
HAL Id: lirmm-00194260
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00194260

Submitted on 6 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Concurrent Approach for Testing Address Decoder
Faults in eFlash Memories

Olivier Ginez, Patrick Girard, Christian Landrault, Serge Pravossoudovitch,
Arnaud Virazel, Jean-Michel Daga

To cite this version:
Olivier Ginez, Patrick Girard, Christian Landrault, Serge Pravossoudovitch, Arnaud Virazel, et al.. A
Concurrent Approach for Testing Address Decoder Faults in eFlash Memories. ITC’07: International
Test Conference, paper 3.2. �lirmm-00194260�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00194260
https://hal.archives-ouvertes.fr

A Concurrent Approach for Testing Address Decoder Faults in eFlash Memories

O. Ginez 1, 2 P. Girard 1 C. Landrault 1 S. Pravossoudovitch 1 A. Virazel 1 J.-M. Daga 2

1 Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier – LIRMM
Université de Montpellier II / CNRS 161, rue Ada – 34392 Montpellier Cedex 5, France

Email: <lastname>@lirmm.fr URL: http://www.lirmm.fr/~w3mic

2 ATMEL Rousset – Libraries and Design Tools Department
Embedded Non-Volatile Memory Group – 13106 Rousset Cedex, France

Email: olivier.ginez@rfo.atmel.com jean-michel.daga@rfo.atmel.com URL: http://www.atmel.com

Abstract
The evolution of System-on-Chip (SoC) designs involves
the development of non-volatile memory technologies like
Flash. As any kind of memories, embedded Flash (eFlash)
can be subjected to complex functional faults that are
related to their particular technological process and to
their integration density. In this paper, we address a major
issue during eFlash testing, namely the test of Address
decoder Faults (AFs), which is generally very time
consuming with ad-hoc solutions presently used in
industry. In the first part of the paper, we show the impact
of AFs on the functional behavior of an eFlash. Next, we
use an analogy with RAM memory testing to classify AFs
with respect to their functional behavior. We then obtain
AFs acting either as stuck-at faults or as state coupling
faults. In the fourth part of the paper, we propose a
concurrent approach for testing AFs acting on either the
word line decoder or the bit line decoder. The proposed
approach allows using a minimal number of programming
operations during test application. Finally, we propose a
compaction procedure to further reduce the test time of
AFs. As a result, huge reductions in test time can be
achieved; experiments on a 4 Mbits eFlash have shown
that a test time reduction factor of 34x can be obtained
when compared to the global eFlash test flow presently
used in industry. An additional important feature of the
proposed strategy is that it allows testing 100% of other
critical faults in eFlashs (stuck-at, transition and state
coupling faults) beside full coverage of AFs.

1. Introduction
The embedded memory resources are continuously
increasing and will approach 94% of the System on Chip
(SoC) silicon area in the next ten years [1]. This forecast
highlights the main issue that we are currently facing in
the fields of memory design and test. In fact, due to their
high density, memories are considerably impacting SoC
test time and are becoming the main contributor of the

overall SoC yield loss. Consequently, efficient test
solutions and repair schemes for memories are needed.

Different types of memory can be embedded in a SoC,
such as SRAM, DRAM, EEPROM and Flash. The
increased use of portable electronic devices such as mobile
phones and digital camera produces a high demand for
Flash memories. A Flash memory is a non-volatile
memory that allows programming and erasing memory
data electronically [2, 3]. The main-stream operation is
based on the floating-gate concept on which charges can
be stored and removed. The low-power consumption and
high density of eFlash memories make them popular for
portable devices. Unfortunately, their high integration
density and particular manufacturing process steps make
them more and more prone to inter or intra core-cell
defects.

In the Flash testing domain, only very few papers can be
found in the literature. Generally, all reported studies deal
with 1T Flash cells (stacked gate / ETOX) [4, 5, 6] or 1½T
Flash cells (split gate / local SONOS) [4, 5, 6]. In [7], we
have considered the standard FLOTOX core-cells that are
now often used in industry for eFlash memories. We have
presented a qualitative analysis of actual defects and
failure mechanisms that may occur in the FLOTOX core-
cell array. All the defects were reported from experiments
on the ATMEL 0.15µm eFlash technology.

The next step after the defect or failure mechanism
analysis is i) their modeling from a functional point of
view and ii) the development of efficient test strategies. In
[8] and [9], we have enumerated a list of functional fault
models that cover the actual defects occurring in NOR-
based eFlash made of FLOTOX core-cells. Here, we
address a particular type of faults, namely the Address
decoder Faults (AFs) that occur in the addressing logic of
an eFlash. These faults are particularly critical during
eFlash testing as fully testing them with ad-hoc solutions
is generally very time consuming.

In this paper, we propose a concurrent approach for testing
AFs, such that a minimal number of programming
operations can be used during test application. Compared

Paper 3.2 INTERNATIONAL TEST CONFERENCE 1
1-4244-1128-9/07/$25.00 © 2007 IEEE

Paper 3.2 INTERNATIONAL TEST CONFERENCE 2

to existing solutions practiced in industry that are based on
the use of the Diagonal 0 pattern [10], the proposed
approach reduces the test time of AFs by one or more
orders of magnitude without loss of fault coverage. As the
test time of the proposed approach increases only
logarithmically with the size of the memory array (while it
increases linearly with the Diagonal 0 pattern approach),
the test time reduction increases with the size of the eFlash
memory. An important additional feature of the proposed
strategy is that it allows testing 100% of other critical
faults in eFlashs (stuck-at, transition and state coupling
faults) beside full coverage of AFs.

