
Formal and Graphical Annotations For Digital Objects

Nicolas Moreau, Michel Leclère, Michel Chein, Alain Gutierrez
LIRMM, CNRS - Université Montpellier 2

161 rue Ada
F-34392 Montpellier cedex 5 - France

{moreau, leclere, chein, gutierrez}@lirmm.fr

ABSTRACT
This paper presents graphical tools that facilitate manual
building of formal semantic annotations for digital objects.
These tools are intended to be integrated in digital ob-
ject (DO) management systems requiring semantic meta-
data (e.g. precise indexation, comment, categorization, cer-
tification). We define a multidimensional graphical model
of semantic annotations that specifically allows contextu-
alization of annotations, and we propose a methodology for
building such annotations. The graph-based formalism used
(derived from Conceptual Graphs), provides graphical rep-
resentations that users can easily understand, and are fur-
thermore logically founded. A graphical generic API im-
plementing elements of the SG family has been developed.
CoGUI consists of three specialized tools: a tool for defining
a CG ontology, another for creating annotations based on a
CG ontology, and finally a tool that uses the CoGITaNT
platform, for querying an annotated DO base.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

Keywords
Conceptual graphs, knowledge representation, semantic an-
notation

1. INTRODUCTION
An enormous amount of documents are available, especially
through the web, so it is now essential to have access to tools
for adding semantic metadata (also called annotations) to
existing documents.

To annotate a (primary) document involves associating a
new (secondary) document to the initial one. This very
general definition overlooks the great diversity of annotation
processes. For instance:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SADPI ’07, May 21-22, 2007, Montpellier, France
Copyright 2007 ACM 978-1-15159-668-4

• an annotation process can be automatic or manual or
computer-aided;

• an annotation can be a natural language text or a for-
mal expression in some formal language or a blend of
both;

• annotations can be added for various reasons, e.g. com-
ments, information, certification, indexation, etc.

• an annotation can be “objective” (e.g. author, date,
etc.) or “subjective” (e.g. a point of view concerning
the document).

In the present work, complex formal and graphical anno-
tations having a logical semantics are used. Using complex
conceptual structures provides precise representations of dif-
ferent comments about various documents. The query lan-
guage is also built on the annotation language and formal
semantics of the answers can be given (the answers are the
formulas that entail the query). The principal drawback of
this method is that the construction of rich semantical rep-
resentations requires a substancial amount of human time
(for constructing the conceptual vocabulary as well as the
annotations themselves). Thus, our method is useful when
detailed comments about documents are essential or when
automatic indexation is not precise enough for the targeted
goals.

An annotating tool basically has to support: reading in
documents, decomposing documents into annotatable parts
(DOs), creating annotations, linking them to DOs, and stor-
ing annotations (cf. for instance, [1], [17], [16], [14], [11],
[20], [15]). The tools presented in this paper do not con-
sider all the tasks an annotating tool should manage. We
focus on methods and tools that enable an effective and rig-
orous work for a human annotator. In this paper, the term
“annotator” refers to specialists of at least one aspect of the
document base who want to describe a feature of this aspect.
Our aim is to provide to an annotator notions (e.g. mod-
ular ontologies, patterns, prototypes), and graphical tools
(implementing these notions) to facilitate building complex
annotations acording to a formal model.

Our participation in several projects for the promotion and
publication of a multimedia corpus led us to propose a method-
ology based on an annotation model. The core of such
a model is a formal domain ontology, with an annotation
charter which guides the annotator’s work. One goal of

this charter is to encourage annotators to elaborate complex
annotations (i.e. semantic networks of concepts), whereas
the traditional work of annotators is generally restricted to
finding a set of keywords representing the document con-
tent. In order to reduce the time needed for constructing
such a complex annotation, the annotation process is based
on the identification of “conceptual patterns” the annotator
has to choose, to glue these patterns together, and to mod-
ify them. These patterns are contextualized on parts of the
domain ontology so that the tool can automatically restrict,
at a given stage, the usable vocabulary. In this way, with a
few “clicks”, an annotator can construct a rich and original
annotation. Another goal is to ensure that the annotations
built respect a formal model. Thus, they can be searched
by a logically founded search engine and, if they are built
by several annotators (and/or from several points of view),
they can be jointly processable.

The proposed annotation model was developed through a
collaboration with multimedia document indexation experts,
who tested our tools in different projects (Opales, Saphir,
Logos). Most of the examples given in this paper come
from the Saphir project. Saphir is a French national project
headed by INA1, MSH2, LIRMM, LERIA3 and NETIA4,
which aims to develop a computer-aided system for hyper-
media publications described by intentional specification and
rhetoric modeling. In this project, our annotation model
and the associated tools include : an editor of annotation
models, an annotation editor, and a query/answering tool,
all built on CoGUI5, which is a generic GUI for our graph-
based models using the CoGITaNT API [9] as a reasoning
server, are included in the annotating tool AudioVisualStu-
dio developed by INA to describe a multimedia corpus.

This paper is organized as follows. Section 2 reviews the
formalism we use. In section 3, we introduce the multi-
dimensional annotation model and its formalization. Section
4 presents the annotation process and the way to design an
annotation charter. Finally, in section 5, we explain how to
make use of the annotation base for information retrieval or
for query/answering.

