keeping track of which input tree the
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specific subtrees originate from, a single traversal of T (requiring O(n) time) is

then enough to decide which specific subtrees have to be collapsed. Collapsing

a subtree is linear in the number of its edges, i.e. all collapsing operations in

T require O(n) total time. 2

When considering collections of more than two trees, the MergeTrees al-

gorithm will be used several times to attach specific subtrees from the dif-

ferent input trees to an initial backbone tree. The order in which input trees

are processed does not change the set of leaves of the produced supertree.

However, the shape of the supertree can vary depending on this order. This

is not relevant to solve SMAST and SMCT, but can lead the supertree to

possess some edges that can be considered as arbitrary from a phylogenetic

standpoint. However, such edges can easily be detected and collapsed through

known algorithms [36].

3.2 The inclusion of specific leaves

The following result states that all specific leaves of a collection are systemati-

cally included in any maximum agreement supertree or maximum compatible

supertree of the collection. This result is not surprising since the information

for positioning a specific leaf comes only from one input tree. Thus, no dis-

agreement or incompatibility arises by positioning the leaf according to this

input tree. Nonetheless, the proof requires handling a certain number of re-

strictions of trees and intersection of leaf sets.
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Theorem 3 Let R be a collection of rooted trees with overlapping sets of

leaves. All specific leaves of R appear in any SMAST (R) and in any

SMCT (R).

ℓ

L∩(R)

L∆(R)

LS(Ri)

L(Ri)

L(R)

LS(Rk)

LS(R1)

L(RI)

Fig. 5. The set of leaves L(R) of a tree collection R = {R1, R2, . . . , Rk}, decomposed
into the three sets L∩(R), L∆(R) and LS(R) = ∪Ri∈RLS(Ri), all displayed in bold
lines. The figure also displays the leaf set L(Ri) of a tree Ri ∈ R, in plain thin
lines, and leaf sets L(RI), respectively L(R), in dotted, respectively dashed lines,
mentioned in the proof of Theorem 3, where R is a SMCT (R) assumed to not cover
all leaves of LS(R) for the sake of contradiction.

Proof. The proof is given for the SMCT problem. The proof for SMAST is quite

similar. Let R be a SMCT (R). The proof proceeds by supposing that there

is a specific leaf ℓ ∈ LS(R) such that ℓ /∈ L(R) and shows that a single run of

algorithm MergeTrees gives a tree containing ℓ that is both a SMCT (R)

and larger than R, which is in contradiction with the maximality of R. Several

leaf sets involved in the proof are examplified in Figure 5.

Let Ri be the tree of R from which ℓ originates and let RI := Ri|
(

L(R) ∪

LS(Ri)
)

. Basic set operations show that

L(RI) ∩ L(R) = L(Ri) ∩ L(R). (5)

By definition of R, R|L(Ri) � Ri|L(R), i.e.
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R|
(

L(R) ∩ L(Ri)
)

�Ri|
(

L(Ri) ∩ L(R)
)

(6)

R|L(RI)�Ri|
(

L(RI) ∩ L(R)
)

(7)

R|L(RI)�RI |L(R) (8)

where (7) results from the use of (5) on both sides of (6), and (8) derives from

Ri|L(RI) = RI .

Let R′ be the tree returned by the call to MergeTrees (RI , R). From (8),

Theorem 1 applies and gives

L(R′) = L(R) ∪ L(RI). (9)

As, ℓ ∈ L(RI)− L(R), we deduce from (9) that

Card (L(R′)) > Card (L(R)) . (10)

Also, by definition of RI , we have L(RI) = L(Ri)∩
(

L(R)∪LS(Ri)
)

=
(

L(Ri)∩

L(R)
)

∪ LS(Ri). Combined with (9), we then have

L(R′) = L(R) ∪ LS(Ri). (11)

From (8) and Theorem 1, we also know that R′ is a SMCT ({RI , R}), thus

R′|L(RI) � RI |L(R′). (12)

From (9) and the definition of RI , basic set operations show that L(R′) ∩

L(RI) = L(R′)∩L(Ri), thus the left term of (12) can be rewritten as R′|L(Ri);

its right term can be rewritten as Ri|L(R′) (replacing RI by its definition and
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then using (9)), leading to

R′|L(Ri) � Ri|L(R′). (13)

Moreover, from Theorem 1, R′|L(R) � R|L(R′). Since, L(R) ⊆ L(R′), this

means that

R′|L(R) � R. (14)

Now consider any Rj ∈ R such that Rj 6= Ri. From LS(Ri) ∩ L(Rj) = ∅ and

(11) we obtain

L(Rj) ∩ L(R) = L(Rj) ∩ L(R′), (15)

from which we deduce (R′|L(R))
∣

∣

∣L(Rj) = R′|
(

L(R) ∩ L(Rj)
)

= R′|L(Rj).

Thus, restricting both terms of (14) to L(Rj), we obtain R′|L(Rj)�R|L(Rj).

Combining this with R|L(Rj)�Rj |L(R) (which holds by definition of R) shows

by transitivity that R′|L(Rj) � Rj |L(R). This can be rewritten as

R′|L(Rj) � Rj |L(R′) (16)

since (15) also implies Rj |L(R) = Rj|L(R′).

Equation (13) for Ri and equation (16) for all Rj ∈ R, Rj 6= Ri, show that

R′ is a supertree compatible with R. Moreover, from (10), R′ contains more

leaves than R := SMCT (R), a contradiction with the definition of R. 2
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e f b c afba d ec a bc

d e f

a b ab c c

d

The three MAST (R|L∩(R)) = MCT (R|L∩(R))

R1 R2 R3

SMAST (R) = SMCT (R)

Fig. 6. A collection R = {R1, R2, R3} of rooted input trees for which the trees
MAST (R) and MCT (R) can not be used as backbones of SMAST (R) and
SMCT (R).

3.3 Using MAST and MCT as subproblems

In the general case, it is not possible to solve SMAST, respectively SMCT, by

considering MAST, respectively MCT, as a subproblem. For instance, Figure 6

shows a collectionR with only three rooted trees, where the trees SMAST (R)

and SMCT (R) do not include MAST (R) and MCT (R) as restrictions. How-

ever, in the particular case where every leaf of the collection belongs either to

a single tree or to all trees of the collection, the connection between subtree

and supertree problems can be exploited. See algorithm BuildSMCT to solve

SMCT. The algorithm proceeds from a maximum compatible tree of the in-

put trees restricted to common leaves. Then, specific subtrees of each original

input tree are added by successive calls to the MergeTrees algorithm.

To prove the correctness of BuildSMCT, we first need to establish the three

following invariants:
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Algorithm 2: BuildSMCT (R)

Input: A collection R = {R1, R2, . . . , Rk} of rooted trees such that L∆(R) =
∅.

Result: A tree SMCT (R).

1 R0
M ←MCT (R|L∩(R))

for i in 1→ k do
2 Ri

M ← MergeTrees
(

Ri

∣

∣

∣(L(R0
M ) ∪ LS(Ri)), R

i−1
M

)

return Rk
M .

Lemma 1 Given a collection R = {R1, R2, . . . , Rk} such that L∆(R) = ∅,

the following statements hold at each iteration i (1 ≤ i ≤ k) of the loop of

algorithm BuildSMCT:

(A) let RI := Ri

∣

∣

∣(L(Ri−1
M ) ∪ LS(Ri)) and RA := Ri−1

M be the trees given as input

to MergeTrees in line 2, RA|L(RI) � RI |L(RA) holds;

(B) L(Ri
M) = L(R0

M ) ∪
⋃

j≤i,Rj∈R
LS(Rj);

(C) Ri
M is a supertree compatible with R.