The rest of the paper is organized as follows. Section 2
describes the basic operations of a FLOTOX core-cell and
presents an eFlash memory from a functional point of
view. Section 3 introduces AFs in the eFlash environment.
Section 4 proposes a concurrent solution to test AFs with a
significant test time reduction while achieving complete
fault coverage of these faults. In Section 5, we propose a
compaction procedure to optimize the previous solution
and then further reduce the test time. Section 6 shows the
interest of using the proposed test strategy to detect 100%
of other critical faults in eFlashs (stuck-at, transition and
state coupling faults) beside full coverage of AFs. Finally,
Section 7 concludes the paper.

2. eFlash functional description
An eFlash core-cell is based on the floating-gate (FG)
concept. There are two typical mechanisms to transfer
electric charges from and into the FG: hot carrier injection
(HCI) [3, 11] and the Fowler-Nordheim (FN) tunneling
effect [3, 11]. The FN tunneling effect is used for charge
injection or removal in FLOTOX core-cells. In our study,
we use the FLOTOX core-cell structure presented in
Figure 1 [3, 11].

 BLj

WLi

Vrefi

Vss

Select
transistor

Sense
transistor

Floating gate
Figure 1: FLOTOX core-cell

The memory cell is composed of a select transistor and a
sense transistor. The select transistor allows the selection
of the targeted cell. It also avoids disturbances from the
high voltage on the bit line when the cell is not selected.
The sense transistor contains the floating-gate (FG) and
the sense gate.

Three different operations can be performed on an eFlash:
Erase, Write and Read. The Erase operation consists in
injecting charges in the FG with a specific high voltage

combination. The high voltage must be applied on the
Vref node of the sense transistor while its drain must be
maintained at ground. During the Erase operation, the
core-cell is 'on' and allows the node BLj to be pulled-down
at the Vss potential. Note that the erase operation is
performed simultaneously on all the cells of the same page
and not on a cell by cell basis. At the end of the erase
operation, charges in the FG have changed the VT of the
sense transistor to a high VT (VTH in Figure 2) which
corresponds to a logic '1'.

The Write operation consists in removing electrons from
the FG by putting the Vref node at ground while
maintaining BLj at a high voltage. With this operation, the
sense transistor has a low VT (VTL in Figure 2) which
corresponds to logic '0'. We call “VT window” the
difference between VTH and VTL.

Se
ns

e
th

re
sh

ol
d

D
ra

in
 c

ur
en

t

Control gate
voltage

VTL VTH

|QFG| = 0 |QFG| >> 0

N+ BN+

Bulk P type

Polysilicon
control gate

ONO

D S C

Charged
Floating Gate

Polysilicon
floating gate

Tunnel
window

Figure 2: Vt modulation with charge quantity

In eFlash, the read operation is performed by a sense
amplifier working in a current measurement mode. The
Vref node is set around 0.7v during the read operation. If
the sense transistor has a low VT (VTL), it delivers a
current (between 10µA to 30µA) and the sense amplifier
provides a logic '0' on its output. On the other hand, with
the same Vref value, if the sense transistor has a high VT
(VTH) there is no current through the bit line and the
sense amplifier gives a logic '1'.

Two types of core-cell array can be used to realize an
eFlash memory; NOR and NAND-based structures [3, 10].
Here, we present only the NOR-based structure which is
the most often used in high-speed applications. In a NOR-
based eFlash, core-cells are placed in parallel as shown in
Figure 3.

A word line (WLi) is shared by all cells in the same row to
form a page address. A core-cell array is defined
according to a X-Y plan. Each core-cell in the array can
hence be referenced through its X-Y coordinates.

Like in almost all memories, the address decoding is
performed by using a tree of pass-gates as represented in
Figure 4. In this, we can see an addressing path D defined
from values (100) of the address bus (A0A1A2) through a
tree of pass-gates.

Paper 3.2 INTERNATIONAL TEST CONFERENCE 3

WL0

Source line

WL1

Source line

WL2

Source line

WL3

Source line

BL0 BL1 BL2 BL3

Figure 3: NOR eFlash structure

 /A0=0

A0=1

/A0=0

A0=1

/A1=1

A1=0

/A2=1

/A0=0

A0=1

/A0=0

A0=1

/A1=1

A1=0

 A2=0

D

D
D

Figure 4: Tree of pass-gates for the address decoding logic in

an eFlash memory

The functional scheme of an eFlash memory is presented
in Figure 5. An eFlash is composed of a core-cell array
(CORE), data latches (DLATCH), bit line and word line
decoders and sense amplifiers. In addition, eFlash
memories need a particular building block: a Charge Pump
device for the High Voltage Generation (HVG) allowing
the write and erase operations.

An eFlash has two different operating modes: the user
mode and the test mode. In the user mode, an eFlash has
two possible programming operations. The first one is the
Functional Write (FW) operation that allows writing a
data into a word. This FW operation is composed of an
Auto Erase (AE) of the selected page containing the word
to be written (without losing the content of the others
words) followed by the write operation of the desired data.
The time needed for this FW operation is 4ms for an
eFlash designed with the ATMEL 0.15µm technology.

The second possible programming operation is the Page
Write mode (PW). The eFlash has a page register allowing
the user to program a whole page with the same duration
as a FW operation. Also in this mode, the AE operation is
preliminary performed.

