
HAL Id: lirmm-00195268
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00195268v1

Submitted on 31 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The MIEL System: Uniform Interrogation of Structured
and Weakly-Structured Imprecise Data

Ollivier Haemmerlé, Patrice Buche, Rallou Thomopoulos

To cite this version:
Ollivier Haemmerlé, Patrice Buche, Rallou Thomopoulos. The MIEL System: Uniform Interrogation
of Structured and Weakly-Structured Imprecise Data. Journal of Intelligent Information Systems,
2007, 29 (3), pp.279-304. �10.1007/s10844-006-0014-z�. �lirmm-00195268�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00195268v1
https://hal.archives-ouvertes.fr

J Intell Inf Syst (2007) 29:279–304
DOI 10.1007/s10844-006-0014-z

The MIEL system: Uniform interrogation of structured
and weakly-structured imprecise data

Ollivier Haemmerlé · Patrice Buche ·
Rallou Thomopoulos

Received: 16 July 2003 / Revised: 4 October 2005 /
Accepted: 30 January 2006 / Published online: 24 January 2007
© Springer Science + Business Media, LLC 2007

Abstract We present an information system developed to help assessing the mi-
crobiological risk in food. That information system contains experimental results in
microbiology, mainly extracted from scientific publications. The increasing amount
of the experimental results available and the difficulty to integrate them into a
classic relational database schema led us to design a system composed of two
distinct subsystems queried through a common interface. The first subsystem is a
classic relational database. The second subsystem is a database containing weakly-
structured pieces of information expressed in terms of conceptual graphs. The data
stored in both bases can be fuzzy ones in order to take into account the specificities
of the biological information. The uniform query language used on both relational
database and conceptual graph database allows the users to express preferences by
using fuzzy sets in their queries. The MIEL system is now operational and used by
the microbiologists involved in the Sym’Previus French project.

Keywords Information integration · Fuzzy sets · Conceptual graphs

O. Haemmerlé (B)
GRIMM-ISYCOM, Université de Toulouse le Mirail, Département de
Mathématiques-Informatique, 5 allées Antonio Machado, F-31058 Toulouse Cedex, France
e-mail: ollivier.haemmerle@univ-tlse2.fr

P. Buche
INRA, Département Mathématiques et Informatique Appliquées, Unité Mét@risk,
16 rue Claude Bernard, F-75231 Paris Cedex 5, France e-mail: patrice.buche@inapg.inra.fr

R. Thomopoulos
INRA, UMR IATE (bâtiment 31), 2 place Viala, 34060 Montpellier Cedex 1, France
e-mail: rallou.thomopoulos@ensam.inra.fr

R. Thomopoulos
LIRMM, UMR 5506, 161 rue Ada, F-34392 Montpellier Cedex 5, France

280 J Intell Inf Syst (2007) 29:279–304

1 Introduction

As a result of several food safety problems, the Marrakech Agreement was signed
in 1994 during the creation of the World Trade Organization. Included in this
agreement, the SPS Agreement (Sanitary and Phytosanitary measures) concerns the
international trade of food, and targets the safety and protection of human health.
An important principle of the SPS Agreement is the study of risk analysis.

Our research project is part of the Sym’Previus project which is a French pro-
gramme involving research and technical centers, food companies, professional and
governmental organizations. The Sym’Previus project aims at building a tool for
microbiological risk analysis in food products. This tool is based on a database
containing data extracted from scientific publications in microbiology.

Our project has to deal with several important specificities which impact on the
one hand the kind of data we have to store, and on the other hand the kind of
processings we want to run on these data.

As for the kind of data we want to store, their first specificity is that they concern
a scientific field of intense activity. It is really difficult to propose the microbiologists
a classic database schema which remains up to date for a long time, since their needs
are constantly evolving. Their second characteristic is that they can be numerical
(values of the different experimental parameters such as the temperature, the pH,
. . .) or symbolic. The symbolic information is often hierarchized (taxonomy of
bacteria (Ballows, Truper, Dworkin, Harder & Schleifer, 1992), of food products
(Ireland & Moller, 2000), . . .). Finally, the data can be imprecise since they concern
complex biological processes; moreover the measurement tools are limited by their
internal imprecision.