The proof of the Lemma is done by induction on the iterations of the loop

in algorithm BuildSMCT, and is included in Appendix C. The correctness

of the algorithm BuildSMCT directly derives from Lemma 1. Moreover, its

running time mainly depends on that of the algorithm for solving MCT on an

instance of the same or smaller size.

Theorem 4 Let R = {R1, R2, . . . , Rk} be a collection of rooted trees such that

L∆(R) = ∅. Algorithm BuildSMCT(R) computes a maximum compatible

supertree of R in O(N +kn) time where n is the maximum number of leaves in

a tree of R, and N is the time needed to compute a rooted maximum compatible

tree of R|L∩(R) .
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Proof. From Lemma 1-(C), the tree Rk
M returned by the algorithm is a su-

pertree compatible with R. Moreover, it is of maximum size among such

supertrees. Indeed, suppose there is a tree R = SMCT (R) such that

|R| > |Rk
M |. Since L(Rk

M ) = LS(R) ∪ L(R0
M ) (from Lemma 1-(B)) and

L(R) = LS(R) ∪ L∩(R) (from L∆(R) = ∅) then R contains more leaves

of L∩(R) than Rk
M , i.e.

∣

∣

∣

∣

∣

R|L∩(R)

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

Rk
M |L∩(R)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

R0
M |L∩(R)

∣

∣

∣

∣

∣

. (17)

However, as R|L∩(R) is a collection of trees on the same leaf set, L∩(R),

and L(R|L∩(R)) ⊆ L∩(R), the fact that R is a supertree compatible with

R implies that R|L∩(R) is a tree compatible with the collection R|L∩(R).

But then (17) is in contradiction with the maximality of R0
M among the trees

compatible with this collection. Thus, Rk
M is a maximum compatible supertree

of R.

Concerning the running time, the kn term results from both the restrictions

of input trees and from calls to MergeTrees: lines 1 and 2 restrict each of

the k input trees to a subset of its leaves, necessitating a single O(n) traversal

of the tree each time; moreover, line 2 performs k calls to MergeTrees, each

requiring a time proportional to the size O(n) of the trees given as input to the

call, by Theorem 2. The N term results from the computation of a maximum

compatible tree of R|L∩(R) in line 1. 2

Note that the kn term in the complexity of BuildSMCT can be reduced to
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an n term by integrating this algorithm with MergeTrees and computing

all anchors between the trees of R and R0
M before performing the grafts of

specific subtrees. However, the N majoring term would remain.

A simple modification of the algorithm BuildSMCT yields an algorithm,

BuildSMAST, that solves SMAST: in line 1, use a tree MAST (R|L∩(R))

instead of a tree MCT (R|L∩(R)) to initialize R0
M .

Theorem 5 Let R = {R1, R2, . . . , Rk} be a collection of rooted trees such that

L∆(R) = ∅. Algorithm BuildSMAST(R) computes a maximum agreement

supertree of R in O(N ′+kn) time where n is the maximum number of leaves in

a tree of R and N ′ is the time needed to compute a rooted maximum agreement

subtree of R|L∩(R) .

Proof. The correctness of BuildSMAST is shown in a very similar way as

that of BuildSMCT, replacing in the above results (e.g. in Lemma 1-(A))

each refinement relation between trees by an equality (i.e. isomorphism) of

these trees. The complexity proof is quite similar to that of Theorem 4, with

N being replaced with N ′. 2

Now consider the case where the input trees are unrooted. By rooting unrooted

trees on the edge leading to a common leaf, isomorphism and refinement rela-

tions between unrooted trees translate into the same relations between corre-

sponding rooted trees [9, Lemma 4]. Hence, the SMAST and SMCT problems

on unrooted trees can be easily reduced to the same problems on rooted trees.
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Theorem 6 Let U = {U1, U2, . . . , Uk} be a collection of unrooted trees sets

such that L∆(U) = ∅.

One can compute a tree SMAST (U), respectively SMCT (U), in O(M +

kn) time where M is the time needed to compute an unrooted tree

MAST (U |L∩(U)), respectively MCT (U |L∩(U)).

Proof. Consider the case of the SMCT problem (the proof for SMAST is

similar). Make the following modifications to BuildSMCT: first compute

U0
M = MCT (U|L∩(U)) by applying an algorithm to solve the problem on

unrooted trees [20]. Then choose an arbitrary leaf ℓ ∈ L(U0
M), compute the

collection R = {R1, R2, . . . , Rk} of rooted trees such that Ri ∈ R is obtained

by rooting Ui ∈ U (inserting a new node) on the external edge leading to leaf

ℓ. Similarly, R0
M is initialized as the tree obtained by rooting U0

M on the edge

leading to ℓ. Then the for loop remains the same. The last modification is to

unroot the obtained tree Rk
M before returning it.

Concerning the correctness of the modified algorithm, first note that R0
M =

MCT (R|L∩(R)) [9, Lemma 5]. Now, the k calls to algorithm MergeTrees

give a tree Rk
M such that Rk

M = SMCT (R) (Theorem 4) and such that

L(Rk
M ) = L(R0

M) ∪ LS(R) (Lemma 1-(B)). Let Uk
M be the tree obtained by

unrooting Rk
M . Since refinement relations are preserved by unrooting trees [9,

Lemma 4], Uk
M is a supertree compatible with U . Moreover, it is of maximum

size. Indeed, a maximum compatible supertree U ′ of U including more leaves
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than Uk
M would necessarily contain more leaves of L∩(U) than Uk

M (because

L(U) = L∩(U) ∪ LS(U) and LS(U) ⊆ L(Uk
M ) = L(Rk

M) = L(R0
M ) ∪ LS(R) =

L(U0
M )∪LS(U)). Thus, U ′ would contain more leaves of L∩(U) than U0

M does,

implying that U ′|L∩(U) would be a tree compatible with U|L∩(U) of larger

size than U0
M , which is a contradiction with the definition of the latter.

The running time differs from the original BuildSMCT by the fact that the

MCT is computed on unrooted trees, requiring O(M) time instead of O(N).

Choosing ℓ is O(1) time, computing R is O(kn) time, and unrooting Rk
M is

O(1) time. Taking restrictions of trees in line 2 is O(kn). Thus, the modified

algorithm requires O(M + kn) time. 2

The previous theorems enable to state the relationships between subtree and

supertree problems for a collection T when L∆(T ) = ∅.

Corollary 2 Let T be a collection of trees such that L∆(T ) = ∅. Any tree

MAST (T |L∩(T )), respectively MCT (T |L∩(T )), is the restriction to L∩(T )

of some tree SMAST (T ), respectively SMCT (T ).

Note that the condition required for Corollary 2 to apply is always fulfilled for

collections T of only two trees, because L(T ) = L∩(T )∪LS(T ). Figure 7 shows

an illustration of the corollary in such a case. Lastly, note that it is also true

that in this case the restriction to L∩(T ) of any tree SMAST (T ), respectively

SMCT (T ), is a tree MAST (T |L∩(T )), respectively MCT (T |L∩(T )).
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R′0
M

c e a b c e

a d b y1 c e y3

a x b c d e

vi

R1 R2

a y1 c ex y3

SMCT (R)

b

SMAST(R)

xa y3y2ecy1 y2

y2

R0
M

a

Fig. 7. A collection R = {R1, R2} of two input trees (L∩(R) = {a, b, c, d, e}),
two trees R0

M := MAST (R|L∩(R)) and R′0
M := MCT (R|L∩(R) ) and two trees

SMAST (R) and SMCT (R), in which the structure of R0
M, respectively R′0

M, is
displayed in bold lines.