CORE

R
O
W
-
D
E
C

P
R
E
D
E
C

ATD

DLATCH

COL-DEC

Sense + I/O BUF

Test Mode

Control Logic

Timers

HVG

Redundancy
Control

Sense
Reference
Voltage

I/O

WLi

BLj
Vsense

ADD

atd

Margin

mgm
analog

BLj

Vm

C
O
N
T
R
O
L

ADD

Figure 5: Functional scheme of eFlash memories

In the test mode, there are three possible programming
operations. The two first operations allow erasing (all 1’)
or writing (all 0’) the eFlash in one step and in 10ms: Chip
Erase (CE) and Chip Write (CW). The third programming
operation, called Concurrent Chip Write Pattern (CCWP),
allows writing a particular pattern in different selected
memory addresses. To explain this programming
operation, let us consider again the address decoding logic
presented in Figure 4. This address decoder has 3-bit
addresses and thus allows selecting 8 word lines. To select
one word line at a time, the corresponding address is
applied on the Ai address-bits and the complemented
address is applied on the /Ai address-bits, thus resulting in
a unique address selection. When the CCWP operation is
used, more than one word line has to be selected. This can
easily be done by applying a certain address on the Ai
address-bits and a different address on the /Ai address-
bits. For example, let us assume that the CCWP operation
has to write the same page on WL0, WL2, WL4 and WL6.
To do that, we must apply 110 on A2, A1 and A0
respectively and 111 on /A2, /A1 and /A0 respectively. In
summary, for a single page selection, the Ai and /Ai bits
are complemented bits. When the CCWP operation is
used, the value of Ai and /Ai bits depends on which word
lines we want to select.

Moreover, note that whatever the operating mode (user
and test), the read operation in a ATMEL 0.15µm eFlash
memory takes 25ns irrespective of the word or memory
size.

Paper 3.2 INTERNATIONAL TEST CONFERENCE 4

3. AFs in an eFlash
Many studies dealing with AF testing for RAM memories
exist and are based on March test algorithms [12]. AF
testing for eFlash memories is much more critical as
existing March algorithms are not applicable in this
context for test time reason, i.e. the slow programming
time of an eFlash. Practically, AF testing is generally done
by performing a diagonal of ‘0’ in the core-cell array [10].
This test pattern, called Diagonal 0 pattern, detects all AFs
but its application time remains very high, e.g. about 4s
for a 1024 pages eFlash.

Consequently, important efforts have to be done to find
efficient AF test solutions that alleviate this test time
problem. Beforehand, we present in this section some
general basics of AFs in eFlash memories.

3.1 Different types of AFs
In this subsection we define different AF combinations
involving addresses and their corresponding memory cells.
To reduce the complexity of the representation, we only
consider two addresses and their two corresponding
memory cells. This representation can be applied for the
word line decoders as well as for the bit line decoders. We
note Addi and Addj the addresses corresponding to
memory cells Ci and Cj respectively. We consider that
Addi and Addj are addresses of an entire word line or bit
line. In the same way, memory cells Ci and Cj can be
considered as stand alone memory cells or as a set of
memory cells sharing the same word line or bit line
addressed with Addi and Addj.

As presented in [12], functional faults within the address
decoders may result in the four following subtypes of AFs:

• subtype1: with a certain address, no cell will be
accessed.

• subtype2: there is no address with which this cell
can be accessed. A certain cell is never accessed.

• subtype3: with a certain address, multiple cells are
accessed simultaneously.

• subtype4: a certain cell can be accessed with
multiple addresses.

Note that AFs must be at least the combination of two
subtypes from the above list. From these different
subtypes, we can then classify the AFs into two families.
These two families are described in Figure 6 and Figure 7.

Figure 6 illustrates the first AF family in which a cell can
be accessed by a maximum of one address. This AF family
is referred to as Single Access AFs (SA_AFs).

 Addi

Addj

Addi

Addj

Ci

Cj

Ci

Cj

Addi

Addj

Addi

Addj

Ci

Cj

Ci

Cj

Figure 6: Single Access AFs (SA_AFs)

Figure 7 illustrates the second family of AFs in which a
cell can be accessed by more than one address. This
second family is referred to as Multiple Access AFs
(MA_AFs).

Addi

Addj

Addi

Addj

Ci

Cj

Ci

Cj

Addi

Addj

Addi

Addj

Ci

Cj

Ci

Cj

Addi

Addj

Ci

Cj

Addi

Addj

Ci

Cj

Addi

Addj

Ci

Cj

Figure 7: Multiple Access AFs (MA_AFs)

3.2 Basic operations for AF detection
As discussed in Section 2, an erase operation performed
on the FLOTOX core-cell changes the threshold voltage
of the sense transistor to a high Vt, which is then
interpreted by the sense amplifier as a logic ‘1’ (no current
passes through the bit line during the read operation).
During the write operation, the threshold voltage of the
sense transistor changes to a low Vt interpreted as a logic
‘0’ by the sense amplifier (a current passes through the bit
line during the read operation). From these electrical
behaviors, we can make some remarks that will be used to
define the AF detection sequence:

• Remark 1: A read operation performs on a virgin
FLOTOX core-cell (a cell not erased and not written)
provides a logic ‘1’ as no current passes through the
cell.

• Remark 2: If an address does not access any cell,
the data read is a logic ‘1’ as the sense amplifier does
not measure any current.