As for the processing on these data, it is important to note that the end-users are
non-specialists in computer science. Our tool is dedicated to help microbiologists in
their search for information in order to prevent contaminations in food products.
Another specific point is that a database containing biological experiments is incom-
plete as it will never cover all the possible experimental conditions. The risk of empty
answers to a query is significant.

All these specificities led us to design a data model which presents several original
aspects.

The first choice we made is to dispatch the data into two distinct bases. The first
one is a classic relational database which contains the stable part of our information.
The choice of a relational database was made for efficiency and standardization rea-
sons and the schema of that relational database has been designed in close collab-
oration with microbiologists. But, as modifying the schema of such a database is
quite an expensive operation, we decided to use an additional base in order to store
information that was not expected when the schema of the database was designed,
but appears to be useful nevertheless. We chose to represent this part of the data—
which we call “weakly-structured”—in the conceptual graph model (Sowa, 1984)
for many reasons: (i) its graph structure appeared as a flexible way of representing
complementary information; (ii) its readability seemed to us an asset since we had to
work with non-specialists; (iii) its interpretation in first order logic provided a robust
theoretical framework; (iv) a development platform providing efficient algorithms
was available; (v) the distinction between the terminological part and the assertional

J Intell Inf Syst (2007) 29:279–304 281

part of the knowledge (as in Description Logics, for example) was valuable to im-
plement query relaxation mechanisms.

The necessity of representing imprecise values in our database concerns the rela-
tional database as well as the conceptual graph database. Previous works studied the
use of the fuzzy set framework to represent imprecise values by means of possibility
distributions (Umano, 1982; Prade & Testemale, 1984). We propose a representation
of imprecise values in the relational database based on the fuzzy set theory, close to
the representation used in FSQL (Galindo, Cubero, Pons & Medina, 1998). Unfortu-
nately, the conceptual graph model was not well-designed for the representation of
numerical and imprecise values; that is why we proposed an extension of that model,
in order to allow the storage of data with the same expressivity as the data stored
in the relational database. The combination of a knowledge representation model
with a way of introducing imprecision has been proposed in other previous works.
In particular, we can cite formalisms that describe ontologies like the object model
(Dubois, Prade & Rossazza, 1991), or information retrieval using description logics
(Sebastiani, 1994). The latter are part of the semantic networks, just as the conceptual
graph model. The introduction of the fuzzy set theory into the conceptual graph
model has been studied in Morton (1987) and extended by several works such as
Cao (1999). Compared to the previous approaches, we propose a more homogeneous
and integrated way of combining conceptual graphs and fuzzy sets in Thomopoulos,
Buche and Haemmerlé (2003b). Moreover, since we use taxonomies, we propose a
way of representing fuzzy sets defined on such taxonomies.

In addition to the originalities of our data model, we propose some specificities
concerning the query mechanism.

The first one is that the end-users express their queries in a uniform query
language which allows one to query the relational database as well as the conceptual
graph database. The answers are returned to the users by means of the graphical user
interface in a uniform way.

The users express their queries through a set of pre-written queries which we call
views. These views can be complemented by the users through the simple graphical
user interface of the MIEL system. That interface allows the users to specify their
projection attributes and their selection criteria. The ontology of the MIEL system
can also be browsed by the end-users in order to express their selection criteria.