3.4 Polynomial cases

Particular cases where SMAST and SMCT problems can be solved in polyno-

mial time are deduced from the above results and from works on MAST and

MCT.

Corollary 3 Let T = {T1, T2, . . . , Tk} be a collection of trees (all rooted or

all unrooted).

(i) The SMAST problem on two trees can be solved in polynomial time.

Moreover, when L∆(T ) = ∅,

(ii) the SMAST problem can be solved in polynomial time whenever the maxi-

mum degree of an input tree is bounded,
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(iii) the SMCT problem on T can be solved in polynomial time whenever the

degree of all input trees is bounded.

Proof. Consider the case where trees in T are rooted. In this case: (i) the

result derives from Theorem 5 and from efficient algorithms that solve MAST

when T contains only two trees [30,31,15]; (ii) follows from Theorem 5 and the

algorithms of [2,13]; (iii) follows from Theorem 4 and [23]. If T is a collection

of unrooted trees, then the result follows from Theorem 6 and the works cited

in the rooted case. 2

4 Reduction to instances involving smaller trees

We now describe how trees of arbitrary size can be described by subtrees of

small bounded size. This decomposition will be used to prove intractability

results in the next section. Rooted trees of arbitrary size can be described by

rooted trees on three leaves.

Definition 13 (Rooted triples and fans) A rooted triple (or resolved

triple) is a binary rooted tree on three leaves. A fan (also called unresolved

triple) is a rooted tree on three leaves with only one internal node. On three

given distinct leaves a, b and c, there are three possible rooted triples, denoted

bc|a, respectively ac|b, respectively ab|c, depending on their innermost grouping

of two leaves (bc, respectively ac, respectively ab). E.g. tree R0
M of Figure 7 is

the rooted triple ac|e. The only one possible fan on this set of leaves is denoted
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(a, b, c).

Let R be a rooted tree. For any set {a, b, c} of three leaves in L(R), R | {a, b, c}

is either a rooted triple or a fan. We define rt(R), respectively f(R), as the set

of rooted triples, respectively fans, of R induced by the 3-leaf subsets of L(R).

For instance, in Figure 2,

rt(R2)= {ad|b, ad|c, ad|e, ab|e, ac|e, bd|e, cd|e, bc|e} ,

f(R2)= {(a, b, c), (b, c, d)} .

The basic building stones of unrooted trees are quartets and stars:

Definition 14 (Unrooted quartets and stars) A quartet is a binary un-

rooted tree on four leaves. A star is an unrooted tree with only one internal

node to which four leaves are connected. Given four distinct leaves a, b, c and

d, there are three possible quartets, respectively denoted ab|cd (corresponding

to the binary tree where the path from a to b does not intersect the path from

c to d), ac|bd and ad|bc, and only one possible star denoted (a, b, c, d).

Let U be an unrooted tree. For any set Q of four leaves appearing in U , U |Q

is either a quartet or a star. We define q(U), respectively s(U), as the set of

quartets, respectively stars, of U induced by 4-leaf subsets of L(U).

For instance, in Figure 1,

q(U) = {ad|bc, ad|be, ad|bf, ad|ce, ad|cf, ad|ef, bc|ef, bd|ef, cd|ef, ab|ef, ac|ef} ,

s(U) = {(a, b, c, e), (a, b, c, f), (b, c, d, e), (b, c, d, f)} .
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The following well-known results show that isomorphism and compatibility of

rooted, respectively unrooted, trees can be expressed by relations on sets of

induced rooted triples and fans, respectively quartets and stars:

Lemma 2 Let R, R′ be two rooted trees.

(i) R is isomorphic to R′ if and only if rt(R) = rt(R′) and f(R) = f(R′).

(ii) R refines R′ if and only if rt(R′) ⊆ rt(R) and L(R) = L(R′).

Let U , U ′ be two unrooted trees.

(iii) U is isomorphic to U ′ if and only if q(U) = q(U ′) and s(U) = s(U ′).

(iv) U refines U ′ if and only if q(U ′) ⊆ q(U) and L(U) = L(U ′).

Proof. (i) derives from [13, Lemma 6.6], (iii) is [2, Theorem 2] and [14, Theo-

rem 1] yields (ii) and (iv). 2

We can now show that solving SMAST and SMCT on instances with input

trees of arbitrary degree is equivalent to solving the same problems on trees

with both degree and size bounded by a small constant. This contrasts with

MAST and MCT which are trivial when the input trees contain a bounded

number of leaves. Moreover, MAST is polynomial in the case where an input

tree has a bounded degree [2,13]. Note also that having trees with bounded

degree is a sufficient condition for the algorithm of [23] to solve MCT in

polynomial time.
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We first define collections of rooted triples and fans, respectively unrooted

quartets and stars that can be obtained from a collection of general rooted

trees, respectively general unrooted trees:

Definition 15 Given a collection R of rooted trees, define:

rt∪(R) =
⋃

Ri∈R

rt(Ri) and f∪(R) =
⋃

Ri∈R

f(Ri) .

Similarily, given a collection U of unrooted trees, define:

q∪(U) =
⋃

Ui∈U

q(Ui) and s∪(U) =
⋃

Ui∈U

s(Ui) .

From Lemma 2, we deduce:

Corollary 4 Let R be a collection of rooted trees and let R be a rooted tree

with L(R) ⊆ L(R).

(i) R is an agreement supertree of R if and only if R is an agreement supertree

of rt∪(R) ∪ f∪(R),

(ii) R is a supertree compatible with R if and only if R is a supertree compatible

with rt∪(R).

Let U be a collection of unrooted trees and let U be an unrooted tree with

L(U) ⊆ L(U).

(iii) U is an agreement supertree of U if and only if U is an agreement supertree

of q∪(U) ∪ s∪(U),

(iv) U is a supertree compatible with U if and only if U is a supertree compatible
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with q∪(U).

Proof. Assertions (i), (ii), (iii) and (iv) of Corollary 4 are easily deduced from

statements (i), (ii), (iii) and (iv) of Lemma 2, respectively. 2

If k and n respectively denote the number of trees and the number of leaves

in the collection, note that

• rt∪(R) and f∪(R) are computable in O(kn3) time from R;

• q∪(U) and s∪(U) are computable in O(kn4) time from U .

Since approximating MAST on rooted trees is at least as hard as approxi-

mating Maximum Clique [21], approximating SMAST on rooted triples and

fans is at least as hard as approximating Maximum Clique. In the same

way, building on a result of [7], approximating SMCT on rooted triples is at

least as hard as approximating Maximum Independent Set.

5 Intractability of SMAST and SMCT

In this section, we show that there is a substantial gap in complexity between

MAST and SMAST, respectively MCT and SMCT.

The complement of the SMAST problem, denoted CSMAST, is defined as the

minimization problem obtained from SMAST by changing, in Definition 8,

“Measure: |T |, to be maximized”, into “Measure: Card (L(T ))− |T |, to be

minimized”. The complement of SMCT, denoted CSMCT, is obtained in the
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same way from Definition 9. Note that trees involved in practical phyloge-

netic instances are expected to conflict on a small proportion of leaves. Thus,

Card (L(T ))−|SMAST (T )| and Card (L(T ))−|SMCT (T )| are expected to

be small. Hence, approximating CSMAST and CSMCT is more interesting

than approximating SMAST and SMCT.