2. GRAPH-BASED FORMALISM
The graph-based formalism used in this paper has been de-
veloped at LIRMM for 15 years [5]. The main difference
relative to the initial Conceptual Graphs model of Sowa [21]
is that only primitives allowing graph-based reasoning are
represented. This formalism has properties which make it
relevant to semantical annotation: it is a kind of seman-
tic network allowing intuitive representation (and thus intu-
itive interpretation) of the represented knowledge; it allows
contextualization of knowledge (via nested graphs) and the
representation of different kinds of knowledge: annotation,
patterns, rules, constraints (cf. SG family [3]); it is logi-
cally founded, allowing definition of notions of consistency
(for annotations and annotation bases), and deduction from

1Institut national de l’audiovisuel http://www.ina.fr.
2La maison des sciences de l’homme http://semioweb.
msh-paris.fr/AAR/FR/.
3Informatics lab of Angers university
4Editor of management and multimedia content diffusion
software http://www.netia.net.
5http://www.lirmm.fr/cogui

annotations; it has reasoning mechanisms based on graph
theory, allowing graphic display of inconsistencies as well as
deductions (and use of efficient graph algorithms); finally,
it is close to the RDF language, the standard annotation
language of the semantic web (cf. equivalence properties in
[2]), and to Topic Maps, the ISO specification of document
descriptions (cf. transformations in [4]), thus enabling the
semantic interoperability of built annotations.

This section briefly reviews the components of this formal-
ism: simple conceptual graphs (SG) built w.r.t. a vocabu-
lary (a simple ontology), rules and constraints (cf. [3] for a
study of the SG family), conjunctive types (cf. [7]), and pos-
itive nested graphs (cf. [6]) allowing to contextualize some
knowledge to a specific concept.

2.1 Simple Graphs
A simple conceptual graph is a labelled bipartite graph. The
nodes of a class (called concepts) represent entities, the
nodes of the other class (called relations) represent relations
between entities. E.g. the graph of Figure 1 can be seen as
expressing the following knowledge: “Mary, the woman who
is the subject (of the described painting), wears a red dress.
She is the mother of the child Jesus”.

1
Child:Jesus

mother

Color:Red

color
Dress:*

Subject,Woman:Mary

wear

2 1
2

2

1

hold 1
2

Figure 1: A simple conceptual graph.

Node labels come from a vocabulary called a support. A sup-
port is a structure S = (TC , TR, I, B, σ), where TC is a
set of concept types and TR is a set of relations with any ar-
ity. TC and TR are partially ordered sets. The partial order
represents a specialization relation (t′ ≤ t is read as “t′ is
a specialization of t”). I is a set of individual markers. B is
a set of banned types. In this formalism, conjunctive types
are permitted. However, not all conjunctions of types have a
meaning. Banned types represent incompatibilities between
concept types: this is a way of expressing that the conjunc-
tion of two (or more) types is banned. Each banned type is
a conjunction of a concept type from TC . The mapping σ
assigns a signature to each relationspecifying its arity and
the maximal type for each of its arguments. A support can
be seen as a simple ontology, and SGs can be used to encode
assertions. SGs can thus be used to annotate a document.

In an SG a concept node is labelled by a couple t : m where t
is a concept type (possibly conjunctive) and m is a marker.
If the node represents an unspecified entity, its marker is
the generic marker, denoted by ∗, and the node is called a
generic node, otherwise its marker is an element of I, and
the node is called an individual node. E.g. in the SG of
Figure 1, the node [Subject,Woman:Mary] represents the
well identified person Mary, whereas the node [Dress:*]

represents a dress. A relation node is labelled by a relation r
and, if n is the arity of r, it is incidental to n totally ordered
edges. Classically, concept nodes are drawn as rectangles

and relation nodes as ovals and the order on edges incidental
to a n-ary relation node are numbered from 1 to n. An SG
is denoted by G = (CG, RG, EG, lG), where CG and RG are,
respectively, the concept and relation node sets, EG is the
set of edges and lG is the mapping labelling nodes and edges.

A graph G is consistent w.r.t. a support S = (TC , TR, I, B, σ)
if :

• the labels of the concept nodes (resp. relation nodes)
belong to (TC × (I ∪ {∗})) (resp. TR);

• any conjunctive type of a generic concept does not
contain a banned type, i.e. less than or equal to a
type in B;

• for each individual marker i of G, the conjunction of
all types of nodes where i is the individual marker does
not contain a banned type, i.e. a type in B;

• the relation nodes satisfy their signatures defined by
σ.

The fundamental notion for comparing SGs is a mapping
from an SG to another called a projection. In graph terms, it
is a graph homomorphism. Intuitively, a projection from G
to H proves that the knowledge represented by G is implied
by the knowledge represented by H. More specifically, a
projection π from G to H is a mapping from CG to CH and
from RG to RH , which preserves edges and may specialize
labels. E.g. see Figure 2: there is a projection from Q to G
(knowing that hold < near).

Dress:*

wear

2
Child:*

near

Subject:*

1

2

1
mother

12

Woman:*

1
Child:Jesus

mother

Color:Red

color
Dress:*

Subject,Woman:Mary

wear

2 1
2

2

1

hold 1
2

Q

G

Figure 2: An example of projection from Q to G.