Finally we propose the user the possibility of expressing large selection criteria
which consist of disjunctions of values. The goal is to return a maximal amount of
answers in order to avoid empty answers. The user can express different levels of
preferences on these values so as to allow flexible querying. Such an expression
of preferences is represented in terms of fuzzy sets. The use of fuzzy sets allows us
to propose a homogeneous way of representing the values of the attributes in the
data as well as the values of the selection criteria in the queries. The expression
of queries using fuzzy values has already been studied in the framework of the
relational database model. Theoretical studies have been proposed to extend the
SQL language by introducing fuzzy predicates processed on crisp information (Bosc
& Pivert, 1995) and implementations such as the FQUERY97 system (Zadrozny &
Kacprzyk, 1998) have been proposed under the QBE-like Microsoft Access graphical
environment. Our work proposes a fuzzy query mechanism in the relational model
and an analogous mechanism in the conceptual graph model.

282 J Intell Inf Syst (2007) 29:279–304

This article presents the solutions we propose to the specificities listed above.
Our work has been implemented in the MIEL1 system. Section 2 presents the
data model of the MIEL system: Section 2.1 presents the ontology used, Sections
2.2 and 2.3 present respectively the relational database schema and the conceptual
graph database schema. Section 3 presents the queries in the MIEL system: Section
3.1 defines the query language, Sections 3.2 and 3.3 present the definition and the
processing of the queries, respectively in the relational and in the conceptual graph
subsystem.

2 The MIEL data model

The following sections present the choices we made in the design of our data model
in order to take the specificities of the data into account. Section 2.1 presents the on-
tology of the MIEL system. The attributes are introduced as well as their associated
variation domains, which can be hierarchized in order to allow the representation
of taxonomies. We show that in the actual data, the attribute values are “fuzzy”:
numbers are fuzzy numbers and every symbol is augmented with a grade. These fuzzy
values express possibility distributions. They are stored into two distinct databases:
(i) a relational database with a stable schema; (ii) an additional database expressed
in terms of conceptual graphs, containing the data which do not fit the relational
database schema. These two distinct bases constitute the actual schema of the MIEL
system. The relational database schema is presented in Section 2.2, the conceptual
graph database schema is presented in Section 2.3.

2.1 The ontology of the MIEL data model

In this section we introduce the ontology of the MIEL data model, which contains all
the knowledge of the domain used in the MIEL system. That ontology is duplicated
in the relational and in the conceptual graph databases, since it is necessary for both
subsystems to work.

The basic notion of the data model of the MIEL system is the concept of attribute
which must be understood in its classic database meaning. We propose to use, instead
of crisp values, fuzzy values used in two different ways: (i) in the data, in order to
represent imprecise values expressed in terms of possibility distributions; (ii) in the
queries, in order to express preferences on the domain of a selection criterion.

In this paper, we use the representation of fuzzy sets proposed in Zadeh (1965,
1978). We remind that a fuzzy set f on a domain X (which can be continuous or
discrete) is defined by a membership function μ f from X to [0, 1] that associates the
degree to which x belongs to f with each element x of X. We call respectively sup-
port and kernel of f the following subsets of X: support(f) = {a ∈ X | μ f (a) > 0};
kernel(f) = {a ∈ X | μ f (a) = 1}.

The adequation of an imprecise data B to a fuzzy criterion A is classically
measured in the fuzzy set theory by means of two degrees: (i) the possibility degree
of matching between A and B (Zadeh, 1978), denoted �(A ; B), which is an overlap

1Moteur d’Interrogation ELargie in French, for Extended Query Processor.

J Intell Inf Syst (2007) 29:279–304 283

measure; (ii) the necessity degree of matching between B and A (Dubois & Prade,
1988), denoted N(A ; B), which is an inclusion measure.

A variation domain and a definition domain are associated with each attribute.
The variation domain corresponds to the universe of discourse; the definition domain
is the set of fuzzy sets which can be defined on the variation domain: it corresponds
to the actual domain in the classical database meaning.

Definition 1 A is the finite set of attributes of the MIEL data model. Each attribute
a ∈ A is characterized by its type Type(a), its variation domain Domv(a) and its
definition domain Dom(a). The type Type(a) of an attribute a can be numerical,
symbolic or hierarchized. Depending on its type, the variation domain Domv(a) of
an attribute a is:

– If Type(a) is numerical, Domv(a) is defined as a subset of IR;
– If Type(a) is symbolic, Domv(a) is defined as a set of symbolic constants;
– If Type(a) is hierarchized, Domv(a) is defined as a set of symbolic constants and

a partial order defined on it.