The complement of MAST, respectively MCT, is defined to be the restric-

tion of CSMAST, respectively CSMCT, to instances consisting in collections

of trees sharing the same leaf set. The complement of MCT is approximable

within ratio 3 [19], as is also well-known for the complement of MAST ([2,7]).

The latter result was also recently improved to a ratio 3− 6 log log n

log n
[28]. In con-

trast to these positive results, CSMAST, respectively CSMCT, in its general

form is NP-hard to approximate within any constant ratio, as shown below in

Theorem 9.

Moreover, consider the decision problem corresponding to CSMAST:

Instance: A finite collection T of trees and an integer p ≥ 0.

Question: Is there an agreement supertree of T of size at least Card (L(T ))−

p?

The decision problem corresponding to CSMCT is defined in the same way

(replace “agreement supertree of T ” by “supertree compatible with T ” in the

above statement of the “Question:”). Theorem 8 below shows that CSMAST

and CSMCT are hard for parameter p unlike the complements of MAST and
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MCT which are FPT in p (see [9] for the latest algorithms).

5.1 The Hitting Set problem

As often done in previous works (e.g. [2,13]), we exploit links between the

MAST problem and the Hitting Set problem. A hitting set of a collection

of sets C is a set H such that for all C ∈ C, H ∩C is non-empty. Consider the

decision problem:

Name: Hitting Set

Instance: A finite collection C of finite sets and an integer p ≥ 0.

Question: Is there a hitting set of C of cardinality at most p?

Hitting Set is an alternative formulation of Set Cover. It is thus NP-

complete [16] and W[2]-complete for parameter p [17, Proposition 10]. More-

over, its optimization version can not be approximated within any constant

ratio unless P = NP [5].

5.2 A graph representing rooted triples

Definition 16 ([1,14,37]) Let R be a finite collection of rooted triples and

let L ⊆ L(R).

Let [R, L] be the undirected graph such that:

• there is a vertex for every element of L,
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• there is an edge between two vertices u and v if and only if there exists ℓ ∈ L

such that uv|ℓ ∈ R.

Theorem 2 in [14] can be restated as follows:

Theorem 7 ([14]) Let R be a collection of rooted triples and L ⊆ L(R).

There is an agreement supertree of R with leaf set L if and only if for each

subset L′ ⊆ L of cardinality at least 3, the graph [R, L′] is disconnected.

5.3 The gadget

Definition 17 We recursively define the function rake associating a rooted

tree to a given non-empty ordered sequence of rooted trees with non-intersecting

leaf sets:

• rake(R1) = R1 for any rooted tree R1 (sequence of length 1).

• rake(R1, R2, . . . , Rk) is the rooted tree whose root has R1 and

rake(R2, R3, . . . , Rk) as two child subtrees for any sequence of rooted

trees R1, R2, . . . , Rk of length k ≥ 2 such that

∀i, j ∈ [1, k] i 6= j ⇐⇒ L(Ri) ∩ L(Rj) = ∅ .

Figure 8 illustrates the previous definition. We now describe the gadget that

is used to reduce Hitting Set to SMAST:

Definition 18 (Gadget) Let m be an integer such that m ≥ 1 and let

x1, x2, . . . , xm, y1, y2, . . . , ym be 2m distinct labels. We define G =
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R1

R2

Rk−1

R3

Rk
Rk−2

Fig. 8. The tree rake(R1, R2, . . . , Rk).

G(x1, x2, . . . , xm, y1, y2, . . . , ym) to be the following collection of rooted triples:

{

yh+1xh+1|yh, xh+1xh+2|yh
}

h∈[1,m]

setting xm+1 := x1, xm+2 := x2 and ym+1 := y1.

Lemma 3 G has the following properties:

(i) There is no agreement supertree of G having leaf set L(G).

(ii) Let j ∈ [1, m]. The following trees with leaf set L(G) − {xj} are agreement

supertrees of G:

rake(yj, yj+1, . . . , ym, y1, y2, . . . , yj−1, R∗)

where R∗ is any rooted tree on {x1, x2, . . . , xm} − {xj}.

Proof. (i) The graph [G, L(G)] associated with G is connected (see Figure 9).

Therefore, by Theorem 7, there is no agreement supertree of G having leaf set

L(G).

(ii) Assume w.l.o.g. that j = 1 (G is not altered by a common circular per-

mutation of the two sequences x1, x2,. . . , xm and y1, y2, . . . , ym). Fixing an
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arbitrary rooted tree R∗ on {x2, x3, . . . , xm}, we have to show that the tree

RA := rake(y1, y2, . . . , ym, R∗)

on L(G)−{x1} is an agreement supertree of G. For this purpose, we distinguish

trees in G that do not contain x1 from those that do.

In the one hand, it is easily seen that

∀h ∈ [1, m− 1] yh+1xh+1|yh = RA

∣

∣

∣ {yh, yh+1, xh+1} ,

∀h ∈ [1, m− 2] xh+1xh+2|yh = RA

∣

∣

∣ {yh, xh+1, xh+2} .

On the other hand, x1 = xm+1 is a leaf of ym+1xm+1|ym and of xh+1xh+2|yh for

h ∈ {m − 1, m}. Hence, restricting these three trees to L(G) − {x1} reduces

them to only two leaves, belonging to RA.

We have shown that ∀Gi ∈ G, RA |L(Gi) = Gi |L(RA) . As also L(RA) ⊆

L(G), this proves that RA is an agreement supertree of G. 2

In other words, G is a collection of conflicting trees in the sense that there

is no tree R with the entire L(G) as leaf set and displaying all trees of G.

However, choosing only one leaf xj (any one) and removing from G all triples

containing xj guarantees that such a tree exists. It is formed by making leaves

yh (with h ∈ [1, m]) pending in a specific order from the successive internal

nodes of the tree (starting from the root and going downward), last appending

a subtree containing the leaves xh (with h ∈ [1, m], h 6= j) but which can have

any shape.
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x2

x1
xm

xi+2xi+1
xi

y2

y1

yi

ym−1

ym

yi+3

yi+2yi+1

xm−1

xi+3

Fig. 9. The graph [G, L(G)] induced by the gadget G.

5.4 The reductions

Theorem 8 The CSMAST problem is NP-hard and W[2]-hard for parameter

p, even for instances T only composed of rooted triples, respectively unrooted

quartets.

Proof.

Rooted case. We reduce Hitting Set to CSMAST, polynomially and pre-

serving the parameter p. Let (C, p) be an instance of Hitting Set,

C= {X1, X2, . . . , Xc}

=
{{

x1
1, x

2
1, . . . , x

m1

1

}

,
{

x1
2, x

2
2, . . . , x

m2

2

}

, . . . ,
{

x1
c , x

2
c , . . . , x

mc

c

}}

.

where c := Card (C) and mi := Card (Xi). Then let (yj
i ) be an injective family

of labels not appearing in X1 ∪ X2 ∪ . . . ∪ Xc, indexed on the set of ordered

pairs (i, j) with i ∈ [1, c], j ∈ [1, mi]. Based on the model of C, we build a

collection of non-intersecting sets

{{

y1
1, y

2
1, . . . , y

m1

1

}

,
{

y1
2, y

2
2, . . . , y

m2

2

}

, . . . ,
{

y1
c , y

2
c , . . . , y

mc

c

}}
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whose elements are distinct from those of C. Let

Gi := G(x1
i , x

2
i , . . . , x

mi

i , y1
i , y

2
i , . . . , y

mi

i )

for all i ∈ [1, c] and consider the collection of trees

R := G1 ∪ G2 ∪ . . . ∪ Gc .

