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Abstract 
The evolution of System-on-Chip (SoC) designs involves 
the development of non-volatile memory technologies like 
Flash. As any kind of memories, embedded Flash (eFlash) 
can be subjected to complex functional faults that are 
related to their particular technological process and to 
their integration density. In this paper, we address a major 
issue during eFlash testing, namely the test of Address 
decoder Faults (AFs), which is generally very time 
consuming with ad-hoc solutions presently used in 
industry. In the first part of the paper, we show the impact 
of AFs on the functional behavior of an eFlash. Next, we 
use an analogy with RAM memory testing to classify AFs 
with respect to their functional behavior. We then obtain 
AFs acting either as stuck-at faults or as state coupling 
faults. In the fourth part of the paper, we propose a 
concurrent approach for testing AFs acting on either the 
word line decoder or the bit line decoder. The proposed 
approach allows using a minimal number of programming 
operations during test application. Finally, we propose a 
compaction procedure to further reduce the test time of 
AFs. As a result, huge reductions in test time can be 
achieved; experiments on a 4 Mbits eFlash have shown 
that a test time reduction factor of 34x can be obtained 
when compared to the global eFlash test flow presently 
used in industry. An additional important feature of the 
proposed strategy is that it allows testing 100% of other 
critical faults in eFlashs (stuck-at, transition and state 
coupling faults) beside full coverage of AFs. 
 

1. Introduction 
The embedded memory resources are continuously 
increasing and will approach 94% of the System on Chip 
(SoC) silicon area in the next ten years [1]. This forecast 
highlights the main issue that we are currently facing in 
the fields of memory design and test. In fact, due to their 
high density, memories are considerably impacting SoC 
test time and are becoming the main contributor of the 

overall SoC yield loss. Consequently, efficient test 
solutions and repair schemes for memories are needed. 

Different types of memory can be embedded in a SoC, 
such as SRAM, DRAM, EEPROM and Flash. The 
increased use of portable electronic devices such as mobile 
phones and digital camera produces a high demand for 
Flash memories. A Flash memory is a non-volatile 
memory that allows programming and erasing memory 
data electronically [2, 3]. The main-stream operation is 
based on the floating-gate concept on which charges can 
be stored and removed. The low-power consumption and 
high density of eFlash memories make them popular for 
portable devices. Unfortunately, their high integration 
density and particular manufacturing process steps make 
them more and more prone to inter or intra core-cell 
defects. 

In the Flash testing domain, only very few papers can be 
found in the literature. Generally, all reported studies deal 
with 1T Flash cells (stacked gate / ETOX) [4, 5, 6] or 1½T 
Flash cells (split gate / local SONOS) [4, 5, 6]. In [7], we 
have considered the standard FLOTOX core-cells that are 
now often used in industry for eFlash memories. We have 
presented a qualitative analysis of actual defects and 
failure mechanisms that may occur in the FLOTOX core-
cell array. All the defects were reported from experiments 
on the ATMEL 0.15µm eFlash technology. 

The next step after the defect or failure mechanism 
analysis is i) their modeling from a functional point of 
view and ii) the development of efficient test strategies. In 
[8] and [9], we have enumerated a list of functional fault 
models that cover the actual defects occurring in NOR-
based eFlash made of FLOTOX core-cells. Here, we 
address a particular type of faults, namely the Address 
decoder Faults (AFs) that occur in the addressing logic of 
an eFlash. These faults are particularly critical during 
eFlash testing as fully testing them with ad-hoc solutions 
is generally very time consuming. 

In this paper, we propose a concurrent approach for testing 
AFs, such that a minimal number of programming 
operations can be used during test application. Compared 
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to existing solutions practiced in industry that are based on 
the use of the Diagonal 0 pattern [10], the proposed 
approach reduces the test time of AFs by one or more 
orders of magnitude without loss of fault coverage. As the 
test time of the proposed approach increases only 
logarithmically with the size of the memory array (while it 
increases linearly with the Diagonal 0 pattern approach), 
the test time reduction increases with the size of the eFlash 
memory. An important additional feature of the proposed 
strategy is that it allows testing 100% of other critical 
faults in eFlashs (stuck-at, transition and state coupling 
faults) beside full coverage of AFs. 

The rest of the paper is organized as follows. Section 2 
describes the basic operations of a FLOTOX core-cell and 
presents an eFlash memory from a functional point of 
view. Section 3 introduces AFs in the eFlash environment. 
Section 4 proposes a concurrent solution to test AFs with a 
significant test time reduction while achieving complete 
fault coverage of these faults. In Section 5, we propose a 
compaction procedure to optimize the previous solution 
and then further reduce the test time. Section 6 shows the 
interest of using the proposed test strategy to detect 100% 
of other critical faults in eFlashs (stuck-at, transition and 
state coupling faults) beside full coverage of AFs. Finally, 
Section 7 concludes the paper. 