Paper 3.2 INTERNATIONAL TEST CONFERENCE 5

• Remark 3: If an address selects two core-cells,
which are connected to the same bit-line and
containing opposite data (‘0’ and ‘1’), the data read
is a logic ‘0’. In fact, in that case, the sense amplifier
measures the current passing through the cell having
the logic ‘0’. The same behavior occurs if an address
selects two core-cells, connected to the same word-
line, containing opposite data (‘0’ and ‘1’). This
assumption is due to eFlash specificities.

Detection of SA_AFs

Detection of SA_AFs can be performed using a global
pattern approach. The solution consists in writing all the
cells in one time (chip write: CW) and then read the
expected value ‘0’. This basic detection of SA_AFs is
described in Figure 8.

In the first example, SA_AFs #1, a write operation is
performed in one time on Addi and Addj. Cells Ci and Cj
contain a logic ‘0’. During the read sequence, Addi gives a
logic ‘0’ whereas Addj gives a logic ‘1’. The fault is
sensitized and observed. For the dual representation
SA_AF #1’, the same phenomenon occurs as for SA_AF
#1. For the second examples, SA_AFs #2 and #2’, the
same behavior occurs but this time the content of the
unselected cell is always stuck-at logic ‘1’. Thus, we can
conclude that this simple detection sequence (CW and
Read) allows testing all SA_AFs.

 Addi

Addj

Addi

Addj

Ci

Cj

Ci

Cj

Addi

Addj

Addi

Addj

Ci

Cj

Ci

Cj

W0/R0
Read out = 0

W0/R0
Read out = 1

0

0

1

W0/R0
Read out = 0

W0/R0
Read out = 1

0

1

2

W0/R0
Read out = 1

W0/R0
Read out = 0

0

0

1’

W0/R0
Read out = 1

W0/R0
Read out = 0

1

0

2’

Figure 8: Basic detection of SA_AFs

Detection of MA_AFs

Detection of MA_AFs is more difficult than SA_AFs and
thus cannot be obtained with global patterns only, i.e. CE
and/or CW patterns. We first initialize the array by
performing a chip erase (CE) that initialize all cells at
logic ‘1’. Then, we act a write on Addi only in order to
obtain two opposite data on Addi and Addj. Finally, a read
operation is performed. Figure 9 presents the MA_AFs
detection sequence on Addi and Addj addresses.

For the MA_AFs #3, during the read operation of Addi
and Addj, we read twice the content of cell Cj, a logic ‘0’
instead of the expected ‘0’ on Ci and ‘1’ on Cj. For the
MA_AFs #3’, we also read twice the content of the same
cell (Ci) which is fixed to a logic ‘0’.

The MA_AFs #4’ example is more complex than the
previous ones because this time, Addj selects two cells (Ci
and Cj) containing opposite data. According to Remark 3,
the data read with Addj is a logic ‘0’.

 Addi

Addj

Addi

Addj

Ci

Cj

Ci

Cj

Addi

Addj

Addi

Addj

Ci

Cj

Ci

Cj

Addi

Addj

Ci

Cj

Addi

Addj

Ci

Cj

Addi

Addj

Ci

Cj

W1/W0/R0
Read out = 0 1/1

3

1/0
W1/--/R1

Read out = 0

W1/W0/R0
Read out = 0 1/0

3’

1/1
W1/--/R1

Read out = 0

W1/W0/R0
Read out = 0 1/0

4

1/0
W1/--/R1

Read out = 0

W1/W0/R0
Read out = 0 1/0

4’

1/1
W1/--/R1

Read out = 0

W1/W0/R0
Read out = 0 1/0

5

1/0
W1/--/R1

Read out = 0

W1/W0/R0
Read out = 0 1/1

5’

1/0
W1/--/R1

Read out = 0

W1/W0/R0
Read out = 0 1/0

6

1/0
W1/--/R1

Read out = 0
Figure 9: Basic sensitization of MA_AFs

For the MA_AFs #5, Addj addresses cell Ci containing a
logic ‘0’. During the read operation, a logic ‘0’ is read for
both Addi and Addj. MA_AF #5’ behaves as MA_AFs
#4’ because Addj selects two cells containing opposite
data. Finally MA_AFs #6 gives two logic ‘0’ during the
read operation.

In each case the expected values were ‘0’ for Ci and ‘1’
for Cj but due to the MA_AFs, a logic ‘0’ is always read
on both Addi and Addj addresses. The proposed sequence
allows the detection of all MA_AFs.

3.3 Similarities between AF in eFlash
and RAM

Based on the previous AF analysis, we can try to optimize
the global test flow of an eFlash memory by exploiting
some similarities existing between SA_AFs / MA_AFs
and classical RAM fault models such as stuck-at and
coupling fault models.

For example, we can compare faults in the SA_AFs family
to stuck-at ‘1’ faults (SAF1) because the faulty address
gives always a logic ‘1’.

For the MA_AFs family, the faulty behavior induced by
each fault operates as a coupling fault. In fact, for the
MA_AFs #3 and #3’, one cell is selected by two different
addresses, such that writing at a certain address induces a
write on the other one. The same behavior occurs for the
erase operation. In that case, a cell can be the victim and
the other the aggressor or vice-versa. From the RAM test
literature, MA_AFs #3 and #3’ behave as state coupling
faults, denoted as CFst<0,0> and CFst<1,1>.