From the definition of gadgets (Definition 18), the transformation of the in-

stance (C, p) of Hitting Set to the instance (R, p) of the decision problem

CSMAST obviously takes a polynomial time (R is of cardinality 2(m1 +m2 +

· · · + mc)) and preserves parameter p. By construction, all trees in R are

rooted triples. It remains to be proven that the following two statements are

equivalent:

(1) C admits a hitting set of size at most p and

(2) there is an agreement supertree of R whose size is at least Card (L(R))−p.

(2) ⇒ (1). Let RA be an agreement supertree of R of size of at least

Card (L(R))− p. Thus, H := L(R)− L(RA) is a set of cardinality at most p.

Moreover, for any i ∈ [1, c], we know that L(Gi) is not a subset of L(RA) from

Lemma 3-(i). Then at least one element of L(Gi) is not a leaf in RA, hence is

in H . This shows that H is a hitting set of {L(G1), L(G2), . . . , L(Gc)}.

Now change H in the following way: replace each yj
i ∈ H (which only hits the

set L(Gi)) with any element in Xi. H is then a hitting set of C of size at most

p.
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(1) ⇒ (2). Given i ∈ [1, c] and j ∈ [1, mi], we denote σj
i the (j − 1)th cyclic

shift of the sequence y1
i , y

2
i , . . . , y

mi

i :

σj
i = yj

i , y
j+1
i , . . . , ymi

i , y1
i , y

2
i , . . . , y

j−1
i .

Let H be a hitting set of C of cardinality at most p. For each i ∈ [1, c],

H contains at least an element of Xi, that we denote xji

i , with ji ∈ [1, mi].

Concatenate the c sequences σj1
1 , σj2

2 , . . . , σjc
c in any order: this yields a label

sequence z1, z2, . . . , zm of length m := m1 + m2 + · · · + mc. Then form the

tree

RA := rake(z1, z2, . . . , zm, R∗)

where R∗ is any rooted tree on (X1 ∪X2 ∪ . . . ∪Xc)−H .

By construction, RA is a tree on L(R) − H and thus of size at least

Card (L(R)) − p. Moreover, for each i ∈ [1, c], RA (consisting of leaves

of the kind yj
i hanging one by one from internal nodes on the path from

the root of RA to the root of subtree R∗) is such that RA |L(Gi) =

rake(yji

i , yji+1
i , . . . , ymi

i , y1
i , y

2
i , . . . , y

ji−1
i R∗ |Xi ), which is an agreement su-

pertree of Gi by Lemma 3-(ii) (note that xji

i ∈ H is not a leaf in R∗, hence

not in R∗ |Xi ). Thus, RA is an agreement supertree of R of size at least

Card (L(R))− p.

Unrooted case. We reduce below the version of CSMAST using a collection of

rooted triples as input, to the version of CSMAST using a collection of binary
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unrooted trees as input. Note that solving CSMAST on binary unrooted trees

is equivalent to solving this problem on unrooted quartets (Corollary 4-(iii)).

Let (R, p) be an instance of CSMAST where R is a collection of rooted triples

and p a non-negative integer.

Let R′ be a rooted binary tree containing Card (L(R)) new leaves: |R′| =

Card (L(R)) and L(R′) ∩ L(R) = ∅. Consider the collection U of unrooted

trees where the trees Ui ∈ U are in one to one correspondence with the trees

Ri ∈ R: given a tree Ri ∈ R, the corresponding tree Ui is the unrooted tree

obtained by adding an edge between the root of Ri and the root of a copy of

R′. We have L(U) = L(R′) ∪ L(R) and Card (L(U)) = 2Card (L(R)).

The instance (R, p) of CSMAST is transformed into an another instance (U , p)

of CSMAST where all trees in U are unrooted. This transformation is clearly

done in polynomial time and preserves parameter p.

We now prove that (R, p) is a positive instance of CSMAST if and only if

(U , p) is a positive instance of CSMAST.

First, suppose that there is an agreement supertree RA of R with |RA| ≥

Card (L(R)) − p. Then the unrooted tree UA, obtained by connecting the

roots of RA and a copy of R′ by an edge, is an agreement supertree of U of

size |RA|+ |R
′| ≥ Card (L(R))− p + |R′| = Card (L(U))− p.
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Conversely, assume there is an agreement supertree UA of U with |UA| ≥

Card (L(U)) − p. We can assume that p < Card (L(R)) since otherwise, the

empty tree is clearly an agreement supertree ofR of size at least Card (L(R))−

p. Hence, at most Card (L(R))−1 leaves appearing in U are not leaves of UA.

Since Card (L(R)) distinct leaves of U appear in R′, there is a leaf ℓ′ of R′ that

is also a leaf of UA. Let U ′ := UA | (L(R) ∪ {ℓ′}) . Note that U ′ is an agreement

supertree of U and, as for UA, contains at least Card (L(R)) − p leaves from

L(R). Let RA be the tree with leaves in L(R), obtained by rooting U ′ at the

leaf ℓ′, and deleting ℓ′ and its incident edge. RA is an agreement supertree of

R and as ℓ′ /∈ L(R), RA has at least Card (L(R))− p leaves from L(R). 2

Theorem 9 CSMAST is not approximable within a constant factor unless

P = NP, even for instances T only composed of rooted triples, respectively

unrooted quartets.

Proof. The reduction from Hitting Set to CSMAST on rooted triples and the

reduction from CSMAST on rooted triples to CSMAST on unrooted quartets

described in Theorem 8 can be seen as approximation preserving reductions.

Hence, the result of [5] stated in Section 5.1 for Hitting Set also applies to

CSMAST on rooted triples and to CSMAST on unrooted quartets. 2

The above two intractability and inapproximability results also hold for the

CSMCT problem, as the reductions use collections of binary trees, i.e. cases

in which this problem is equivalent to CSMAST.
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A Determining anchors between two rooted trees in linear time

In this section, we show how anchors from nodes of RI to nodes of RA can be

determined in O(n) where n := Card (L(RI) ∪ L(RA)).

Note that nodes of RI for which an anchor has to be determined are nodes

vi := lcaRI
(S) for some set S ⊆ L∩({RA, RI}). Here such nodes are called

anchorable.

The leaf -nodes in RI whose label is in L∩({RA, RI}) are anchorable. Their

corresponding set S contains the single leaf of RA having the same label. A

single traversal of Ri and one of RA is thus enough to establish the anchors of

leaves of Ri. This costs O(n).

Now consider anchorable internal nodes (i.e. for which Card (S) > 1). To

anchor these nodes, we proceed by considering specific couples of leaves

in L∩({RA, RI}). Let O be the left-right order with which the leaves of

L∩({RA, RI}) appear in the tree RI , and denote the ℓth element in O as

Oℓ. Let m be the cardinality of L∩({RA, RI}). Then consider the m = O(n)

pairs (Oℓ,Oℓ+1) of consecutive leaves in O. For each such pair, two lca queries

are performed to identify vi := lcaRI
(Oℓ,Oℓ+1) and va := lcaRA

(Oℓ,Oℓ+1). For

some of these pairs, va is the anchor of vi. As lca relationships can be pre-

processed in trees RI and RA in O(n) time to answer each lca query in O(1)

[26], considering the O(n) pairs (Oℓ,Oℓ+1) leads to an O(n) running time. The

correctness of this approach is demonstrated below. More precisely, it is shown
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that considering all pairs (Oℓ,Oℓ+1), 1 ≤ ℓ < m, is sufficient to determine the

anchor of all anchorable internal nodes of RI .

