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Bias and bene�t indu
ed by intra-spe
ies paralogy in guiltby asso
iation methods to predi
t protein fun
tionLaurent Bréhélin Olivier Gas
uelLaboratoire d'Informatique, de Robotique et de Mi
roéle
tronique de Montpellier,Projet Méthodes et Algorithmes pour la Bioinformatique,UMR 5506 CNRS - Université Montpellier II,161 rue Ada, 34392 MONTPELLIER Cedex 5, Fran
eSequen
e homology is a widely used prin
iple for the fun
tional annotation of the genes ofnewly sequen
ed genomes. It has been used for years via methods as Blast [1℄ or Pfam [7℄. How-ever, depending of the organism, large portions of genes 
annot be annotated this way, eitherbe
ause no homologous genes have been already 
hara
terized, or be
ause standard tools fail todete
t homology when the divergen
e between sequen
es is too large. For example, for Plasmod-ium fal
iparum (the main 
ausative agent of Malaria) only ∼40% of the predi
ted genes 
an beannotated by homology, leaving ∼60% of orphan genes. Nonhomology methods are needed toobtain fun
tional 
lues for those orphan genes. Re
ently, methods based on post-genomi
 data(mainly gene expression and protein intera
tion data) have been proposed. These are 
ommonlyreferred as Guilt by Asso
iation (GBA) methods. Contrary to sequen
e homology whi
h works inan inter-spe
ies way �i.e. genes 
hara
terized in other spe
ies are used to annotate the genes ofthe newly sequen
ed genome�, GBA approa
hes work in an intra-spe
ies way: the genes already
hara
terized in the genome �e.g. by dire
t assay or using homology� help for the annotation ofthe others genes (the guilt by asso
iation prin
iple). Gene expression data are often used, sin
egenes with similar trans
riptomi
 pro�le are likely to share 
ommon fun
tional roles [5℄. In thesame way, protein intera
tion data are also used, sin
e proteins that share 
ommon intera
tors arelikely to share 
ommon fun
tions [3℄.Part of these new post-genomi
 methods work in a non-supervised way (e.g. [5, 6℄): �rsta gene 
lustering algorithm is run on the post-genomi
 data to 
luster the genes into severalgroups. Then, in ea
h 
luster and for ea
h potential fun
tion, a statisti
al test is applied to
ompare the proportion of genes annotated with this fun
tion in the 
luster, with that in the
omplete set of genes. Fun
tions that appear over-represented in one 
luster are used to annotatethe un
hara
terized genes that belong to this 
luster. Another part of GBA methods work in asupervised way (e.g. [2℄): �rst, based on the post-genomi
 data of the already 
hara
terized genes,a supervised learning algorithm is run to learn a predi
tor, i.e. a fun
tion that takes as input thepost-genomi
 measurements of a given gene, and outputs one or several fun
tional predi
tions forthat gene. This predi
tor is then used to annotate the un
hara
terized genes. Other GBA methodsmix several types of post-genomi
 data with sequen
e-based information (e.g. presen
e/absen
e ofa Pfam domain), but still pro
eed in a supervised way [4℄. Performan
e of these GBA annotationmethods is usually assessed by 
ross-validation on the already 
hara
terized genes.x1 However, all these approa
hes do not distinguish between genes whi
h have, or have not,intra-spe
ies homologues (hen
e paralogues). Homology is a powerful sour
e of information topredi
t the (se
ondary and tertiary) stru
ture of proteins. As predi
ting the stru
ture of a pro-tein that has an homologue of known stru
ture is by far more easy than when no homologue isknown, we usually distinguish between the two subproblems. Approa
hes spe
ially designed forone or the other problem are separately developed and tested on appropriate ben
hmarks. This1



has the advantage both to fully bene�t from homology when it is available, and to avoid mis-evaluating the predi
tion a

ura
y. We argue here that su
h a distin
tion should also be appliedto fun
tional annotation methods, be
ause not a

ounting for intra-spe
ies paralogy a
tually bi-ases the estimate of the method performan
e. Indeed, we show that 1) fun
tional similarity andparalogy are 
losely related, i.e. paralogous genes often share similar kind of fun
tions; and 2)the proportion of 
hara
terized genes that possess a 
hara
terized paralogue is by far higher thanthat of the un
hara
terized genes. As a result, the performan
e 
omputed by 
ross-validation onthe 
hara
terized genes is an optimisti
 estimate of what 
an be expe
ted on the un
hara
terizedgenes.We propose and dis
uss a 
orre
tion pro
edure a

ounting for paralogy, whi
h should be used toproperly estimate the performan
e of any GBA-based annotation method. We use this pro
edureto estimate the optimisti
 bias indu
ed by paralogues on GBA predi
tors, based on the analysisof Sa
haromy
es 
erevisiae and Plasmodium fal
iparum trans
riptomi
 data. Next, just as withprotein stru
ture predi
tion, we propose a general s
heme that distinguishes between the genesthat have, or have not, a 
hara
terized paralogue. This general s
heme 
learly boosts the a

ura
yof the nearest-neighbor-based supervised method that we use to illustrate our purpose. Althoughthis study is based on parti
ular organisms, data, and methods, its 
on
lusions should hold forany GBA methods.Referen
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