Paper 3.2 INTERNATIONAL TEST CONFERENCE 6

For the MA_AFs #4, #4’, #5 and #5’, a complex faulty
behavior like a coupling phenomenon also occurs. In this
case, as a write or an erase at any address induces the
same operation on its coupled neighborhood, the
equivalent fault model is a disturb coupling fault. The
equivalent models are: CFdst<w1,↑> and CFdst<w0,↓>
corresponding to the two possible operations on a memory
cell. Finally, in case of MA_AFs #6, the behavior can also
be associated to a disturb coupling fault for which a cell
can be either a victim or an aggressor.

By exploiting these similarities, we can develop an
efficient test strategy to detect not only all AFs but also
almost all other faults that may affect an eFlash.

4. Concurrent approach for AFs testing
In this section, we propose an efficient strategy to test AFs
using a minimal number of programming operations. Note
that, the proposed test strategy is based on the concurrent
programming capability available in almost Flash
memories. Nevertheless, if this capability is not built-in, a
small logic overhead can be added to the eFlash in order to
get it. Moreover, by using the previous similarities, we
want to optimize the global eFlash flow to test all fault
models from the actual list of faults established in [8, 9].
The following subsections present the proposed test
strategy for AFs testing, first in the word line decoder and
next in the bit line decoder.

4.1 AFs testing in the word line decoder
For detecting SA_AFs, we have previously given the test
sequence consisting in a full Chip Write (CW) followed
by a read of the entire eFlash array. This sequence is able
to detect all possible SA_AFs equivalent to the stuck-at
one fault model. Such a test sequence can easily be
performed as an eFlash has a special programming mode
to act the same operation (erase and write) in one time on
all core-cells. For a ATMEL 0.15µm eFlash built with
FLOTOX core-cells, this special mode allows erasing or
writing the whole memory in 10ms. Thus, the testing time
of SA_AFs along the word line decoder will take 10ms for
the programming operations and less than two
milliseconds for the read operations. Note that the read
operation depends on the eFlash memory size but remains
always negligible in comparison with the programming
time.

The test strategy is more complex for detecting MA_AFs.
From Section 3.3, we have seen that MA_AFs could be
equivalent to different coupling faults (CFst and CFdst).
Coupling fault testing has to consider all combinations
involving two cells (aggressor cells and victim cells). For
MA_AFs testing, we have to consider all possible
conflicts between two addresses which correspond to all
possible address couples. Let us assume that the eFlash
has M word lines. We can deduce the total number NB of
faulty address couples as:

2

1MM NB −
×= (1)

Note that Equation 1 does not give the total number of
possible MA_AFs but rather the number of possible faulty
address couples. For example, let us consider a set of four
distinct addresses (A0, A1, A2 and A3) for which the six
possible faulty address couples are as follows:

A0 → A1 and A0 → A2 and A0 → A3

A1 → A2 and A1 → A3

A2 → A3

If we consider an eFlash memory of 1024 pages, NB
reaches 523776 possible faulty address couples. From this
very high number of possible faulty address couples, it is
clear that the basic sensitization sequence to test MA_AFs
is not applicable as it would take around 2100s.

A first solution to detect MA_AFs should consist in using
a March test algorithm able to detect coupling faults.
However, as mentioned previously, this class of solution is
not applicable as March tests are not compatible with
eFlash testing. The main solution generally used to detect
AFs in an eFlash consists in using the Diagonal 0 pattern
[10]. The goal of this pattern is to write a diagonal of 0’s
in the array. Figure 10 presents an example of a Diagonal
0 pattern applied on a 16x16 eFlash array.

 0111111111111111
1011111111111111
1101111111111111
1110111111111111
1111011111111111
…
1111111111111101
1111111111111110

Figure 10: Diagonal 0 pattern for a 16x16 eFlash

Let us consider again the example of a 1024 pages eFlash.
The resulting number of write operations used to perform
the Diagonal 0 pattern will be 1024. This approach
reduces considerably the test time of MA_AFs although it
still remains significant, i.e. about 4s in this example. It is
defined as follows:

 NbPagePWCEDiag0 ×+=T (2)

Note that in Equation 2, we do not consider the time
required for the read operation as it is considered as
negligible compared to the programming time.

The test strategy proposed in this paper allows detecting
all AFs in the word line decoder in a time much more
lower compared to the Diagonal 0 pattern. To do that, we
combine the March approach used to test coupling faults
in word oriented memories [13] with the basic
sensitization sequence presented in Section 3.2 for
detecting MA_AFs. The resulting test strategy looks like

Paper 3.2 INTERNATIONAL TEST CONFERENCE 7

the method proposed in [14, 15] to detect open and short
defects that may affect chip wire interconnections using
the IEEE1149.1 standard.

The first pattern of the proposed strategy is a succession of
‘0’ and ‘1’ with a distance of δ = 1 between them. This
pattern is equivalent to a checkerboard pattern. Here we
have represented this pattern on a set of eight different
addresses:

A0 A1 A2 A3 A4 A5 A6 A7

 0 1 0 1 0 1 0 1

If we consider address A0 and the seven address couples
possible with this address, we see that our first pattern is
able to detect half of all MA_AFs combinations involving
this address. Generally, with address A0 as a reference,
the possible MA_AFs involving A0 and the addresses
located at a distance of (k+1)*δ are tested with k ∈ {0, 2,
4 , …} and (k+1)*δ < number of addresses. In the
previous example, the addresses coupled with A0 are A1,
A3, A5 and A7.