First, by definition, any anchorable internal node vi ∈ RI is the lca of a set

S ⊆ L∩({RA, RI}) with Card (S) ≥ 2, hence vi has leaves of S in s ≥ 2 child

subtrees, denoted c1, . . . , cs. Now, by definition of O, for all couples (cj , cj +1),

1 ≤ j < s, the right-most leaf of L(cj)∩S just precedes in O the left-most leaf

of S ∩ L(cj+1), and vi is the lca of these two leaves. Hence, examining the lca

in RI of all couples (Oℓ,Oℓ+1), 1 ≤ ℓ < m of consecutive leaves in O ensures

that vi is considered at some step.

Proposition 1 Given a node vi in RI such that vi = lcaRI
(S) with S ⊆

L∩({RA, RI}) and Card (S) ≥ 2. Let Os1
, . . . ,Osj

be the leaves of S, with

1 ≤ s1 < s2 < . . . < sj ≤ n. Let va be the node of RA such that va := lcaRA
(S).

Then there is an integer ℓ, such that s1 ≤ ℓ < sj and va = lcaRA
(Oℓ,Oℓ+1).

Proof. First note that the elements of S are consecutive in O. Let c be the

child subtree of va that contains Os1
. Let ℓ be the smallest integer such that

s1 ≤ ℓ < sj and Oℓ+1 /∈ L(c). Note that ℓ exists, since by definition of va, this

node has leaves of S in at least two different child subtrees. Since Oℓ,Oℓ+1 are

in different child subtrees of va, then va = lcaRA
(Oℓ,Oℓ+1). 2

This proposition ensures that while examining all pairs of leaves (Oℓ,Oℓ+1)

with 1 ≤ ℓ < m, all nodes of RA that are anchors of nodes in RI are considered.
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Now we know that all anchorable nodes vi of RI will be considered, as will all

anchor nodes va of RA. The following shows that, at some point, each such

node in RI is considered at the same time as its anchor va in RA.

Proposition 2 Let S = {Os1
, . . . ,Osj

} ⊆ L∩({RA, RI}) be a set of consecu-

tive leaves in O with Card (S) ≥ 2 such that there exists a node vi in RI with

vi = lcaRI
(S). Let va be the node of RA such that va = lcaRA

(S).

Then ℓ exists, s1 ≤ ℓ < sj, such that va = lcaRA
(Oℓ,Oℓ+1) and vi =

lcaRI
(Oℓ,Oℓ+1).

Proof. If m = 2 then S contains only one pair of leaves. Thus, for ℓ = 1 we

have S = {Oℓ,Oℓ+1}, so lcaRI
(Oℓ,Oℓ+1) = lcaRI

(S) and lcaRA
(Oℓ,Oℓ+1) =

lcaRA
(S).

Consider now the case where m > 3. Let ℓ with s1 ≤ ℓ ≤ sj be the smallest

integer such that Oℓ and Oℓ+1 belong to two different child subtrees of va =

lcaRA
(S). Such an ℓ exists because of Prop. 1. Now, {Oℓ,Oℓ+1} ∈ L(vi) by def-

inition of ℓ and S = {Os1
, . . . ,Osj

}. More precisely, it can be shown that vi =

lcaRI
(Oℓ,Oℓ+1). Indeed, if this is not the case, i.e. these two leaves are in the

same child subtree of vi, then let ℓ′′ ⊆ L∩({RA, RI}) be a leaf in S belonging to

another child subtree of vi. We have vi = lcaRI
(ℓ′′,Oℓ) < lcaRI

(Oℓ,Oℓ+1). Since

Ra|L(Ri) � Ri|L(RA), this implies lcaRA
(ℓ′′,Oℓ) < lcaRA

(Oℓ,Oℓ+1) by Obser-

vation 1. This in turn implies ℓ′′ /∈ L(va) because va = lcaRA
(Oℓ,Oℓ+1). Hence,

L(va) ∩ L∩({RA, RI}) 6= L(vi) ∩ L∩({RA, RI}), which is in contradiction with
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the definition of va and Remark 3. This shows that Oℓ and Oℓ+1 are in different

child subtrees of vi, hence that vi = lcaRI
(Oℓ,Oℓ+1). By definition of va and

vi, this shows that for this precise ℓ, we have both lcaRI
(Oℓ,Oℓ+1) = lcaRI

(S)

and RA(Oℓ,Oℓ+1) = lcaRA
(S). 2

Now, given that RA|L(RI) refines RI |L(RA), the same anchorable internal

node vi ∈ RI might be considered in several pairs (Oℓ,Oℓ+1), sometimes to-

gether with a node va = lcaRA
(Oℓ,Oℓ+1) that is not its anchor in RA. However,

the anchor of vi can be easily identified as it is the closest to the root (i.e.

the one with the minimum depth), among the examined candidate nodes va

in RA. More formally:

Remark 4 Let vi be a node of RI such that vi = lcaRI
(S) for a set

S ⊆ L∩({RA, RI}) with Card (S) ≥ 2. Suppose vi = lcaRI
(Oℓ,Oℓ+1) and

vi = lcaRI
(Oℓ′,Oℓ′+1) with ℓ 6= ℓ′. Let vℓ

a = lcaRA
(Oℓ,Oℓ+1) and vℓ′

a =

lcaRA
(Oℓ′ ,Oℓ′+1). If depth(vℓ

a) > depth(vℓ′

a ) then vℓ
a is not the anchor of vi.

Indeed, since depth(vℓ
a) > depth(lcaRA

(Oℓ′ ,Oℓ′+1)), then Oℓ′ or Oℓ′+1 is not

in L(vℓ
a). As both Oℓ′ and Oℓ′+1 belong to L(vi), this means that L(vℓ

a) ∩

L∩({RA, RI}) 6= L(vi) ∩ L∩({RA, RI}), i.e. that vℓ
a is not the anchor of vi

(from Remark 3).

Based on the previous remarks, the pseudo-code Anchors shows how the an-

chors for all anchorable nodes of RI are determined in O(n) time. The artificial

anchor of the root of RI (when needed, see Section 3.1) is also described.
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Algorithm 3: Anchors (RI , RA)

Input: Two rooted trees RI and RA s.t RA|L(RI) � RI |L(RA).

Result: Determines the nodes of RA that are anchors for nodes in RI .

(i) Anchoring leaves:
1 for each leaf node ℓ ∈ RI with a label in L∩({RA, RI}) do

set Anchor(ℓ) to the leaf-node of RA having the same label.

(ii) Anchoring internal nodes:
for each internal node vi ∈ RI do Anchor(vi)← ∅
Let O be the left-right ordering in the tree RI of the leaves in set L∩({RA, RI})

2 for each pair (Oℓ,Oℓ+1) of consecutive leaves in O do
Let vi := lcaRI

(Oℓ,Oℓ+1) and va := lcaRA
(Oℓ,Oℓ+1)

if Anchor(vi)=∅ or depth(Anchor(vi)) > depth(va) then
Anchor(vi)← va

(iii) Anchor roots of RI and RA:
if Anchor(root(RI)) = ∅ then

if root(RA) has been anchored with a node of RI then
add a new node as parent of root(RA) and consider it as the new root
of RA

Anchor(root(RI))← root(RA)

B Complement for the proof of Theorem 1

We give here the proof that (4) holds for the special case where

Card ({ℓ, ℓ′, ℓ′′} ∩ L(R)) = 2. This completes the proof of Theorem 1.