2. eFlash functional description 
An eFlash core-cell is based on the floating-gate (FG) 
concept. There are two typical mechanisms to transfer 
electric charges from and into the FG: hot carrier injection 
(HCI) [3, 11] and the Fowler-Nordheim (FN) tunneling 
effect [3, 11]. The FN tunneling effect is used for charge 
injection or removal in FLOTOX core-cells. In our study, 
we use the FLOTOX core-cell structure presented in 
Figure 1 [3, 11]. 

 BLj 

WLi 

Vrefi 

Vss 

Select 
transistor 

Sense 
transistor 

Floating gate  
Figure 1: FLOTOX core-cell 
 

The memory cell is composed of a select transistor and a 
sense transistor. The select transistor allows the selection 
of the targeted cell. It also avoids disturbances from the 
high voltage on the bit line when the cell is not selected. 
The sense transistor contains the floating-gate (FG) and 
the sense gate. 

Three different operations can be performed on an eFlash: 
Erase, Write and Read. The Erase operation consists in 
injecting charges in the FG with a specific high voltage 

combination. The high voltage must be applied on the 
Vref node of the sense transistor while its drain must be 
maintained at ground. During the Erase operation, the 
core-cell is 'on' and allows the node BLj to be pulled-down 
at the Vss potential. Note that the erase operation is 
performed simultaneously on all the cells of the same page 
and not on a cell by cell basis. At the end of the erase 
operation, charges in the FG have changed the VT of the 
sense transistor to a high VT (VTH in Figure 2) which 
corresponds to a logic '1'. 

The Write operation consists in removing electrons from 
the FG by putting the Vref node at ground while 
maintaining BLj at a high voltage. With this operation, the 
sense transistor has a low VT (VTL in Figure 2) which 
corresponds to logic '0'. We call “VT window” the 
difference between VTH and VTL. 
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Figure 2: Vt modulation with charge quantity 
 

In eFlash, the read operation is performed by a sense 
amplifier working in a current measurement mode. The 
Vref node is set around 0.7v during the read operation. If 
the sense transistor has a low VT (VTL), it delivers a 
current (between 10µA to 30µA) and the sense amplifier 
provides a logic '0' on its output. On the other hand, with 
the same Vref value, if the sense transistor has a high VT 
(VTH) there is no current through the bit line and the 
sense amplifier gives a logic '1'. 

Two types of core-cell array can be used to realize an 
eFlash memory; NOR and NAND-based structures [3, 10]. 
Here, we present only the NOR-based structure which is 
the most often used in high-speed applications. In a NOR-
based eFlash, core-cells are placed in parallel as shown in 
Figure 3. 

A word line (WLi) is shared by all cells in the same row to 
form a page address. A core-cell array is defined 
according to a X-Y plan. Each core-cell in the array can 
hence be referenced through its X-Y coordinates.  

Like in almost all memories, the address decoding is 
performed by using a tree of pass-gates as represented in 
Figure 4. In this, we can see an addressing path D defined 
from values (100) of the address bus (A0A1A2) through a 
tree of pass-gates. 
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Figure 3: NOR eFlash structure 
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Figure 4: Tree of pass-gates for the address decoding logic in 

an eFlash memory 
 

The functional scheme of an eFlash memory is presented 
in Figure 5. An eFlash is composed of a core-cell array 
(CORE), data latches (DLATCH), bit line and word line 
decoders and sense amplifiers. In addition, eFlash 
memories need a particular building block: a Charge Pump 
device for the High Voltage Generation (HVG) allowing 
the write and erase operations. 

An eFlash has two different operating modes: the user 
mode and the test mode. In the user mode, an eFlash has 
two possible programming operations. The first one is the 
Functional Write (FW) operation that allows writing a 
data into a word. This FW operation is composed of an 
Auto Erase (AE) of the selected page containing the word 
to be written (without losing the content of the others 
words) followed by the write operation of the desired data. 
The time needed for this FW operation is 4ms for an 
eFlash designed with the ATMEL 0.15µm technology.  