The detection of the other address couples is done in the
same way. The second pattern we apply is obtained by
setting δ = 2:

A0 A1 A2 A3 A4 A5 A6 A7

 0 0 1 1 0 0 1 1

With this second pattern, we can test the possible
MA_AFs involving A0 and addresses located at a distance
of (k+1)*δ with δ = 2 from A0. The possible faulty
address couples are A0/A2 and A0/A6. With the same
method, we can build a third pattern by setting δ = 4:

A0 A1 A2 A3 A4 A5 A6 A7

 0 0 0 0 1 1 1 1

This third pattern allows the detection of the remaining
faulty address couple A0/A4. Here too, the distance
between A0 and A4 is (k+1)*δ with δ = 4.

With the three previous patterns, all MA_AFs involving
A0 are detected. Moreover, due to the periodicity of each
pattern all the others possible faulty address couples
corresponding to the others MA_AFs are tested.

The entire sequence presents a modulo 2 periodicity as the
logic ‘0’ and the logic ‘1’ duration is multiplied by 2
between two consecutive patterns. We can also compute
the limit number of patterns to generate with the help of
the relation:

W2log (3)

where B is the total number of addresses.

In our example involving eight addresses, the number of
patterns to generate is 3. The main advantage of the
proposed sequence is the logarithmic relationship defining

the number of patterns to generate. In fact, if we consider
an eFlash memory of 1024 word lines, the proposed
sequence will contain 10 patterns only. These 10 patterns
can be applied using the special programming mode of the
eFlash (concurrent chip write pattern: CCWP) resulting in
10 programming operations compared to 1024
programming operations in case of the Diagonal 0 pattern.

In order to illustrate the proposed test strategy, let us
consider an eFlash consisting of 8 word lines and 4 bit
lines. From Equation 3, three patterns are needed to detect
all MA_AFs. These three patterns are applied using the
CCWP (concurrent chip write pattern). This specific
eFlash programming mode requires a chip erase (CE)
before each pattern programming as presented in Figure
11. This example shows that six programming operations
are required to apply the three initial test patterns detecting
all MA_AFs in the word line decoder.

 CE CCWP.1 CE CCWP.2 CE CCWP.3
WL0 1111 0000 1111 0000 1111 0000
WL1 1111 1111 1111 0000 1111 0000
WL2 1111 0000 1111 1111 1111 0000
WL3 1111 1111 1111 1111 1111 0000
WL4 1111 0000 1111 0000 1111 1111
WL5 1111 1111 1111 0000 1111 1111
WL6 1111 0000 1111 1111 1111 1111
WL7 1111 1111 1111 1111 1111 1111

Figure 11: MA_AFs testing in the word line decoder

4.2 AF testing in the bit line decoder
The problem of AF detection in the bit line decoder is
equivalent to the AF detection in the word line decoder.
First, detecting SA_AFs is done in the same way as
previously, i.e. a chip write CW followed by a read
operation. Secondly, detecting MA_AFs is performed with
the same type of patterns than for MA_AFs in the word
line decoder. For example, Figure 12 presents the patterns
in the case of a 8-bit line eFlash. For simplicity, Figure 12
only represents the page corresponding to WL0.

As for detecting MA_AFs in the word line decoder, the
number of patterns to apply is given by the following
relation:

B2log (4)

where W is the total number of bit lines. Moreover, as for
testing MA_AFs in the word line decoder, we need to
perform a chip erase (CE) between each CCWP pattern.

 BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7
CE 1 1 1 1 1 1 1 1
CCWP.1 0 1 0 1 0 1 0 1
CE 1 1 1 1 1 1 1 1
CCWP.2 0 0 1 1 0 0 1 1
CE 1 1 1 1 1 1 1 1
CCWP.3 0 0 0 0 1 1 1 1

Figure 12: MA_AFs testing in the bit line decoder

Paper 3.2 INTERNATIONAL TEST CONFERENCE 8

4.3 AF testing summary
In this section, we have proposed a test strategy to detect
all AFs that may affect the address decoders. Here we
summarize the complete approach on a 4x4 eFlash. Figure
13 represents the sequence to test AFs in the word line
decoders. A CW is first applied on the array followed by a
read operation to detect all SA_AFs. Then, the four
patterns allowing the MA_AFs detection are applied.

CW
0000
0000
0000
0000

 CE
1111
1111
1111
1111

CCWP.
1

0000
1111
0000
1111

 CE
1111
1111
1111
1111

CCWP.
2

0000
0000
1111
1111

↑
Read

↑
Read

 ↑
 Read

Figure 13: Word lines AFs testing

In the same way, Figure 14 presents the test sequence to
detect AFs in the bit line decoder.

CE
1111
1111
1111
1111

CCWP.1
0101
0101
0101
0101

 CE
1111
1111
1111
1111

CCWP.2
0011
0011
0011
0011

 ↑
Read

 ↑
 Read

Figure 14: Bit lines AFs testing

This sequence allows the detection of all MA_AFs in the
bit line decoder. Note that, the detection of SA_AFs in the
bit line decoder is already done during the word-line AFs
testing by the CW operation in the previous sequence
presented Figure 13.

We can formulate the global test time of the proposed test
strategy as follow:

W)logB(logCCWP)(CECWT 22 +×++= (5)

in which CW, CE and CCWP each take 10ms. Once again,
we do not consider in Equation 5 the time required for the
read operation as it is negligible compared to the
programming time.

Let us now compare the resulting test time of the proposed
test strategy with that of the Diagonal 0 pattern.
Considering a 1024x1024 eFlash array (B = 1024 and W =
1024), our test strategy will take around 410ms compared
to 4s for the Diagonal 0 pattern. Our strategy reduces by a
factor of 10 the resulting test time without degradation of
the AF coverage.