Conceptual graphs are provided with a first-order-logic se-
mantic, defined by a mapping denoted by Φ. For instance,
the formula assigned to the graph in Figure 1 is: Φ(G) =
∃x(Subject(Mary)∧Woman(Mary)∧Child(Jesus)∧Dress(x)∧
Color(Red)∧mother(Jesus, Mary)∧hold(Mary, Jesus)∧
wear(Mary, x) ∧ color(x, Red)).

A fundamental result establishes the equivalence between
projection and deduction on formulas assigned to SGs: given
two SGs G and H on a support S, there is a projection from
G to H if and only if Φ(G) can be deduced from Φ(H) and
Φ(S) ([21] for the soundness and [5] for the completeness).

Completeness is obtained up to a condition on H: H has to
be in a normal form, so any individual marker appears at
most once in it (i.e. a specific entity cannot be represented
by two nodes). A variant of projection can be used to achieve
completeness without this restriction [7].

Let us now consider a knowledge base K composed of a sup-
port and a set of facts F . Projection yields a basic mecha-
nism to query this base. In its simplest form, a query Q is
an SG and K answers Q if there is a projection from Q to
F . Every such projection can be seen as an answer to Q.
More generally, a query may include distinguished (generic)
concept nodes. In this case, the answer is restricted to these
nodes. Classically, these nodes are marked by a ‘?’ symbol
(the graph Q of Figure 3: Q asks G for “couples of persons
who have a relationship and such that one of them is the
subject of the description”. The sole answer is Jesus,Mary

(knowing that Woman < Person, Child < Person and child

< relationship). This kind of query is equivalent in expres-
sive power to conjunctive queries in databases.

mother

2

1

relationshipPerson: ? Person,Subject: ?
2 1Q

1
Child:Jesus Color:Red

color
Dress:*

Subject,Woman:Mary

wear

2 1
2

hold 1
2

2

1

child

G

Figure 3: An example of a query.

SGs are used to represent queries and facts but also building
blocks for more complex kinds of knowledge, namely infer-
ence rules and constraints.

2.1.1 Rules
An inference rule expresses implicit knowledge of form “if
hypothesis then conclusion”, where hypothesis and conclu-
sion are both SGs. Figure 4 presents an example of a rule.
Each dotted line connects a node in the hypothesis and a
node in the conclusion; these nodes are called connection
nodes. This rule expresses the reverse relationship deduced
from the relation “mother”: “if a woman is the mother of a
person then this person is a child of this woman”.

Child:* 1
2

1

2
childChild:*

mother Woman:*

Woman:*C

H

Figure 4: An example of an SG rule.

A rule R can be applied to an SG G if there is a projection
from its hypothesis to G. Applying R to G according to such
a projection π consists of “attaching” to G the conclusion of
R by merging each connection node of the conclusion with
the image by π of the corresponding connection node in the
hypothesis. The graph G in Figure 3 was obtained from the
graph in Figure 1 by application of the rule in Figure 4.

A logical formula can be assigned to a rule. For instance,

the formula associated with the rule in Figure 4 is: Φ(R) =
∀x∀y (Person(x) ∧ Woman(y) ∧ mother(x, y) →
Person(x) ∧ child(y, x) ∧ Woman(y)).

For a knowledge base composed of a support, a set of facts
(say F), and a set of rules (say R), the query mechanism has
to take implicit knowledge coded by rules into account. The
knowledge base answers a query Q if an SG G can be derived
from F using the rules of R such that Q can be projected
to G. Sound and complete forward and backward chaining
schemes (w.r.t. the FOL semantic) have been defined [18].

Finally, note that the query problem is not decidable for gen-
eral rules. Decidability is obtained for specific rule bases, for
instance rule bases that allow to “saturate” the fact base (a
base is saturated if rule applications adding new informa-
tion can no longer be performed); then, answering a query
consists of projecting it to the saturated base.

2.1.2 Constraints
Constraints can be either positive, expressing knowledge such
as: “if condition is found, so must obligation”, or negative,
expressing knowledge such as: “if condition is found, inter-
diction must not”. They have the same syntactical form as
rules. For negative constraints, one can restrict their syntac-
tic form to an SG – which represents a forbidden graph – by
pairwise merging corresponding connection nodes. Figure
5 shows two constraints: the positive constraint C+ says
that “a contemporary painting must be associated with a
technic” ; the negative constraint C− says that “a sketch is
never executed with painting oil”.

1 2

technic
1 2

OilPainting:*

C−

Painting:*

Painting:*

technic PaintingTechnic:*

period Century:21st
1 2

Sketch:*

C+

Figure 5: Two SG constraints.

An SG G satisfies a positive constraint C+ if each projec-
tion from the condition part of C+ to G can be extended
to a projection of its mandatory part (with corresponding
connection nodes having the same image in G). G satisfies
a negative constraint C− if there is no projection from C−

into G.

An SG G is said to be consistent with respect to a set of
constraints C if it satisfies all constraints of C. When the
knowledge base is composed not only of facts but also of
rules, these rules have to be taken into account for con-
sistency. The query problem is only defined for consistent
bases. A base K composed of a support, a set of facts F , a
set of rules R and a set of negative constraints C is said to
be consistent if all SGs derivable from F by R are consistent
with respect to C. With positive constraints, consistency is
a more complex notion that we do not present here (see [3]).