The second possible programming operation is the Page 
Write mode (PW). The eFlash has a page register allowing 
the user to program a whole page with the same duration 
as a FW operation. Also in this mode, the AE operation is 
preliminary performed.  
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Figure 5: Functional scheme of eFlash memories 
 

In the test mode, there are three possible programming 
operations. The two first operations allow erasing (all 1’) 
or writing (all 0’) the eFlash in one step and in 10ms: Chip 
Erase (CE) and Chip Write (CW). The third programming 
operation, called Concurrent Chip Write Pattern (CCWP), 
allows writing a particular pattern in different selected 
memory addresses. To explain this programming 
operation, let us consider again the address decoding logic 
presented in Figure 4. This address decoder has 3-bit 
addresses and thus allows selecting 8 word lines. To select 
one word line at a time, the corresponding address is 
applied on the Ai address-bits and the complemented 
address is applied on the /Ai address-bits, thus resulting in 
a unique address selection. When the CCWP operation is 
used, more than one word line has to be selected. This can 
easily be done by applying a certain address on the Ai 
address-bits and a different address on the /Ai address-
bits. For example, let us assume that the CCWP operation 
has to write the same page on WL0, WL2, WL4 and WL6. 
To do that, we must apply 110 on A2, A1 and A0 
respectively and 111 on /A2, /A1 and /A0 respectively. In 
summary, for a single page selection, the Ai and /Ai bits 
are complemented bits. When the CCWP operation is 
used, the value of Ai and /Ai bits depends on which word 
lines we want to select. 

Moreover, note that whatever the operating mode (user 
and test), the read operation in a ATMEL 0.15µm eFlash 
memory takes 25ns irrespective of the word or memory 
size. 
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3. AFs in an eFlash 
Many studies dealing with AF testing for RAM memories 
exist and are based on March test algorithms [12]. AF 
testing for eFlash memories is much more critical as 
existing March algorithms are not applicable in this 
context for test time reason, i.e. the slow programming 
time of an eFlash. Practically, AF testing is generally done 
by performing a diagonal of ‘0’ in the core-cell array [10]. 
This test pattern, called Diagonal 0 pattern, detects all AFs 
but its application time remains very high, e.g. about 4s 
for a 1024 pages eFlash. 

Consequently, important efforts have to be done to find 
efficient AF test solutions that alleviate this test time 
problem. Beforehand, we present in this section some 
general basics of AFs in eFlash memories. 

3.1 Different types of AFs 
In this subsection we define different AF combinations 
involving addresses and their corresponding memory cells. 
To reduce the complexity of the representation, we only 
consider two addresses and their two corresponding 
memory cells. This representation can be applied for the 
word line decoders as well as for the bit line decoders. We 
note Addi and Addj the addresses corresponding to 
memory cells Ci and Cj respectively. We consider that 
Addi and Addj are addresses of an entire word line or bit 
line. In the same way, memory cells Ci and Cj can be 
considered as stand alone memory cells or as a set of 
memory cells sharing the same word line or bit line 
addressed with Addi and Addj. 

As presented in [12], functional faults within the address 
decoders may result in the four following subtypes of AFs: 

• subtype1: with a certain address, no cell will be 
accessed. 

• subtype2: there is no address with which this cell 
can be accessed. A certain cell is never accessed. 

• subtype3: with a certain address, multiple cells are 
accessed simultaneously. 

• subtype4: a certain cell can be accessed with 
multiple addresses. 

Note that AFs must be at least the combination of two 
subtypes from the above list. From these different 
subtypes, we can then classify the AFs into two families. 
These two families are described in Figure 6 and Figure 7. 

Figure 6 illustrates the first AF family in which a cell can 
be accessed by a maximum of one address. This AF family 
is referred to as Single Access AFs (SA_AFs). 
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Figure 6: Single Access AFs (SA_AFs) 
 

Figure 7 illustrates the second family of AFs in which a 
cell can be accessed by more than one address. This 
second family is referred to as Multiple Access AFs 
(MA_AFs). 
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Figure 7: Multiple Access AFs (MA_AFs) 
 

3.2 Basic operations for AF detection 
As discussed in Section 2, an erase operation performed 
on the FLOTOX core-cell changes the threshold voltage 
of the sense transistor to a high Vt, which is then 
interpreted by the sense amplifier as a logic ‘1’ (no current 
passes through the bit line during the read operation). 
During the write operation, the threshold voltage of the 
sense transistor changes to a low Vt interpreted as a logic 
‘0’ by the sense amplifier (a current passes through the bit 
line during the read operation). From these electrical 
behaviors, we can make some remarks that will be used to 
define the AF detection sequence: 

• Remark 1: A read operation performs on a virgin 
FLOTOX core-cell (a cell not erased and not written) 
provides a logic ‘1’ as no current passes through the 
cell. 

• Remark 2: If an address does not access any cell, 
the data read is a logic ‘1’ as the sense amplifier does 
not measure any current. 
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• Remark 3: If an address selects two core-cells, 
which are connected to the same bit-line and 
containing opposite data (‘0’ and ‘1’), the data read 
is a logic ‘0’. In fact, in that case, the sense amplifier 
measures the current passing through the cell having 
the logic ‘0’. The same behavior occurs if an address 
selects two core-cells, connected to the same word-
line, containing opposite data (‘0’ and ‘1’). This 
assumption is due to eFlash specificities. 