5. Optimization of the AF test strategy
We have seen in Section 4 how to test AFs by considering
separately the word line and the bit line address decoders.

In this section we show how these two approaches can be
merged together to further reduce the resulting test time.

Let us first deal with the problem of MA_AFs testing.
Thanks to the modulo 2 periodicity of the proposed test
strategy, a compaction of the two previous sequences
(Figures 13 and 14) is possible. In this compaction
process, we consider the word lines and the bit lines as a
set of cells sharing the same address line. Considering the
basic MA_AFs detection sequence, we have to write two
opposite data in two different word lines or bit lines. Let
us consider the 8x8 eFlash example presented in Figure
15. In this sequence, each pattern (CCWP.1 to CCWP.3)
is preceded by a CE and followed by a read operation.

CE
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111

CCWP.1
0101 0101
1111 1111
0101 0101
1111 1111
0101 0101
1111 1111
0101 0101
1111 1111

CE
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111

CCWP.2
0011 0011
0011 0011
1111 1111
1111 1111
0011 0011
0011 0011
1111 1111
1111 1111

CE
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111
1111 1111

CCWP.3
0000 1111
0000 1111
0000 1111
0000 1111
1111 1111
1111 1111
1111 1111
1111 1111

 ↑
Read

↑
Read

↑
Read

Figure 15: Compaction of the proposed test strategy for
MA_AFs detection in a 8x8 eFlash

As can be seen in the example of Figure 15, each pattern
allows the detection of MA_AFs in the word line decoder
and in the bit line decoder as well, since two opposite data
are written in two different word lines or bit lines.

So, with the help of such a compaction technique, we
reduce the resulting number of programming operations
compared to the initial MA_AFs test strategy presented in
Section 4. However, when applying this compaction
technique, we must take care of the eFlash topology
(square or rectangle). In case of a square array, the
compaction has already been shown in Figure 15 for a 8x8
eFlash. The problem is different in case of a rectangle
array. Let us consider a 4x8 eFlash example presented in
Figure 16. This time, the array is composed of 8 bit lines
and 4 word lines. In such case, detection of MA_AFs in
the word line decoder requires 2 patterns (log2 4 = 2)
while 3 patterns (log2 8 = 3) are needed for the bit line
decoder. As more patterns are required for the bit line
decoder, the last pattern is applied to the whole memory
(see CCWP.3 in Figure 16).

In summary, for an eFlash using a rectangle array, the total
number of patterns needed to detect all MA_AFs in both
decoders is defined by the widest decoder. Then, we can
define the global test time of the compacted test strategy
as follow:

W)log,B(logmaxCCWP)(CECWT 22AF ×++=op (6)

in which, once again, we do not consider the time required
for the read operation.

Paper 3.2 INTERNATIONAL TEST CONFERENCE 9

CE
1111 1111
1111 1111
1111 1111
1111 1111

CCWP.1
0101 0101
1111 1111
0101 0101
1111 1111

CE
1111 1111
1111 1111
1111 1111
1111 1111

CCWP.2
0011 0011
0011 0011
1111 1111
1111 1111

CE
1111 1111
1111 1111
1111 1111
1111 1111

CCWP.3
0000 1111
0000 1111
0000 1111
0000 1111

 ↑
Read

↑
Read

↑
Read

Figure 16: Compaction of the proposed test strategy for
MA_AFs detection in a 4x8 eFlash

Let us now compare the resulting test time of the proposed
compacted AFs test strategy with that of the Diagonal 0
pattern. Considering again a 1024x1024 eFlash

array (B = 1024 and W = 1024), the compacted AFs test
strategy will take around 210ms compared to 4s for the
Diagonal 0 pattern. Our strategy reduces by a factor of 20
the resulting test time without degradation of the AF
coverage.

6. Impact of the AF test strategy on the
eFlash test flow

In this section, we show the interest of using the proposed
strategy for testing AFs in the global eFlash test flow. Let
us first start by a summary of our previous work on the
eFlash array. Studies presented in [7, 8, 9] have conducted
to a fault list related to actual defects occurring in the
array of FLOTOX core-cells. As a main result, we give
the following list of faults that have to be tested in order to
guarantee the eFlash array functionality:

• Stuck-at-faults

• Transition faults

• State coupling faults (CFst<0,0>, CFst<1,1>) limited
to core-cells in the same word line

• To this fault list, we obviously add AFs.

A global test flow is generally used to test eFlash [10]. It
is composed by basic patterns as CE (Chip Erase), CW
(Chip Write), CKB (Checkerboard), CKBI (Checkerboard
inverse) and Diag0 (Diagonal 0 pattern). Considering the
previous fault list, we have to check if this global test flow
is able to detect all the faults. To do that, we have
developed a fault simulation tool to evaluate the efficiency
of the global test flow. The resulting fault coverages are
reported in the second column of Table 1. From these
data, we can see that the global test flow is able to detect
100 % of SAFs, TFs and AFs. Concerning the CFst
model, only the lines CFst* are important as they reflect
the CFst<0,0> and CFst <1,1> fault coverage limited to
cells sharing the same word line. The last line in Table 1
reports the resulting test time for three eFlash sizes (1, 2
and 4Mbits eFlash). Once again, the time required for the
read operations is negligible compared to programming
times.