2.1.3 Constraints and Difference

Note that constraints enable specification of cardinality con-
straints. E.g. Figure 6 specifies the functional constraint:
“a person has only one mother”. Nevertheless two different
concept nodes in an SG might not necessarily represent dis-
tinct entities. In order to express difference, a special binary
relation can be added over the concept node set of an SG.
This relation, denoted dif , is antireflexive and symmetrical
and its logical translation is 6=. dif is pictured by differ-
ence links (see for instance the graph in Figure 6: there is a
difference link between the nodes with label Woman).

mother Woman:*

Person:*

1
2

mother1 Woman:*
2

Figure 6: A negative SG constraint for the function-
ality of the mother relation.

Projection (say π from G to H) has to take the dif relations
into account: if {c1, c2} ∈ difG then {π(c1), π(c2)} ∈ difH .
However, even extended in this way, projection is no longer
complete with respect to deduction in classical logic. In-
deed, as very briefly explained, in classical logic the law of
the excluded middle holds true. Applied to equality and
difference, this law says that “given two entities, either they
are equal or they are different”. This leads to a case rea-
soning that cannot be computed by a simple projection, but
rather by an exponential number of projections (in the size
of H). Note however, that if we consider a logic in which the
law of the excluded middle is not accepted (e.g. intuitionist
logic), projection is complete [13]. A third way of dealing
with difference is to make the closed-world assumption. In
this case, all distinct concept nodes are assumed to repre-
sent different entities, thus the law of the excluded middle
is not applicable and projection is complete.

2.2 Typed Nested Graphs
Nested graphs [8], equipped with a FOL semantic general-
izing the FOL semantic for SGs, have been introduced to
specify different levels of description (they are close to Net-
worked RDF Graphs [19] but different since variables can be
shared by different graphs). For example, knowledge about
a desk and knowledge about what is represented on a photo
which is on this desk are not at the same level. Typed nested
graphs (TNGs) [6] are nested graphs with additional infor-
mation about the type of description at each description
level.

TNGs are defined recursively from SGs as follows:

1. A typed nested graph is obtained from a simple con-
ceptual graph by adding, to the label of each concept
node c, a third field, denoted Desc(c), equal to ∗∗ (∗∗
can be considered as the empty description).

2. Let G be a typed nested graph, let c1, c2, . . . , ck be
concept nodes of G, n1, n2, . . . , nk be nesting types,
and G1, G2, . . . , Gk be typed nested graphs. The graph
obtained by substituting (ni, Gi) in the description ∗∗
of ci for i = 1, 2, . . . , k is a typed nested graph.

In drawings, pairs (ni, Gi) associated with a concept c are
represented by boxes in this concept, labelled by the type ni

and containing the graph Gi. Figure 7 shows a typed nested
graph.

Woman:Mary

Child:Jesushold

Painting:*

Representation

Painter:Leonardo

author

1

2

2

1

Figure 7: A typed nested graph.

As soon as we consider TNGs, the support has to be ex-
tended with TN , a poset of nesting types: it is a new hierar-
chy in the vocabulary similar to the hierarchies of concept
types or relations.

3. ANNOTATION FORMALISM
The first experiments with annotators highlight the fact that
an annotation task is not performed in a single pass over the
input document. An annotation is instead performed in a
top-down way, which follows a specific objective called an
annotation dimension. One roughly identifies parts of the
input document that are related with the current objective;
these parts can be associated in a general description. Then
each part is studied with a thinner grain, it is divided into
subparts which are associated with more specific descrip-
tions, and so on.

In the Saphir project, two corpus are considered. One corpus
concerns TV news annotated along the following dimensions:
the sound track, the video track, the text and image inlays,
etc. The other corpus concerns researcher interviews. Such
an interview is annotated by first considering the theme of
the interview, then the rhetoric, which is decomposed into
discourse acts, themselves described by using a finer descrip-
tion of the theme and so on.

In order to contextualize annotation, the nested graphs can
be combined with modular ontologies. A modular ontol-
ogy is an ontology composed of modules. A module is a
sub-vocabulary of the global vocabulary which is associated
with a nesting type. Modules and nesting types are used to
represent dimensions of an annotation. The new conceptual
graph model called Modular Nested Graph (MNG) is defined
in the three following subsections.

3.1 Modules
A module is defined as a consistent sub-vocabulary of the
general vocabulary. In the sequel, we consider supports
without individual markers. Individual markers are only
introduced in the so-called graphs of individuals (cf. section
4.1.3).

Definition 1. A module of a support S = (TC , TR, TN , B, σ)
is a triple m = (T ′

C , T ′
R, T ′

N), where:

• T ′
C ⊆ TC ;

• T ′
R ⊆ TR;

• T ′
N ⊆ TN ;

• σ[T ′
R] ⊆ T ′

C : each concept type t which belongs to
the signature of a relation r in m (r ∈ T ′

R) must also
belong to m (t ∈ T ′

C).

For any module m = (T ′
C , T ′

R, T ′
N) of a support

S = (TC , TR, TE , B, σ), its underlying support
Sm = (T ′

C , T ′
R, T ′

E , B′, σ′) is defined as follows:

• T ′
C (resp. T ′

R and T ′
N) is ordered by restricting the

order relation of TC (resp. TR and TN) to elements in
T ′

C (resp. T ′
R and T ′

N);

• B′ is the restriction of B to the elements in T ′
C ;

• σ′ is the restriction of σ to T ′
R.