 

Detection of SA_AFs 

Detection of SA_AFs can be performed using a global 
pattern approach. The solution consists in writing all the 
cells in one time (chip write: CW) and then read the 
expected value ‘0’. This basic detection of SA_AFs is 
described in Figure 8. 

In the first example, SA_AFs #1, a write operation is 
performed in one time on Addi and Addj. Cells Ci and Cj 
contain a logic ‘0’. During the read sequence, Addi gives a 
logic ‘0’ whereas Addj gives a logic ‘1’. The fault is 
sensitized and observed. For the dual representation 
SA_AF #1’, the same phenomenon occurs as for SA_AF 
#1. For the second examples, SA_AFs #2 and #2’, the 
same behavior occurs but this time the content of the 
unselected cell is always stuck-at logic ‘1’. Thus, we can 
conclude that this simple detection sequence (CW and 
Read) allows testing all SA_AFs. 
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Figure 8: Basic detection of SA_AFs 
 

Detection of MA_AFs 

Detection of MA_AFs is more difficult than SA_AFs and 
thus cannot be obtained with global patterns only, i.e. CE 
and/or CW patterns. We first initialize the array by 
performing a chip erase (CE) that initialize all cells at 
logic ‘1’. Then, we act a write on Addi only in order to 
obtain two opposite data on Addi and Addj. Finally, a read 
operation is performed. Figure 9 presents the MA_AFs 
detection sequence on Addi and Addj addresses. 

For the MA_AFs #3, during the read operation of Addi 
and Addj, we read twice the content of cell Cj, a logic ‘0’ 
instead of the expected ‘0’ on Ci and ‘1’ on Cj. For the 
MA_AFs #3’, we also read twice the content of the same 
cell (Ci) which is fixed to a logic ‘0’. 

The MA_AFs #4’ example is more complex than the 
previous ones because this time, Addj selects two cells (Ci 
and Cj) containing opposite data. According to Remark 3, 
the data read with Addj is a logic ‘0’. 
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Figure 9: Basic sensitization of MA_AFs 
 

For the MA_AFs #5, Addj addresses cell Ci containing a 
logic ‘0’. During the read operation, a logic ‘0’ is read for 
both Addi and Addj. MA_AF #5’ behaves as MA_AFs 
#4’ because Addj selects two cells containing opposite 
data. Finally MA_AFs #6 gives two logic ‘0’ during the 
read operation. 

In each case the expected values were ‘0’ for Ci and ‘1’ 
for Cj but due to the MA_AFs, a logic ‘0’ is always read 
on both Addi and Addj addresses. The proposed sequence 
allows the detection of all MA_AFs. 

3.3 Similarities between AF in eFlash 
and RAM 

Based on the previous AF analysis, we can try to optimize 
the global test flow of an eFlash memory by exploiting 
some similarities existing between SA_AFs / MA_AFs 
and classical RAM fault models such as stuck-at and 
coupling fault models. 

For example, we can compare faults in the SA_AFs family 
to stuck-at ‘1’ faults (SAF1) because the faulty address 
gives always a logic ‘1’. 

For the MA_AFs family, the faulty behavior induced by 
each fault operates as a coupling fault. In fact, for the 
MA_AFs #3 and #3’, one cell is selected by two different 
addresses, such that writing at a certain address induces a 
write on the other one. The same behavior occurs for the 
erase operation. In that case, a cell can be the victim and 
the other the aggressor or vice-versa. From the RAM test 
literature, MA_AFs #3 and #3’ behave as state coupling 
faults, denoted as CFst<0,0> and CFst<1,1>. 
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For the MA_AFs #4, #4’, #5 and #5’, a complex faulty 
behavior like a coupling phenomenon also occurs. In this 
case, as a write or an erase at any address induces the 
same operation on its coupled neighborhood, the 
equivalent fault model is a disturb coupling fault. The 
equivalent models are: CFdst<w1,↑> and CFdst<w0,↓> 
corresponding to the two possible operations on a memory 
cell. Finally, in case of MA_AFs #6, the behavior can also 
be associated to a disturb coupling fault for which a cell 
can be either a victim or an aggressor. 

By exploiting these similarities, we can develop an 
efficient test strategy to detect not only all AFs but also 
almost all other faults that may affect an eFlash. 

4. Concurrent approach for AFs testing 
In this section, we propose an efficient strategy to test AFs 
using a minimal number of programming operations. Note 
that, the proposed test strategy is based on the concurrent 
programming capability available in almost Flash 
memories. Nevertheless, if this capability is not built-in, a 
small logic overhead can be added to the eFlash in order to 
get it. Moreover, by using the previous similarities, we 
want to optimize the global eFlash flow to test all fault 
models from the actual list of faults established in [8, 9]. 
The following subsections present the proposed test 
strategy for AFs testing, first in the word line decoder and 
next in the bit line decoder. 