In all the cases, Dom(a) is defined as the set of all the possible fuzzy sets on
Domv(a).

A hierarchized variation domain is close to the notion of general partial order
on an attribute domain used by Ginsburg and Hull (1983) in the study of order
dependencies.

Remark 1 A value of an attribute a belongs to Dom(a). In other words, it is a map
π of Domv(a) to [0,1]. We denote by π(x) the degree of possibility that the effective
value of a is x.

For example, the variation domain of the numerical attribute pH is the interval
[0,14] on IR. The variation domain of the symbolic attribute Author could be the

Whole milk Half skim
milk

Milk Meat

Substrate

Skim
milk

Poultry

Beef Pork
Pasteurized

milk

Pasteurized
whole milk

Fig. 1 A part of the variation domain of the attribute “Substrate”

284 J Intell Inf Syst (2007) 29:279–304

4
0

1

pH_value

5 7 9

Substrate_value

Fig. 2 Two examples of imprecise values

set {S.Ajjarapu, C.P.Rivituso, M.Zwietering}. A part of the variation domain of the
hierarchized attribute Substrate is represented in Fig. 1.

The value pH_value of Fig. 2 schematizes an example of value for the attribute
pH (that value belongs to Dom(pH): it is a map of Domv(pH) into [0,1]). The value
Substrate_value of Fig. 2 schematizes an example of value for the attribute Substrate
(that value belongs to Dom(Substrate): it is a map of Domv(Substrate) into [0,1]; the
elements of Domv(Substrate) having a degree equal to 0 are not represented).

Remark 2 For simplicity, we consider that if a same element e appears in two
distinct hierarchized symbolic variation domains Domv(a) and Domv(b), then all
the specializations of that element must appear in both Domv(a) and Domv(b) with
the same partial order.

Note that in our data model, we consider that all the values are imprecise values.
The case of a crisp value for an attribute a is a particular case of the case of an
imprecise value, such that ∃x ∈ Domv(a)[π(x) = 1, and ∀y �= x, π(y) = 0].

For simplicity, and since it corresponds to the application needs, we chose to
limit the representation of numerical values to trapezoidal functions in the actual
database. These trapezoidal functions are stored by means of 4 characteristic points
defining the limits of the support and the kernel of the fuzzy set. In the example of
Fig. 2, these four characteristic points are {4, 5, 7, 9}.

2.2 The schema of the relational database

In this section, we focus on the choices we have made in order to map the ontology
of the MIEL data model presented previously onto the RDB schema. We present
how the attributes and their variation domains are represented in the RDB. We
successively consider the way of representing an attribute belonging to the ontology
of the MIEL data model, when that attribute is respectively of type numerical,
symbolic or hierarchized.

2.2.1 Representation of a numerical attribute

The representation of a value of a numerical attribute of A in the relational schema
is done by means of a row of an additional table which contains the unique identifier

J Intell Inf Syst (2007) 29:279–304 285

ExpeId Substrate FuzzyPHId

27 Pork 221

39 SkimMilk 223

FuzzySetId MinSupp MinKer MaxKer MaxSupp

221 4 5 6 7

223 9 10 12 12.5

Fig. 3 The left table presents an example of relation referencing numerical fuzzy values. The right
table contains a part of the relation FuzzyPH which contains the actual numerical fuzzy sets (the
second row corresponds to a crisp value)

of the fuzzy set and four attributes which correspond to the four characteristic points
of the trapezoidal function. The tables presented in Fig. 3 present an example of
numerical attribute represented in the relational database.