Without loss of generality, let ℓ′, ℓ′′ be the two leaves present in R before the

graft of the copy of Sp and let ℓ be the leaf in Sp. If lcaRI
(ℓ, ℓ′) = lcaRI

(ℓ, ℓ′′) =

lcaRI
(ℓ′, ℓ′′), then (4) is verified by default. The three remaining possibilities

for the relative positions of ℓ, ℓ, ℓ′′ in Ri are as follows:

(1) lcaRI
(ℓ, ℓ′) = lcaRI

(ℓ, ℓ′′) < lcaRI
(ℓ′, ℓ′′).

(2) lcaRI
(ℓ, ℓ′) = lcaRI

(ℓ′, ℓ′′) < lcaRI
(ℓ, ℓ′′).

(3) lcaRI
(ℓ, ℓ′′) = lcaRI

(ℓ′, ℓ′′) < lcaRI
(ℓ, ℓ′).
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The proof is only detailed below for case 1, as a very similar reasoning applies

for cases 2 and 3.

Let vi be the node from which Sp is hanging in RI . Note that lcaRI
(ℓ, ℓ′) ≤ vi,

otherwise {ℓ, ℓ′, ℓ′′} ∈ L(Sp), a contradiction with Card ({ℓ, ℓ′, ℓ′′} ∩ L(R)) =

2.

(I) Suppose lcaRI
(ℓ, ℓ′) = vi. Note that this does not imply that vi has an

anchor in R because ℓ /∈ R.

(I-A) Suppose that vi has an anchor va in R. Let c be the child of vi such

that {ℓ′, ℓ′′} ∈ S(c). Either (i) L(c) contains no leaf of L∩({RA, RI}), or (ii)

it contains at least such a leaf, say x. Case (i) occurs only when S(c) is a

specific subtree of Ri with respect to RA, which means that a copy of S(c)

(containing {ℓ′, ℓ′′}) is grafted under va by loop of line 2, just before Sp is

grafted. Hence, ℓ′, ℓ′′ belong to a same subtree S(c′) of a child c′ of va. We

now show that the same holds in case (ii). Indeed, in that case, x ∈ L(vi) and

because vi is an anchored node, then ∃y ∈ L(vi) such that y ∈ L∩({RA, RI})

and vi = lcaRI
(x, y). Since {x, ℓ′, ℓ′′} ∈ S(c), we have

vi = lcaRI
(x, y) < lcaRI

(x, ℓ′) and vi = lcaRI
(x, y) < lcaRI

(x, ℓ′′)

Since {x, ℓ′, ℓ′′} ∈ L(R), we have by induction that

lcaR(x, y) < lcaR(x, ℓ′) and lcaR(x, y) < lcaR(x, ℓ′′).

Moreover, by definition of va, we know {x, y} ∈ L(va), thus va ≤ lcaR(x, y),
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and then from the previous equation

va < lcaR(x, ℓ′) and va < lcaR(x, ℓ′′).

This means that {x, ℓ′, ℓ′′} belong to a same subtree S(c′) in R, with c′ being

a child of va.

Thus, in both (i) and (ii), when a copy of Sp (containing ℓ) is inserted as a

new child subtree of va, by loop of line 2, then equation (4) holds.

(I-B) The other sub-case is when vi is not an anchored node of Ri. This means

that a copy of Sp is grafted in R as a subtree of a node vnew by loop of line

4. This loop inserts subtrees at nodes above the anchor va of a node v of RI .

Note that in RI , vi < v, and that there is no node with an anchor on the path

from v to vi (because the loop of line 4 would end before reaching vi). There

are several possible places for ℓ′ and ℓ′′ relative to vi and v.

First, ℓ′ and ℓ′′, can be in the same specific subtree S ′
p hanging from vi. Then

ℓ′, ℓ′′ ∈ L(R) ensures that a copy of S ′
p is inserted as a subtree of vnew by loop

of line 5, before the same loop inserts a copy of Sp. Thus in that case, ℓ′, ℓ′′ are

in the same subtree of vnew before Sp is inserted. The second possibility for

ℓ′, ℓ′′ is that they are in the subtree of vi that contains v. Then ℓ′, respectively

ℓ′′, can be in a specific subtree S ′
p, respectively S ′′

p , hanging from a node on

the path between v and vi, (with possibly S ′
p = S ′′

p ). But then, the loop of line

4, proceeding in a bottom-up way, ensures that S ′
p, respectively S ′′

p , is inserted

in the subtree of vnew that contains va. Alternatively, ℓ′ and ℓ′′ (or just one
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of them) can be in S(v). A similar argument 1 as in (I-A) shows that in this

case they are inserted in the subtree S(va) of R. Thus, in this case also, they

belong to the subtree of vnew containing va.

Thus, in all possible positions of ℓ′, ℓ′′ relative to vi and v, they are grafted in

R the same subtree of vnew. This means that when a copy of Sp (containing

ℓ) is inserted as a different child subtree of vnew to obtain R′, then (4) holds.

(II) The other main sub-case arises when lcaRI
(ℓ, ℓ′) < vi. Let u :=

lcaRI
(ℓ, ℓ′) = lcaRI

(ℓ, ℓ′′). Note that ℓ′ and ℓ′′ belong to the same child subtree

of u, differing from that containing ℓ.

Let v be the node vi, if vi is anchored, otherwise it is the closest descendant

of vi that is anchored (v exists otherwise, S(vi) would be a specific subtree,

contradicting the maximality of the specific subtree Sp). Moreover, there is

a unique closest descendant of vi that is anchored because, if two nodes are

anchored, then their least common ancestor is also anchored).

Let va be the anchor of v in R. By definition of v and va, x, y ∈ L∩({RA, RI})

exist such that v = lcaRI
(x, y) and va = lcaRA

(x, y). Note that u =

lcaRI
(ℓ′, x) = lcaRI

(ℓ′′, x) < lcaRI
(x, y) because x, y are in the child subtree of

u containing vi, different from the one containing ℓ′, ℓ′′. Hence,

lcaRI
(ℓ′, ℓ′′) > lcaRI

(ℓ′, x) = lcaRI
(ℓ′′, x)

and lcaRI
(x, y) > lcaRI

(ℓ′, x) = lcaRI
(ℓ′′, x)

1 based on leaves {x, y} ∈ L(va) ∩ L∩({RA, RI})
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As {ℓ′, ℓ′′, x, y} ∈ L(R), induction applies to obtain

lcaRA
(ℓ′, ℓ′′) > lcaRA

(ℓ′, x) = lcaRA
(ℓ′′, x)

and lcaRA
(x, y) = va > lcaRA

(ℓ′, x) = lcaRA
(ℓ′′, x)

Let v′
a be the node lcaRA

(ℓ′, x) of RA. Previous equations indicate that v′
a has

different children cℓ′ and cx, such that {ℓ′, ℓ′′} ∈ S(cℓ′) and x, y ∈ S(cx). The

node va = lcaRA
(x, y), anchor of v, is thus in S(cx). Moreover, by definition

of v, the copy of Sp is inserted either as a new child subtree of va (in the

case where v = vi), either between va and its parent in R. In both cases, ℓ is

inserted in S(cx). Thus in tree R′, ℓ is in a subtree of v′
a differing from that

containing ℓ′, ℓ′′, hence (4) holds.

C Proof of Lemma 1

Proof. The three statements of the Lemma are related to the call to Merge-

Trees issued in line 2 of the loop of BuildSMCT, statement (A) applying

before the execution of a call, while statements (B) and (C) apply to the result

of this call. Thus, the three statements are strongly inter-dependent and we

prove them by a joint induction. However, note that there is no circularity as

• the proof of (A) uses inductive hypothesis on previous iterations of state-

ments (B) and (C), except for the basic step which is proved independently;

• the proof of (B) uses statement (A) of the same iteration and, except for

the basic step, inductive hypothesis on the previous iteration of (B);

• the proof of (C) uses statements (A) and (B) of the same iteration and,
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except for the basic step, inductive hypothesis on the previous iteration of

(C).