4.1 AFs testing in the word line decoder 
For detecting SA_AFs, we have previously given the test 
sequence consisting in a full Chip Write (CW) followed 
by a read of the entire eFlash array. This sequence is able 
to detect all possible SA_AFs equivalent to the stuck-at 
one fault model. Such a test sequence can easily be 
performed as an eFlash has a special programming mode 
to act the same operation (erase and write) in one time on 
all core-cells. For a ATMEL 0.15µm eFlash built with 
FLOTOX core-cells, this special mode allows erasing or 
writing the whole memory in 10ms. Thus, the testing time 
of SA_AFs along the word line decoder will take 10ms for 
the programming operations and less than two 
milliseconds for the read operations. Note that the read 
operation depends on the eFlash memory size but remains 
always negligible in comparison with the programming 
time. 

The test strategy is more complex for detecting MA_AFs. 
From Section 3.3, we have seen that MA_AFs could be 
equivalent to different coupling faults (CFst and CFdst). 
Coupling fault testing has to consider all combinations 
involving two cells (aggressor cells and victim cells). For 
MA_AFs testing, we have to consider all possible 
conflicts between two addresses which correspond to all 
possible address couples. Let us assume that the eFlash 
has M word lines. We can deduce the total number NB of 
faulty address couples as: 

 
2

1MM NB −
×=  (1) 

Note that Equation 1 does not give the total number of 
possible MA_AFs but rather the number of possible faulty 
address couples. For example, let us consider a set of four 
distinct addresses (A0, A1, A2 and A3) for which the six 
possible faulty address couples are as follows: 

A0 → A1 and A0 → A2 and A0 → A3 

A1 → A2 and A1 → A3 

A2 → A3 

If we consider an eFlash memory of 1024 pages, NB 
reaches 523776 possible faulty address couples. From this 
very high number of possible faulty address couples, it is 
clear that the basic sensitization sequence to test MA_AFs 
is not applicable as it would take around 2100s. 

A first solution to detect MA_AFs should consist in using 
a March test algorithm able to detect coupling faults. 
However, as mentioned previously, this class of solution is 
not applicable as March tests are not compatible with 
eFlash testing. The main solution generally used to detect 
AFs in an eFlash consists in using the Diagonal 0 pattern 
[10]. The goal of this pattern is to write a diagonal of 0’s 
in the array. Figure 10 presents an example of a Diagonal 
0 pattern applied on a 16x16 eFlash array. 

 0111111111111111 
1011111111111111 
1101111111111111 
1110111111111111 
1111011111111111 
… 
1111111111111101 
1111111111111110  

Figure 10: Diagonal 0 pattern for a 16x16 eFlash 
 

Let us consider again the example of a 1024 pages eFlash. 
The resulting number of write operations used to perform 
the Diagonal 0 pattern will be 1024. This approach 
reduces considerably the test time of MA_AFs although it 
still remains significant, i.e. about 4s in this example. It is 
defined as follows: 

 NbPagePWCEDiag0 ×+=T  (2) 

Note that in Equation 2, we do not consider the time 
required for the read operation as it is considered as 
negligible compared to the programming time. 

The test strategy proposed in this paper allows detecting 
all AFs in the word line decoder in a time much more 
lower compared to the Diagonal 0 pattern. To do that, we 
combine the March approach used to test coupling faults 
in word oriented memories [13] with the basic 
sensitization sequence presented in Section 3.2 for 
detecting MA_AFs. The resulting test strategy looks like 
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the method proposed in [14, 15] to detect open and short 
defects that may affect chip wire interconnections using 
the IEEE1149.1 standard. 

The first pattern of the proposed strategy is a succession of 
‘0’ and ‘1’ with a distance of δ = 1 between them. This 
pattern is equivalent to a checkerboard pattern. Here we 
have represented this pattern on a set of eight different 
addresses: 

A0   A1   A2   A3   A4   A5   A6   A7 

 0      1      0      1      0     1      0      1 

If we consider address A0 and the seven address couples 
possible with this address, we see that our first pattern is 
able to detect half of all MA_AFs combinations involving 
this address. Generally, with address A0 as a reference, 
the possible MA_AFs involving A0 and the addresses 
located at a distance of (k+1)*δ are tested with k ∈ {0, 2, 
4 , …} and (k+1)*δ < number of addresses. In the 
previous example, the addresses coupled with A0 are A1, 
A3, A5 and A7. 