2.2.2 Representation of a symbolic attribute

The representation of a value of a symbolic attribute a of A in the relational schema
is done by means of one or several rows of an additional table which contains
three columns: the unique identifier of the fuzzy set, an element of Domv(a) and
its associated membership degree in that fuzzy set. We remind that a fuzzy set
on a symbolic variation domain is defined as a set of pairs (element, degree). The
tables presented in Fig. 4 present an example of the value of a symbolic attribute
represented in the relational database.

In addition, the variation domain of each attribute a of A of type symbolic used
in the relational schema is stored in a reference table which contains all the possible
values for the attribute a.

2.2.3 Representation of a hierarchized attribute

The representation of a value of a hierarchized attribute of A in the relational schema
is done in exactly the same way as the representation of a symbolic attribute (see
Section 2.2.2).

The variation domain of each attribute a of A of type hierarchized used in the
relational schema is stored in two specific tables: a table which contains all the
possible values for the attribute a and a table which contains all the pairs {vi, v j}
of the cover relation of the partial order of Domv(a).

Substrate FuzzyOriginId

Pork 100

FuzzyOriginId Country Degree

100 USA 1.0

100 Germany 1.0

100 Italy 0.7

Fig. 4 The left table presents an example of relation referencing symbolic fuzzy values. The right
table contains a part of the relation SubstrateOrigin which contains symbolic fuzzy sets (only one
fuzzy set is represented in that example)

286 J Intell Inf Syst (2007) 29:279–304

Fig. 5 The left table presents a
part of relation DomSubstrate.
The right table presents a part
of relation OrdSubstrate

Substrate

Milk

FullMilk

PasteurizedMilk

PasteurizedFullMilk

SubstrateSup SubstrateInf

Milk FullMilk

Milk PasteurizedMilk

PasteurizedMilk PasteurizedFullMilk

FullMilk PasteurizedFullMilk

Tables presented in Fig. 5 are partial instances of relations DomSubstrate and
OrdSubstrate describing the hierarchized domain for substrates in the relational
schema.

Remark 3 When an attribute is known to be a “crisp” value (for example the
substrate in Fig. 3), the database designers have used classic database attributes of
type real, integer or string instead of fuzzy values.

As presented in the two preceding sections, the ontology of the MIEL data model
is stored in specific tables of the relational database schema. This is due to the fact
that we have to proceed to a referential integrity control in the data we store.

2.3 The schema of the conceptual graph database

The conceptual graph model is a knowledge representation model based on labelled
graphs. A lot of research has been done on this model in different kinds of appli-
cations such as Natural Language processing, information retrieval. . . The model we
use is based on the formalization presented in Mugnier and Chein (1996). A database
built on the conceptual graph model is composed of (i) a support which contains
the terminological knowledge (mainly a partially ordered set of concept types and a
partially ordered set of relation types); (ii) a set of conceptual graphs which conform
to the support and which contain the assertional knowledge. Fig. 7 is a part of the
support of the MIEL system, Fig. 10 is an example of conceptual graph built on that
support.

The specialization relation (noted ≤) partially pre-orders the set of conceptual
graphs. That specialization relation can be computed by means of the projection
operation (a graph morphism allowing a restriction of the vertex labels): G′ ≤ G if
and only if there is a projection of G into G′.

Definition 2 A projection � from a conceptual graph G into a conceptual graph G′
is a pair (f, g) of mappings, f (resp. g) from the set of relation vertices (resp. concept
vertices) of G to the set of relation vertices (resp. concept vertices) of G′ such that:
(i) the edges and their labels are preserved; (ii) the vertex labels may be restricted.

An example is given in Fig. 6. The projection is a ground operation in the
conceptual graph model since it allows the search for answers, which can be viewed
as specializations of a query.

The flexibility of the conceptual graph model played an important part in the
choice of that knowledge representation model in the MIEL system: no static schema

J Intell Inf Syst (2007) 29:279–304 287

G

G’

Interaction : * Bacteriocin : *Pathogenic Germ : * AgtObj
2 11 2

Reduction : *Interaction : I1Experiment : E1

Nisin : *Listeria Scott A : *

Res

AgtObj

Obj
1

2

1

2

1

2

2

1

Fig. 6 There is a projection from G into G′, G′ ≤ G (G′ is a specialization of G)

is used and we can build pieces of information which have different shapes by adding
or removing some characteristics easily (by adding or removing graph vertices).