With the help of our fault simulation tool, we have also
evaluated the efficiency of the proposed test strategy in
both its initial version (Section 4) and its improved version

with compaction (Section 5). Results are reported in
Column 3 and Column 4 respectively. A first comment is
that both AFs test strategies detect all SAFs, TFs and AFs.
The AFs test strategy in its compacted version offers the
better test time but it does not detect all CFst*. Only the
initial AFs test strategy allows detecting all CFst*.

These comparisons show the interest of the proposed test
strategy in detecting all AFs as well as all faults that may
affect the eFlash array. Moreover, the test time of the
proposed approach increases only logarithmically with the
size of the memory array and not linearly as for a
conventional global test flow. From the test time data in
Table 1, the initial AFs test strategy reduces the test time
by a factor of 9.8, 18.6 and 34 for a 1 Mbits, 2 Mbits and 4
Mbits eFlash respectively.

 Global
test flow

AFs test
strategy

Compacted
AFs test
strategy

SAF 100 % 100 % 100 %
TF 100 % 100 % 100 %
AF 100 % 100 % 100 %

<0,1> 55 % 100 % 25 % CFst <1,0> 55 % 67 % 25 %
<0,0> 55 % 100 % 50 % CFst* <1,1> 55 % 100 % 50 %

1 Mbits eFlash ∼ 4.1s ∼ 420ms ∼ 220ms
2 Mbits eFlash ∼ 8.2s ∼ 440ms ∼ 240ms Test

time
4 Mbits eFlash ∼ 16.4s ∼ 480ms ∼ 280ms

Table 1: Test sequence evaluations

7. Conclusion
In this paper, we have address AF testing in eFlash
memories. These faults have been studied and classified in
two families, SA_AFs and MA_AFs, according to their
faulty behaviors. Based on this classification, we have
proposed a test strategy that reduces drastically the
resulting test time compared to the Diagonal 0 pattern.

This new AFs test strategy has been compared with a
global test flow generally used to test eFlash. From these
comparisons, we have shown that the proposed solution is
the only one that covers all fault models that may affect an
eFlash, i.e. all SAFs, TFs, AFs, and CFst are tested.
Moreover, our solution drastically reduces the test time
compared to the global test flow generally used; by a
factor of 34 for a 4Mbits eFlash.

8. References
[1] Semiconductor Industry Association (SIA),

“International Technology Roadmap for
Semiconductors (ITRS)”, http://www.sia-
online.org/home.cfm, 2005.

[2] “IEEE Standard Definitions and Characterization of
Floating-gate Semiconductor Arrays”, IEEE 1005-
1998, Revision of the IEEE std. 1005-1991.

Paper 3.2 INTERNATIONAL TEST CONFERENCE 10

[3] P. Pavan et al, “Flash Memory Cells – An
Overview”, Proc. of the IEEE, vol. 85, N° 8, August
1997, pp. 1248-1271.

[4] M. Mohammad and K. Saluja, “Flash Memory
Disturbances: Modeling and Test”, Proc. of the IEEE
VLSI Test Symposium, pp. 218-224, 2001.

[5] M. Mohammad and K. Saluja, “Simulating Disturb
Faults in Flash Memories Using SPICE Compatible
Electrical Model”, IEEE Trans. on Electron Devices,
vol. 50, N° 11, November 2003, pp. 2286-2291.

[6] Y.-L. Horng, J.-R. Huang and T.-S. Chang, “A
Realistic Fault Model for Flash Memories”, Proc. of
IEEE Asian Test Symposium, pp. 274-281, 2000.

[7] O. Ginez, J.-M. Daga, M. Combe, P. Girard, C.
Landrault, S. Pravossoudovitch and A. Virazel, “An
Overview of Failure Mechanisms in Embedded Flash
Memories”, Proc. of IEEE VLSI Test Symposium,
pp. 108-113, 2006.

[8] O. Ginez et al, “Retention and Reliability Problems
in Embedded Flash Memories: Analysis and Test of
Defective 2T-FLOTOX Tunnel Window”, to appear
in Proc. of IEEE VLSI Test Symposium, 2007.

[9] O. Ginez et al, “Electrical Simulation Model of the
2T-FLOTOX Core-Cell for Defect Injection and
Faulty Behavior Prediction in eFlash Memories”, to
appear in Proc. of IEEE European Test Symposium,
2007.

[10] A.-K. Sharma, “Semiconductor Memories:
Technology, Testing and Reliability”, IEEE Press,
Piscataway, 1997.

[11] K. Itoh, “VLSI Memory Chip Design”, Springer,
Berlin, Germany, 2001.

[12] A.J. van de Goor, “Testing Semiconductor Memories,
Theory and Practice”, COMTEX Publishing, 1998.

[13] A.J. van de Goor and I.B.S. Tlili, “March tests for
word-oriented memories”, Proc. of Design
Automation and Test in Europe, pp. 501-506, 1998.

[14] W.H. Kautz, “Testing of Faults in Wiring
Interconnects”, IEEE Trans. Computers, vol. 23, N°
4, April 1974, pp. 358-363.

[15] M. Abramovici, M.A. Breuer, A.D. Friedman
“Digital Systems Testing and Testable Design”,
Computer Science Press, 1990.

http://papyrus.lirmm.fr/Auteur.htm?numrec=061919257919100
http://papyrus.lirmm.fr/Auteur.htm?numrec=061914079919680
http://papyrus.lirmm.fr/Auteur.htm?numrec=061925568910730
http://papyrus.lirmm.fr/Reference.htm?numrec=191911835919360