The detection of the other address couples is done in the 
same way. The second pattern we apply is obtained by 
setting δ = 2: 

A0   A1   A2   A3   A4   A5   A6   A7 

 0      0      1      1      0     0      1      1 

With this second pattern, we can test the possible 
MA_AFs involving A0 and addresses located at a distance 
of (k+1)*δ with δ = 2 from A0. The possible faulty 
address couples are A0/A2 and A0/A6. With the same 
method, we can build a third pattern by setting δ = 4: 

A0   A1   A2   A3   A4   A5   A6   A7 

 0      0      0      0      1     1      1      1 

This third pattern allows the detection of the remaining 
faulty address couple A0/A4. Here too, the distance 
between A0 and A4 is (k+1)*δ with δ = 4. 

With the three previous patterns, all MA_AFs involving 
A0 are detected. Moreover, due to the periodicity of each 
pattern all the others possible faulty address couples 
corresponding to the others MA_AFs are tested. 

The entire sequence presents a modulo 2 periodicity as the 
logic ‘0’ and the logic ‘1’ duration is multiplied by 2 
between two consecutive patterns. We can also compute 
the limit number of patterns to generate with the help of 
the relation: 

W2log  (3) 

where B is the total number of addresses. 

In our example involving eight addresses, the number of 
patterns to generate is 3. The main advantage of the 
proposed sequence is the logarithmic relationship defining 

the number of patterns to generate. In fact, if we consider 
an eFlash memory of 1024 word lines, the proposed 
sequence will contain 10 patterns only. These 10 patterns 
can be applied using the special programming mode of the 
eFlash (concurrent chip write pattern: CCWP) resulting in 
10 programming operations compared to 1024 
programming operations in case of the Diagonal 0 pattern. 

In order to illustrate the proposed test strategy, let us 
consider an eFlash consisting of 8 word lines and 4 bit 
lines. From Equation 3, three patterns are needed to detect 
all MA_AFs. These three patterns are applied using the 
CCWP (concurrent chip write pattern). This specific 
eFlash programming mode requires a chip erase (CE) 
before each pattern programming as presented in Figure 
11. This example shows that six programming operations 
are required to apply the three initial test patterns detecting 
all MA_AFs in the word line decoder. 

  CE CCWP.1 CE CCWP.2 CE CCWP.3 
WL0 1111 0000 1111 0000 1111 0000 
WL1 1111 1111 1111 0000 1111 0000 
WL2 1111 0000 1111 1111 1111 0000 
WL3 1111 1111 1111 1111 1111 0000 
WL4 1111 0000 1111 0000 1111 1111 
WL5 1111 1111 1111 0000 1111 1111 
WL6 1111 0000 1111 1111 1111 1111 
WL7 1111 1111 1111 1111 1111 1111  

Figure 11: MA_AFs testing in the word line decoder 
 

4.2 AF testing in the bit line decoder 
The problem of AF detection in the bit line decoder is 
equivalent to the AF detection in the word line decoder. 
First, detecting SA_AFs is done in the same way as 
previously, i.e. a chip write CW followed by a read 
operation. Secondly, detecting MA_AFs is performed with 
the same type of patterns than for MA_AFs in the word 
line decoder. For example, Figure 12 presents the patterns 
in the case of a 8-bit line eFlash. For simplicity, Figure 12 
only represents the page corresponding to WL0. 

As for detecting MA_AFs in the word line decoder, the 
number of patterns to apply is given by the following 
relation: 

B2log  (4) 

where W is the total number of bit lines. Moreover, as for 
testing MA_AFs in the word line decoder, we need to 
perform a chip erase (CE) between each CCWP pattern. 

  BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7 
CE 1 1 1 1 1 1 1 1 
CCWP.1 0 1 0 1 0 1 0 1 
CE 1 1 1 1 1 1 1 1 
CCWP.2 0 0 1 1 0 0 1 1 
CE 1 1 1 1 1 1 1 1 
CCWP.3 0 0 0 0 1 1 1 1  

Figure 12: MA_AFs testing in the bit line decoder 
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4.3 AF testing summary 
In this section, we have proposed a test strategy to detect 
all AFs that may affect the address decoders. Here we 
summarize the complete approach on a 4x4 eFlash. Figure 
13 represents the sequence to test AFs in the word line 
decoders. A CW is first applied on the array followed by a 
read operation to detect all SA_AFs. Then, the four 
patterns allowing the MA_AFs detection are applied. 

CW 
0000 
0000 
0000 
0000 

 CE 
1111 
1111 
1111 
1111 

CCWP.
1 

0000 
1111 
0000 
1111 

 CE 
1111 
1111 
1111 
1111 

CCWP.
2 

0000 
0000 
1111 
1111 

 

↑ 
Read 

↑ 
Read 

           ↑ 
          Read 

Figure 13: Word lines AFs testing 
 

In the same way, Figure 14 presents the test sequence to 
detect AFs in the bit line decoder. 