We present in Section 2.3.1 the way we have built the support from the MIEL
ontology. Then we present respectively in Sections 2.3.2 and 2.3.3 the representation
of values and data in the conceptual graph database.

2.3.1 Representation of the MIEL ontology in the conceptual graph model

2.3.1.1 The concept type set of the conceptual graph model is used to represent the
main part of the ontology of the MIEL system, since it is a partially ordered set,
designed to contain the concepts of a given application. The concept type set of the
MIEL system is built as follows:

1. A concept type ta is associated with each attribute a of A;
2. If Type(a) is hierarchized:

a. A concept type tvi is associated with each element vi of Domv(a);
b. The set of concept types composed of the tvi is partially ordered by following

the partial order of Domv(a);
c. ta is inserted on top of the set of the tvi ;

3. All distinct concept types built in step 2(a) having the same label are merged (in
case the same value belongs to two distinct hierarchized variation domains);

4. All the concept types built in the previous steps are brought together into a single
concept type set by adding a common super-type (Universal) and a common sub-
type (Absurd).

Figure 7 represents a part of the concept type set of the MIEL conceptual graph
database. The name of the attribute Substrate and its hierarchized variation domain
presented in Fig. 1 of Section 2.1 appear as a partial subgraph of that concept type
set.

2.3.1.2 The set of individual markers is used to store the variation domain of each
attribute a of type symbolic or numerical. More precisely, all the values of the
variation domains of the symbolic attributes as well as the values of IR are inserted

288 J Intell Inf Syst (2007) 29:279–304

Datum

Nisin

Bacteriocin

Listeria Scott A

Listeria

Pathogenic Germ

Germ

Reduction Stability

Expe Result Experiment

Action

CFU/ml U/ml

Conc. M.U.

Degree

Temp. M.U.

Hour

Time M.U.

Measure Unit

Universal

Interaction

Absurd

E.Coli

Whole milk

Half
skim
milk

Milk Meat

Substrate Temperature
Duration

Concentration

Experimental datum

Skim
milk

Poultry

Beef Pork

Pasteurized
milk Pasteurized

whole milk

Fig. 7 A part of the concept type set of the MIEL conceptual graph database

into the set of individual markers—we proposed an extension of the conceptual graph
model to the representation of numerical values in Thomopoulos et al. (2003b).

2.3.1.3 The set of relation types does not play an important part in our conceptual
graph database since the semantics is mainly contained in the concept vertices. Then
the set of relation types we use is composed of relation types such as “agent,” “ob-
ject,” “characteristics.” These relations correspond more or less to the grammatical
function of a concept when one tries to translate a conceptual graph into natural
language.

2.3.2 Representation of the values in the conceptual graph database

The values of the attributes are represented in different ways in the conceptual graph
database, depending on the type of the attribute.

2.3.2.1 Representation of a numerical value If the attribute a we consider is numeri-
cal, and if v is its value, the pair (a, v) is represented in a conceptual graph composed
of a concept vertex of type a, a concept vertex labelled by the type NumericalValue
and the marker v, these two vertices being linked by a relation vertex labelled by
NumVal. For example, the fact that the value 7 is associated with the attibute pH is
represented by the graph in Fig. 8.

pH : * NumVal Numerical Value : 7
1 2

Fig. 8 A conceptual graph corresponding to the information pH = 7

J Intell Inf Syst (2007) 29:279–304 289

2.3.2.2 Representation of a symbolic value If the attribute a we consider is symbolic,
and if v is its value, the pair (a, v) is represented by a concept vertex labelled by
the type a and the marker v. For example the fact that the value M.Zwietering
is associated with the attribute Author is represented by the concept vertex
Author : M.Zwietering .