3.2 Dimension
The module notion is used to define modular ontologies and
annotation dimensions.

Definition 2. A modular ontology is a triple O = (S, M, D),
where S = (TC , TR, TN , B, σ) is a support, M is a set of
modules defined w.r.t. S, and D is a mapping from TN to
M . A dimension is a pair d = (n, m), where n ∈ TN is a
nested type, and m ∈ M is the module D(n) representing
the point of view that n designates.

The partial order on nesting types induces a specialization
relation between dimensions. A dimension d′ = (n′, m′) is
said to be more specific than a dimension d = (n, m) if n′ ≤
n. The hierarchization of dimensions leads to constraints on
the associated modules: a type used in a specific dimension
must be interpretable in a more general dimension. Let us
suppose that (m = (TC , TR, TN) and m′ = (T ′

C , T ′
R, T ′

N).
Then, two kinds of constraints can be considered:

• inclusion constraints: T ′
C ⊆ TC , T ′

R ⊆ TR, and T ′
N ⊆

TN ;

• specialization constraints: for every t′ ∈ T ′
C , there

is t ∈ TC such that t′ ≤ t, and the same conditions
hold for the relationtypes and the nesting types. The
specialization constraint is more flexible than the in-
clusion constraint because it allows the presence, in
a specific module, of a concept type which does not
appear in the more general module.

3.3 Modular Nested Graph
An MNG G is a TNG defined with respect to a modular
ontology O = (S, M, D) in the following way:

1. the root graph Gr composed of all the nodes not con-
tained in a nesting box (nodes of level 0) is a graph
which is consistent w.r.t. S;

2. for each typed nested graph (ni, Gi), graph Gi is con-
sistent w.r.t. Smi the support underlying the module
associated by D to the nested type ni.

4. ANNOTATION METHODOLOGY
The annotation methodology we propose is based on the
MNG formalism. One proposes to define a charter for anno-
tators in an annotation model. This charter is then imple-
mented in our annotation tool to guide annotators. Finally,
generic mecanisms of CoGITaNT allow querying of the an-
notation base.

4.1 Annotation Model
An annotation model first has to define the dimensions one
wants to use relative to a given document corpus. Such
a model is thus based on a modular vocabulary. The de-
signors of these models can attach, at each module of this
ontology, some ontological graphs which constrain and guide
users in their annotation. In the annotation tool, these
graphs act like an annotation charter. This charter will
be exploited by users, helping them to not always describe
universal knowledge (rules), constraining them in excluding
several forms of annotations (constraints), guiding them in
the annotation process (patterns), or facilitating repetitive
operations (prototypes). We have developed a software tool
dedicated to the construction of modular ontology and on-
tological graphs. This tool is a specific instance of CoGUI
(cf. Figure 8).

Figure 8: Construction of the model (example of a
prototypical graph).

4.1.1 Modular Ontology Construction
The first step in the definition of an annotation model is the
creation of a modular ontology. In this paper, we did not de-
velop the methodology to elaborate an ontology (see [10] for
a methodology adapted to CGs), but our tool is designed
for graphical editing of the global support. To design the
modules, the user chooses a selection of concept types, rela-
tion types and nesting types in the global vocabulary which
can be constructed before this selection or at the same time.
Selection of relation types can create some problems related
to signature constraints. The user has three choices in such
a situation:

• he/she removes the relation from the module;

• he/she adds all concept type parameters of the relation
signature in the module;

• he/she adds (in the module and in the general vocab-
ulary) a new relation defined as a specialization of the
first and chooses, for these parameters, more special-
ized type concepts in such a way that they belong to
the module.

Dimensions offer a first level of annotation charter in re-
stricting the usable vocabulary in each dimension. The next
step is to specify ontological graphs which can be associated
with all or only some specific modules.

Rules allow to describe knowledge which is applied to all
documents in the base. Rules are useful to simplify work
of annotators in defining in intension some types of knowl-
edge. Using these rules, the system can enrich annotations
(e.g. a given relation is symmetrical or transitive). Since
an annotator knows the rules, he/she can reduce the en-
tered annotation to a sufficient part; the application of rules
guarantees the completion.

Constraints are used to define absurd or forbidden knowl-
edge, and can also be used to restrict the signature of a
relation at a precise generality level in a given dimension.
Constraints allow to define some mandatory parts in anno-
tations and limit edition errors.

4.1.2 Conceptual Patterns
The second annotation charter level is composed of “concep-
tual patterns” that annotators can select, glue and modify.
The identification and use of such a pattern has several ad-
vantages:

• to help annotators to develop a richer description than
a simple list of concepts. An annotator starts this work
from a generic graph selected with respect to the anno-
tation objective, and just has to complete (specialize
or modify) it;

• to avoid the repetitive work of reconstruction of similar
graphs from one annotation to another. This reduces
the time required to annotate and annotation tasks
by accelerating the annotation process and avoiding a
certain weariness of annotators;

• to achieve relative unity of the annotation base by
guiding annotators toward a common “annotation genus”;

• to facilitate the training of annnotation work by a
novel annotator through patterns which permit him/her
to appropriate the pre-defined annotation genus.