CE 
1111 
1111 
1111 
1111 

CCWP.1 
0101 
0101 
0101 
0101 

 CE 
1111 
1111 
1111 
1111 

CCWP.2 
0011 
0011 
0011 
0011 

 

 ↑ 
Read 

            ↑ 
           Read 

Figure 14: Bit lines AFs testing 
 

This sequence allows the detection of all MA_AFs in the 
bit line decoder. Note that, the detection of SA_AFs in the 
bit line decoder is already done during the word-line AFs 
testing by the CW operation in the previous sequence 
presented Figure 13. 

We can formulate the global test time of the proposed test 
strategy as follow: 

W)logB(logCCWP)(CECWT 22 +×++=  (5) 

in which CW, CE and CCWP each take 10ms. Once again, 
we do not consider in Equation 5 the time required for the 
read operation as it is negligible compared to the 
programming time. 

Let us now compare the resulting test time of the proposed 
test strategy with that of the Diagonal 0 pattern. 
Considering a 1024x1024 eFlash array (B = 1024 and W = 
1024), our test strategy will take around 410ms compared 
to 4s for the Diagonal 0 pattern. Our strategy reduces by a 
factor of 10 the resulting test time without degradation of 
the AF coverage. 

5. Optimization of the AF test strategy 
We have seen in Section 4 how to test AFs by considering 
separately the word line and the bit line address decoders. 

In this section we show how these two approaches can be 
merged together to further reduce the resulting test time. 

Let us first deal with the problem of MA_AFs testing. 
Thanks to the modulo 2 periodicity of the proposed test 
strategy, a compaction of the two previous sequences 
(Figures 13 and 14) is possible. In this compaction 
process, we consider the word lines and the bit lines as a 
set of cells sharing the same address line. Considering the 
basic MA_AFs detection sequence, we have to write two 
opposite data in two different word lines or bit lines. Let 
us consider the 8x8 eFlash example presented in Figure 
15. In this sequence, each pattern (CCWP.1 to CCWP.3) 
is preceded by a CE and followed by a read operation. 

CE 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 

CCWP.1 
0101 0101 
1111 1111 
0101 0101 
1111 1111 
0101 0101 
1111 1111 
0101 0101 
1111 1111 

CE 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 

CCWP.2 
0011 0011 
0011 0011 
1111 1111 
1111 1111 
0011 0011 
0011 0011 
1111 1111 
1111 1111 

CE 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 

CCWP.3 
0000 1111 
0000 1111 
0000 1111 
0000 1111 
1111 1111 
1111 1111 
1111 1111 
1111 1111 

 

 ↑ 
Read 

↑ 
Read 

↑ 
Read 

Figure 15: Compaction of the proposed test strategy for 
MA_AFs detection in a 8x8 eFlash 

 

As can be seen in the example of Figure 15, each pattern 
allows the detection of MA_AFs in the word line decoder 
and in the bit line decoder as well, since two opposite data 
are written in two different word lines or bit lines. 

So, with the help of such a compaction technique, we 
reduce the resulting number of programming operations 
compared to the initial MA_AFs test strategy presented in 
Section 4. However, when applying this compaction 
technique, we must take care of the eFlash topology 
(square or rectangle). In case of a square array, the 
compaction has already been shown in Figure 15 for a 8x8 
eFlash. The problem is different in case of a rectangle 
array. Let us consider a 4x8 eFlash example presented in 
Figure 16. This time, the array is composed of 8 bit lines 
and 4 word lines. In such case, detection of MA_AFs in 
the word line decoder requires 2 patterns (log2 4 = 2) 
while 3 patterns (log2 8 = 3) are needed for the bit line 
decoder. As more patterns are required for the bit line 
decoder, the last pattern is applied to the whole memory 
(see CCWP.3 in Figure 16). 

In summary, for an eFlash using a rectangle array, the total 
number of patterns needed to detect all MA_AFs in both 
decoders is defined by the widest decoder. Then, we can 
define the global test time of the compacted test strategy 
as follow: 

W)log,B(logmaxCCWP)(CECWT 22AF ×++=op (6) 

in which, once again, we do not consider the time required 
for the read operation. 
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CE 
1111 1111 
1111 1111 
1111 1111 
1111 1111 

CCWP.1 
0101 0101 
1111 1111 
0101 0101 
1111 1111 

CE 
1111 1111 
1111 1111 
1111 1111 
1111 1111 

CCWP.2 
0011 0011 
0011 0011 
1111 1111 
1111 1111 

CE 
1111 1111 
1111 1111 
1111 1111 
1111 1111 

CCWP.3 
0000 1111 
0000 1111 
0000 1111 
0000 1111 

 

 ↑ 
Read 

↑ 
Read 

↑ 
Read 

Figure 16: Compaction of the proposed test strategy for 
MA_AFs detection in a 4x8 eFlash 

 

Let us now compare the resulting test time of the proposed 
compacted AFs test strategy with that of the Diagonal 0 
pattern. Considering again a 1024x1024 eFlash  

array (B = 1024 and W = 1024), the compacted AFs test 
strategy will take around 210ms compared to 4s for the 
Diagonal 0 pattern. Our strategy reduces by a factor of 20 
the resulting test time without degradation of the AF 
coverage. 