2.3.2.3 Representation of a hierarchized value If the attribute a we consider is
hierarchized, and if v is its value, the pair (a, v) is represented by a generic concept
vertex labelled by the type v. For example, the fact that the value Milk is associated
with the attribute Substrate is simply represented by the concept vertex Milk : * ,
since Milk is a subtype of Substrate in the concept type set.

2.3.2.4 Extension of the conceptual graph model for the representation of fuzzy values
In order to allow an homogeneous expressivity between the relational database and
the conceptual graph database, we proposed an extension of the conceptual graph
model to the representation of fuzzy values presented in Thomopoulos et al. (2003b).
We only remind that extension through an example. A fuzzy set can appear in two
ways in a concept vertex: (i) as a concept with a fuzzy type. The type is a fuzzy set
defined on a subset of the concept type set; (ii) as a concept with a fuzzy marker. The
marker is a fuzzy set defined on a subset of the set of individual markers. c1 and c2

presented in Fig. 9 are respective examples of these two cases.

2.3.3 Representation of data in the conceptual graph database

The conceptual graph database is composed of a set of conceptual graphs, each of
them representing an elementary data. For example, Fig. 10 is a part of a conceptual
graph extracted from the MIEL conceptual graph database.

At the moment, the conceptual graph database contains about 150 conceptual
graphs corresponding to scientific publications which do not fit the relational data-
base subsystem schema. These conceptual graphs have been built manually by
analyzing the relevant sentences of these publications.

3 The queries in the MIEL system

An overview of the MIEL system and its global query processing is presented in
Fig. 11.

: *
4

0

1

5 7 9

NumericalValue :

c1 c2

Fig. 9 Two examples of fuzzy concept vertices

290 J Intell Inf Syst (2007) 29:279–304

Degree : *

Temperature : *Duration : *

SkimMilk : *

Hour : *

Reduction : *

Interaction : I1Experiment : E1

Nisin : *ListeriaScottA : *

Temperature UnitTime Unit

Res
Agt

Char

Obj

Char

Obj Char
1

2

1
2

1

2

1

2

1

2
1

2

1

2

1

2

1

2

Concentration : *
Hour : *Conc. Unit

Char
1

2
1 2

Concentration : *

U/ml : *

Conc. Unit

Char

1

1

2

2

NumVal NumVal

NumVal

NumVal

NumericalValue : 6.10
NumericalValue :

NumericalValue : 37NumericalValue : 2

1

1

1

1

2

2

2

2

NumVal

NumericalValue : 34

1

2

Fig. 10 An example of conceptual graph with a fuzzy concept vertex

ontology views

query answers

MIEL graphical
user interface

Relational
database
subsystem

Conceptual
Graph
subsystem

local schema

relational
database

RDB query processor

local schema

conceptual
graph

knowledge
base

CG query processor

Query
(MIEL query

language)

Query
(MIEL query
language)

answers

Fig. 11 Overview of the MIEL system

J Intell Inf Syst (2007) 29:279–304 291

The MIEL graphical user interface allows the user to specify his/her query. Such a
query is expressed in a view (selected by the user from a list of available views). The
user also specifies in his/her query a set of projection attributes and a set of selection
criteria. Then the MIEL user interface sends the query to two “subsystems,” the
relational subsystem and the conceptual graph subsystem. Each of these subsystems
adapts the query to the formalism it uses (an SQL query in the relational subsystem,
a conceptual graph query in the conceptual graph subsystem), then uses its own query
processor in order to execute the query. Finally, the answers to the query are returned
to the MIEL interface which presents them to the user in a homogeneous way.

Section 3.1 presents the MIEL uniform query language. Then Sections 3.2 and 3.3
present respectively the query definition and processing in the relational subsystem
and in the conceptual graph subsystem.

3.1 The query language

A query asked on the MIEL system is expressed in the MIEL query language through
the MIEL graphical user interface.