In using these patterns, the designer of the annotation model
can formalize an annotation scenario: in each dimension,
he/she identifies one or several initial annotation patterns
and some extension points from which annotators can ex-
tend the document description. Two kinds of patterns have
been defined: “pattern graphs” associated with the nest-
ing type and the prototypic graphs assoicated with concept
types or relations.

A pattern graph is an MNG associated with a dimension d
which represents a starting point when describing a docu-
ment with respect to dimension d. It pools general and fre-
quent notions that arise when describing a document with
respect to d. A pattern graph has to respect the vocabulary
of the module the dimension is associated with. This con-
straint ensures that the use of a pattern does not upset the
annotation consistency. One can associate several pattern
graphs to one dimension d; e.g. when several annotation
objectives fit the same dimension. Figure 9 is an example of
a pattern graph, used in the Saphir project, associated with
the thematic dimension. It is used to describe the use of a
language.

2

1

2

1

2

2

1

1

2

1

object of

loc_tmp

presuppose

use for

part of

Thematic:*

age:*

Speech:*

Professional use:*

Discussion,Blurb:*

Level of knowledges:*

Figure 9: A pattern graph associated with the
Rhetoric dimension.

A prototypical graph is an SG which can be associated with a
concept type or with a relation. A prototypical graph defines
usual contexts of a type. A prototypical graph has a formal
parameter, a special node that we call the head, with the
same type (or relation) as the type from which it is the pro-
totype. Annotation graph nodes having a type from which
a prototypic graph is defined are potential extension points
that can be merged with the prototype head. A concept
type or relation can have several prototypes which represent
different ways to describe an entity or relation. As proto-
typical graphs are not related to dimensions, the annotator
will only have access to prototypes whose vertices are all in
the vocabulary of the current dimension during the annota-
tion process. Figure 10 shows an example of a prototypical
graph for the concept type linguistic sign system.

2

1

1

2

1

2

1

2

2

1

instrument of

loc_tmp

part of

part of

attribut of

Ling. sign system:*

L families:*

Linguistic structures:*

L alliance:*

History, Rythme, Time:*

World actor:*

Figure 10: Prototypical graph for “linguistic sign
system”.

4.1.3 Graphs of individuals
Finally, at the third annotation charter level, one introduces
some encyclopedic facts. The role of these facts is to ensure
basic knowledge about the domain (or one dimension); it

is useless to repeat this in each annotation. Especially, it
allows the user to introduce some ontological individuals and
to define the knowledge about them.

A graph of individuals is an SG which owns at least one in-
dividual marker. The set of ontological individuals is com-
puted from all the individual graphs. Any occurrence of
these individuals must have a type that is coherent with the
type defined in the graphs of individuals. During the anno-
tation process, if an ontological individual is used, then the
graph of individuals which has introduced it can be merged
to the annotation graph where it appears. Figure 11 presents
an example of a graph of individuals which defines the in-
dividual Mary. This individual marker will have the type
Woman in the vocabulary.

Man:Jesus

motherspouse

Man:Joseph

born in

Town:Jerusalem

Woman:Mary
1

2

1

22

1

Figure 11: Graph defining the individual Mary .

4.2 Structuring model
In order to annotate a DO corpus, we propose an universal
structuring model based on the decomposition of resources
in sub-resources. This model must allow the user to focus on
significant parts of a resource, in order to precisely describe
a part of it or to retrieve relevant information when querying
the annotation base.

Any resource of the corpus can be decomposed into sub-
resources, which in turn are decomposable. For example, a
video may be structured in segments, a picture in details,
and a text in paragraphs. An hypermedia, like a web page,
can be structured by elements it contains (text, video, music,
etc.), which in turn are structured as described above (see
Figure 12).

Text Picture Text

Paragraph

Paragraph

DetailDetail

Detail

PAGE
WEB

Figure 12: Example of web page structuring.

Such a structure is a tree in which each node is a resource
that can be annotated. An annotation descriptor is com-
posed of: a reference to the resource, meta-data (e.g. au-
thor, date of creation, user access permissions, keywords to
classify the resource, etc.), and a semantic description of
the resource: a semantic annotation. A similar model is
presented in [12].

In the context of Saphir, the corpus of resources is essentially
composed of audiovisual documents from INA’s archives,

and interviews from MSH. The structuring process of DO
consists of a video segmentation. This is made by the Saphir
Visual Studio software developed by INA for the project (cf.
Figure 13).

Figure 13: Software of DO structuring Saphir Visual
Studio.

4.3 Design of annotations
To obtain a generic and reusable semantic annotation tool,
one has to develop it independency from resource annotation
descriptors. We make the assumption that any structuring
tool uses identifiers to manage its annotation descriptors and
reuse these identifiers to refer to resources (via their annota-
tion descriptor) in our semantic annotations. The semantic
annotation tool we develop thus has to be integrated in any
structuring workbench of corpus of documents.

A semantic annotation is thus a MNG defined on a mod-
ular ontology which represents the different annotation di-
mensions (e.g. in Saphir: thematic, rethoric, pragmatic,
etc.). In the Saphir project, the rooted graph of MNGs is
only composed of an isolated individual concept node with
the identifier of the corresponding descriptor as individual
marker (and possibly the kind of resource (e.g. segment,
text, image...) as type). The semantic description itself is
thus given by way of graphs nested in this node. Figure 14
presents an example of such a Saphir semantic annotation
(#id identifies a specific descriptor (and thus a resource) in
the structuring system of the corpus).