The basic step (i = 1) of each statement is proved as following:

(A) When i = 1, RI = R1|(L(R0
M ) ∪ LS(R1)) and RA = R0

M . As R0
M =

MCT (R|L(R)), we have

L(R0
M ) ⊆ L∩(R) (C.1)

and R0
M � R1|L∩(R)

∣

∣

∣L(R0
M) (C.2)

From (C.1) we have L(R0
M) ⊆ L(R1), thus

R0
M = R0

M |L(R1) (C.3)

and (R1|L∩(R))|L(R0
M) = R1|L(R0

M). (C.4)

Rewriting (C.2) thanks to (C.3) and (C.4) gives RA|L(RI) � RI |L(R0
M ) =

RI |L(RA), the last equality resulting from the remark following Definition 1.

(B) From the basic step of (A), we know that Theorem 1 applies when Mer-

geTrees is called. Thus, the tree R1
M returned by this call is such that

L(R1
M) =

(

L(R1) ∩
(

L(R0
M ) ∪ LS(R1)

))

∪ L(R0
M ), which simplifies into

L(R0
M) ∪ LS(R1) since L∆(R) = ∅.

(C) From the basic step of statement (A) and Theorem 1 we know R1
M is a tree

SMCT (RI , RA), i.e.

R1
M |L(RI) � RI |L(R1

M) and R1
M |L(RA) � RA|L(R1

M) (C.5)

with RI = R1|
(

L(R0
M ) ∪ LS(R1)

)

and RA = R0
M . Moreover, from the basic

step of statement (B), L(R1
M) = L(R0

M ) ∪ LS(R1), thus for all Rj ∈ R,
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j > 1, we have from (C.5) that

R1
M |L(R0

M) � R0
M |L(R1

M) = R0
M � Rj|L(R0

M ), (C.6)

where the rightmost refinement relation results from the definition of R0
M .

Statement (B), L∆(R) = ∅, and L(R0
M) ⊆ L∩(R) imply L(R1

M )∩L(R0
M) =

L(R0
M) = L(Rj) ∩ L(R0

M) = L(R1
M ) ∩ L(Rj) for all Rj ∈ R, j > 1. Thus,

(C.6) rewrites as

R1
M |L(Rj) � Rj |L(R1

M), ∀j > 1. (C.7)

From (C.5) we also have

R1
M |L(R1) ∩ (L(R0

M) ∪ LS(R1)) � R1|L(R0
M) ∪ LS(R1)|L(R1

M)

which rewrites as R1
M |L(R1) � R1|L(R1

M) using statement (B). Together

with (C.7), this proves the basic step of statement (C).

Now suppose statements (A), (B) and (C) hold for the first i− 1 iterations of

the loop in line 2 and consider its ith iteration, with i > 1.

(A) We first rewrite L(RA), L(Ri
M) and L(RI):

L(RA) =L(Ri−1
M ) = L(R0

M ) ∪
⋃

j<i

LS(Ri) (C.8)

L(Ri) =L∩(R) ∪ LS(Ri) (C.9)

L(RI) =L(Ri) ∩ (L(R0
M) ∪ LS(Ri)) = L(R0

M ) ∪ LS(Ri) (C.10)

where (C.8) results by inductive hypothesis from statement (B), (C.9) re-

sults from L∆(R) = ∅, and (C.10) follows from the fact that L(R0
M ) ⊆

L∩(R) and LS(Ri) are both included into L(Ri), as (C.9) shows. This three
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equations show that

L(RI) ∩ L(RA) = L(R0
M ) = L(Ri) ∩ L(RA). (C.11)

By inductive hypothesis, statement (C) says that Ri−1
M is a supertree com-

patible with R, i.e. Ri−1
M |L(Ri)�Ri|L(Ri−1

M ), which rewrites as RA|L(RI)�

RI |L(RA) by definition of RA, RI and use of (C.11).

(B) From statement (A) and Theorem 1, the call to MergeTrees (RI , RA)

performed at iteration i of the loop in BuildSMCT with trees RI =

Ri

∣

∣

∣(L(Ri−1
M ) ∪ LS(Ri)) and RA = Ri−1

M returns a tree Ri
M such that

L(Ri
M ) = L(RI) ∪ L(RA). (C.12)

It is easy top see that L(RI) = L(R0
M) ∪ LS(Ri) and that, by inductive

hypothesis of (B), L(RA) = L(Ri−1
M ) = L(R0

M) ∪
⋃

j<i LS(Rj). Thus, from

(C.12) we obtain L(Ri
M ) = L(R0

M)
⋃

j≤i LS(Rj).

(C) From statement (A) for the ith iteration, we know Theorem 1 applies to

the call MergeTrees (RI , RA) performed at that iteration with trees

RI = Ri|
(

L(R0
M) ∪ LS(Ri)

)

and RA = Ri−1
M . Thus, the tree Ri

M is a

SMCT (RI , RA), i.e.

Ri
M |L(RI) � RI |L(Ri

M) and Ri
M |L(RA) � RA|L(Ri

M). (C.13)

Moreover, statement (B) used for the ith iteration says that

L(Ri
M ) = L(R0

M ) ∪
⋃

j≤i

LS(Ri) = L(Ri−1
M ) ∪ LS(Ri). (C.14)
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Consider the case of trees Rj ∈ R with j 6= i, for which

L(Rj) ∩ L(Ri
M) = L(Rj) ∩ L(Ri−1

M ), (C.15)

from (C.14) and the fact that specific leaves of Ri do not appear in other

input trees. By inductive hypothesis of statement (C),

Ri−1
M |L(Rj) � Rj |L(Ri−1

M ) = Rj |L(Ri
M). (C.16)

From the second part of (C.13) we know another refinement relation:

Ri
M |L(Ri−1

M ) � Ri−1
M |L(Ri

M) = Ri−1
M , (C.17)

the equality resulting from L(Ri−1
M ) ⊆ L(Ri

M ) (from C.14). Thus, reducing

both sides of (C.17) to leaves of a tree Rj , j 6= i, we obtain

(Ri
M |L(Ri−1

M )
∣

∣

∣L(Rj) � Ri−1
M

∣

∣

∣L(Rj),

the left part of which rewrites as (Ri
M |L(Rj))

∣

∣

∣L(Ri−1
M ) = Ri

M |L(Rj) from

(C.15). Combining this refinement relation with the one stated in (C.16) we

obtain by transitivity that

Ri
M |L(Rj) � Rj |L(Ri

M), ∀j 6= i. (C.18)

Now consider the case of the input tree Ri ∈ R. Since L∆(R) = ∅, i.e.

L(Ri) = L∩(R) ∪ LS(Ri), and L(R0
M ) ⊆ L∩(R), we obtain

L(Ri) ∩ L(Ri
M) = L(R0

M) ∪ LS(Ri) (C.19)

from (C.14). The refinement relation stated in the first part of (C.13) can
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be rewritten as

Ri
M |L(Ri) ∩ (L(R0

M ) ∪ LS(Ri)) � Ri|L(R0
M ) ∪ LS(Ri)|L(Ri

M )

which can be simplified into Ri
M |L(Ri) � Ri|L(Ri

M) using (C.19). Together

with (C.18), this proves statement (C) for the ith iteration.

2
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