6. Impact of the AF test strategy on the 
eFlash test flow 

In this section, we show the interest of using the proposed 
strategy for testing AFs in the global eFlash test flow. Let 
us first start by a summary of our previous work on the 
eFlash array. Studies presented in [7, 8, 9] have conducted 
to a fault list related to actual defects occurring in the 
array of FLOTOX core-cells. As a main result, we give 
the following list of faults that have to be tested in order to 
guarantee the eFlash array functionality: 

• Stuck-at-faults 

• Transition faults 

• State coupling faults (CFst<0,0>, CFst<1,1>) limited 
to core-cells in the same word line 

• To this fault list, we obviously add AFs. 

A global test flow is generally used to test eFlash [10]. It 
is composed by basic patterns as CE (Chip Erase), CW 
(Chip Write), CKB (Checkerboard), CKBI (Checkerboard 
inverse) and Diag0 (Diagonal 0 pattern). Considering the 
previous fault list, we have to check if this global test flow 
is able to detect all the faults. To do that, we have 
developed a fault simulation tool to evaluate the efficiency 
of the global test flow. The resulting fault coverages are 
reported in the second column of Table 1. From these 
data, we can see that the global test flow is able to detect 
100 % of SAFs, TFs and AFs. Concerning the CFst 
model, only the lines CFst* are important as they reflect 
the CFst<0,0> and CFst <1,1> fault coverage limited to 
cells sharing the same word line. The last line in Table 1 
reports the resulting test time for three eFlash sizes (1, 2 
and 4Mbits eFlash). Once again, the time required for the 
read operations is negligible compared to programming 
times. 

With the help of our fault simulation tool, we have also 
evaluated the efficiency of the proposed test strategy in 
both its initial version (Section 4) and its improved version 

with compaction (Section 5). Results are reported in 
Column 3 and Column 4 respectively. A first comment is 
that both AFs test strategies detect all SAFs, TFs and AFs. 
The AFs test strategy in its compacted version offers the 
better test time but it does not detect all CFst*. Only the 
initial AFs test strategy allows detecting all CFst*. 

These comparisons show the interest of the proposed test 
strategy in detecting all AFs as well as all faults that may 
affect the eFlash array. Moreover, the test time of the 
proposed approach increases only logarithmically with the 
size of the memory array and not linearly as for a 
conventional global test flow. From the test time data in 
Table 1, the initial AFs test strategy reduces the test time 
by a factor of 9.8, 18.6 and 34 for a 1 Mbits, 2 Mbits and 4 
Mbits eFlash respectively. 

 Global 
test flow 

AFs test 
strategy 

Compacted 
AFs test 
strategy 

SAF 100 % 100 % 100 % 
TF 100 % 100 % 100 % 
AF 100 % 100 % 100 % 

<0,1> 55 % 100 % 25 % CFst <1,0> 55 % 67 % 25 % 
<0,0> 55 % 100 % 50 % CFst* <1,1> 55 % 100 % 50 % 

1 Mbits eFlash ∼ 4.1s ∼ 420ms ∼ 220ms 
2 Mbits eFlash ∼ 8.2s ∼ 440ms ∼ 240ms Test 

time 
4 Mbits eFlash ∼ 16.4s ∼ 480ms ∼ 280ms 

Table 1: Test sequence evaluations 
 

7. Conclusion 
In this paper, we have address AF testing in eFlash 
memories. These faults have been studied and classified in 
two families, SA_AFs and MA_AFs, according to their 
faulty behaviors. Based on this classification, we have 
proposed a test strategy that reduces drastically the 
resulting test time compared to the Diagonal 0 pattern. 

This new AFs test strategy has been compared with a 
global test flow generally used to test eFlash. From these 
comparisons, we have shown that the proposed solution is 
the only one that covers all fault models that may affect an 
eFlash, i.e. all SAFs, TFs, AFs, and CFst are tested. 
Moreover, our solution drastically reduces the test time 
compared to the global test flow generally used; by a 
factor of 34 for a 4Mbits eFlash. 
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