4.3.1 Scenario of annotation
Once the model is defined, the user can create annotations.
In the Saphir project, our tool is bundled in the Saphir Vi-
sual Studio segmentation tool , developed by INA (figure
15)

An annotation graph is built after several steps which usu-
ally follow this process:

1. The user selects an annotation descriptor. A concep-
tual graph composed of an unique concept, named the
head of the annotation, is generated. This concept is
typed with Annotation and its individual marker is the

2

1

21

1

2

2

1

1

2

2

1

21

Pragmatic

is part of
attribut of

is part of

Natural Languages:Hebrew

Natural languages:Aramaic

Linguistic structures:Consonant language

L. families:West−semitic

object of

Natural Languages:*

Natural languages:*

object of

subject of
subject of

lecture: *

Communication: *Man,Hist.Pers.:Jesus

Rhetoric

description:*

Thematic

Annotation: #id

Figure 14: A semantic annotation with three dimen-
sions.

id of the descriptor. In the Saphir project, descriptors
are typed and this type is used as the type of the head
concept (e.g. Segment, Picture, Detail, Text, etc.).
Thus, the user can build his/her annotation by insert-
ing several nested graphs in this concept. The graph
of figure 14 is an annotation example.

2. The user chooses an annotation dimension. The tool
automatically creates the corresponding nesting box
and “zooms” within the dimension, hiding the whole
annotation to let the user focus on the dimension. The
tool also computes the vocabulary associated with the
dimension to show the user only relevant information.
The user can view the whole annotation at any time if
necessary.

3. The user can select a pattern graph to start an an-
notation process. At annotation creation, or at a di-
mension activation, the tool shows a list of patterns
corresponding to the dimension. The annotation pro-
cess is not constraining, it is just a guide. The user
can specify, generalize or even delete vertices of the
inserted pattern.

4. The user can select prototypic graphs. During annota-
tion, the user can request to complete the description
of a vertex with one of his/her utilisation contexts.
The tool automatically adds information on the proto-
typic graph in the annotation, assimilating the current
vertex with the head of the prototype. Like pattern
graphs, applied prototypic graphs can be modified by
the user.

4.3.2 Verification and validation
Once the user has built an annotation, he/her has to validate
it. A test of consistency of the annotation wrt the modular

Figure 15: An annotation made with our tool em-
bedded in Saphir Visual Studio.

ontology is made, and if it induces errors, a list of error
messages is shown. A graphic error visualisation mechanism
allows the user to modify the annotation. Then the tool
verifies the respect of constraints using CoGITaNT.

When several users work on the same base, two classical
problems concerning the individual markers are arise. There
is a problem of redundancy when different individuals de-
scribe the same entity. This can lead to silence when query-
ing the base. Another issue is the incoherency problem that
occurs when the same individual is used to describe two dif-
ferent entities. This can lead to noise when querying the
base.

Our tool verifies that the set of types that caracterize an
individual marker does not produce a banned type.

5. EXPLOITATION OF THE ANNOTATION
BASE

The tool can be used to retrieve information from a base
of annotations constructed with our model. Requests can
focus on the knowledge represented within the annotation,
e.g. one wants to know the names of the actors who play
heroes in the DO corpus. Requests can also focus on the
resources themselves, e.g. one wants to know all the videos
concerning a given theme.

Requests can retrieve documents whose annotation contains
specific knowledge (more precisely, are specializations of the
query), or can extract particular knowledge from an anno-
tation.

5.1 Form of requests
An elementary request (G, B) is composed of a base of anno-
tations B and a request graph G. Answers to a request are
computed using the previously defined projection operation.
More precisely, the answers to a request are computed from
the set of annotations (in the base) which are specializations

of the request.

A user may want two types of information:

The knowledge retrieved by the request. In this case, he/she
is interested in the projection image. This information is
relevant because data returned by the request may be more
specialized than in the request. Particulary, the request can
return individual markers corresponding to generic markers
in the request, and these individual markers can be the in-
formation sought by the user. For example, the user may
want “all heroes who hold a revolver”.

A user can have a different goal, he/she may want the list of
resources that contain a given information. For example, in
the Saphir Project, one of the goals is to make a publication
by intention of an hypermedia, so the user needs a list of
video candidates which match the users’ needs to build the
final document. In this case, the system returns the indi-
vidual markers, i.e. the identifiers, of the head nodes of the
annotations which are specializations of the request.

5.2 Boolean requests
Elementary requests can be combined by boolean operators.
The conjunction, disjunction, and negation can be used.

Let us denote by ans(G, B) the results of the request graph
G on the base B.

Conjunction, disjunction and negation of requests are de-
fined as:

• Disjunction: ans(G1∨G2, B) = ans(G1, B)∪ans(G2, B)

• Conjunction: ans(G1∧G2, B) = ans(G1, B)∩ans(G2, B)

• Negation: ans(¬G, B) = B\ans(G, B)

If a request graph is restricted to a set of concepts, then
boolean requests can be assimilated to a boolean keyword
information search.

6. CONCLUSION
This work introduces basis of a methodology for formal an-
notation based on the definition of a multi-dimensional an-
notation model providing guidance, assistance and valida-
tion of a manual annotation work. This methodology is
used on CoGUI, our graphical interface for edition, valida-
tion and exploitation of knowledge graphs.

This proposition now has to be validated through compre-
hensive experimentation involving real exploitation of built
annotations. The Saphir Project, which aims to produce
multimedia publications based on annotations of a corpus,
is a first case of experimentation.

We are currently working on the individual markers man-
agement problem which arises when annotations are made
by several annotators. Experimentations show that annota-
tors often use individual markers. Thus, it is important to
ensure that the same individual entity is well identified by a
single individual marker and, conversely, that an individual

marker is not used to designate two different entities. We
propose to base the validation of an annotation on a con-
fidence notion which expresses the level of knowledge of a
user on knowledge associated with an individual marker.

Otherwise, we are working on a mecanism of query/answering
allowing the fusion of dimensions in a more general dimen-
sion to compute approximate answers.

7. REFERENCES
[1] O. Aubert, P.-A. Champin, and Y. Prié. First

international workshop on semantic web annotations
for multimedia,15th world wide web conference. In
Proc. of SWAMM 2006, page 12.

[2] J.-F. Baget. Simple Conceptual Graphs Revisited:
Hypergraphs and Conjunctive Types for Efficient
Projection Algorithms. In Proc. of ICCS’03, volume
2746 of LNAI. Springer, 2003.

[3] J.-F. Baget and M.-L. Mugnier. Extensions of Simple
Conceptual Graphs: The Complexity of Rules and
Constraints. JAIR, 16:425–465, 2002.

[4] O. Carloni, M. Leclère, and M.-L. Mugnier.
Introducing graph-based reasoning into a knowledge
management tool: An industrial case study. In
IEA/AIE, pages 590–599, 2006.

[5] M. Chein and M.-L. Mugnier. Conceptual Graphs:
Fundamental Notions. Revue d’Intelligence
Artificielle, 6(4):365–406, 1992.

[6] M. Chein and M.-L. Mugnier. Positive nested
conceptual graphs. In International Conference on
Conceptual Structures, pages 95–109, 1997.

[7] M. Chein and M.-L. Mugnier. Types and Coreference
in Simple Conceptual Graphs. In Proc. ICCS’04,
LNAI. Springer, 2004.

[8] M. Chein, M.-L. Mugnier, and G. Simonet. Nested
graphs: A graph-based knowledge representation
model with FOL semantics. In Principles of
Knowledge Representation and Reasoning, pages
524–535, 1998.

[9] CoGITaNT. Conceptual graphs integrated tools
allowing nested typed graphs.
http://cogitant.sourceforge.net, 1997.

[10] F. Furst, M. Leclère, and F. Trichet. Operationalizing
domain ontologies: a method and a tool. In 16th
Europeean Conference on Artificial Intelligence
(ECAI), pages 318–322, 2004.

[11] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and
D. Ognyanoff. Semantic annotation, indexing, and
retrieval. Journal of Web Semantics, 2(1):227–250,
2005.

[12] M. Koivunen and R. Swick. Collaboration through
annotations in the semantic web. http://www.w3.org/
2001/Annotea/Papers/SAbook/annotea.html, 2001.

[13] M. Leclère and M.-L. Mugnier. Simple Conceptual
Graphs with Atomic Negation and Difference. In
Proceedings of ICCS’06, pages 331–345, 2006.

[14] L.Hollink, A.Th.Schreiber, B. Wielemaker, and
B.Wielinga. Semantic annotation of image collections.
In In Proceedings of the KCAP’03 Workshop on
Knowledge Markup and Semantic Annotation, Florida,
USA, October 2003.

[15] P. Martin and P. Eklund. Embedding knowledge in
web documents. In Proceedings of the 8th Int. World
Wide Web Conference, pages 1403–1419.

[16] K. Petridis, S. Bloehdorn, C. Saathoff, N. Simou,
V. Tzouvaras, S. Handschuh, Y. Avrithis,
Y. Kompatsiaris, S. Staab, and M. G. Strintzis.
Knowledge representation and semantic annotation for
multimedia analysis. IEE Proceedings on Vision,
Image and Signal Processing, Special issue on the
Integration of Knowledge, Semantics and Digital
Media Technology, 153(3):253–394, 2006.

[17] L. Reeve and H. Han. Survey of semantic annotation
platforms. In Proceedings of the 20th Annual ACM
Symposium on Applied Computing, Web Technologies
and Applications track, Florida, USA, October 2005.

[18] E. Salvat and M.-L. Mugnier. Sound and Complete
Forward and Backward Chainings of Graph Rules. In
Proc. of ICCS’96, volume 1115 of LNAI, pages
248–262. Springer, 1996.

[19] S. Schenk and S. Staab. Networked rdf graphs.
Research Report RR3/2007, Universitat
Koblenz-Landau, 2007.

[20] A. T. Schreiber, B. Dubbeldam, J. Wielemaker, and
B. Wielinga. Ontology-based Photo Annotation. IEEE
Intelligent Systems, May/June(1-2):227–250, 2001.

[21] J. F. Sowa. Conceptual Structures: Information
Processing in Mind and Machine. Addison-Wesley,
1984.