In the following, we present the notions we use in a way close to domain relational
calculus (Ullman, 1988): a query Q is characterized by a set of attributes and a
predicate on these attributes. We denote Q = {a1, . . . , an|PQ(a1, . . . , an)} the query
Q characterized by the predicate PQ on the set of attributes (a1, . . . , an). We consider
that the tuple τ = (v1, . . . vn) is an answer to Q iff PQ(a1, . . . , an) is true when we
substitute ai for vi, 1 ≤ i ≤ n. We note τ [ai] the value vi of the attribute ai in the
tuple τ .

3.1.1 The notion of view

A view is a usual notion in relational databases: it is a virtual table built from the
actual tables of the relational database schema by means of a query. In the MIEL
system, a set of views (which are pre-written queries) is proposed to the user in order
to hide the complexity of the database schema.

Definition 3 A view V on n (n > 0) queryable attributes a1, . . . , an is defined by
V = {a1, . . . , an|PV(a1, . . . , an)} where PV is a predicate which characterizes the
construction of the view.

Example 1 The view BacteriocinInteraction is defined on 6 attributes: Bacterio-
cinInteraction = {PathogenicGerm, Bacteriocin, ExpeResult, Substrate, Duration,

Temperature | PBact.Inter.(PathogenicGerm, Bacteriocin, ExpeResult, Substrate,
Duration, Temperature)}. The predicate PBact.Inter. defines the way the attributes
involved in the view are linked together. That view characterizes the experimental
result of the interaction of bacteriocins (which are toxins) with pathogenic germs.

Sections 3.2.1 and 3.3.1 present respectively the mapping of that general notion of
view based on a predicate into an actual implementation in the relational database
and the conceptual graph database. Note that it is possible to have the same view
defined in both the relational and the conceptual graph databases. Such a case means
that data of a same nature are dispatched into both MIEL subsystems.

292 J Intell Inf Syst (2007) 29:279–304

MilkProductPreference

0

0.5

1

35 36,5 37,5 43
0

1

ºC

HumanBodyTemperature

Fig. 12 Two fuzzy sets which can be used as values for selection criteria

3.1.2 Expression of a query

A query in the MIEL system is a specialization of a given view by the end-user, who
specifies a set of projection attributes as a subset of the queryable attributes of the
view and a set of selection criteria on some other attributes (the selection criteria and
the ≈ operator should be defined in Section 3.1.3).

Definition 4 A query Q asked on a view V is defined by Q = {a1, . . . , al| ∃al+1, . . . ,

an(PV(a1, . . . , an) ∧ (al+1 ≈ vl+1) ∧ . . . ∧ (am ≈ vm))}1≤l≤m≤n, where PV is the pred-
icate which characterizes the view V, a1, . . . , al are the projection attributes,
al+1, . . . , am are the selection attributes and their respective values vl+1, . . . , vm

given as selection values by the user. The attributes am+1, . . . , an are the queryable
attributes of the view which are not used in that query.

Example 2 Q = {PathogenicGerm, ExpeResult | ∃Substrate, Duration (PBact.Inter.

(PathogenicGerm, Bacteriocin, ExpeResult, Substrate, Duration, Temperature) ∧
(Temperature ≈ HumanBodyTemperature) ∧ (Bacteriocin ≈ “Nisin′′))}

The query Q expresses that the user wants to obtain the PathogenicGerm and the
ExpeResult from the view BacteriocinInteraction when the Temperature is a
HumanBody - Temperature (see Fig. 12) and the Bacteriocin is Nisin.

3.1.3 The selection criteria

As we saw previously, a database in microbiology is naturally incomplete since the
number of all the possible experiments is infinite. That incompleteness may often
result in empty answers to the queries. We propose to allow the user to use large
selection criteria corresponding to disjunctions of searched values, which can be
weighted by preferences. We propose to use the fuzzy set theory in order to express
such expression of preferences. The result of the execution of a query is not a classic
tuple but a tuple associated with an adequation degree to the query, corresponding
to a measure of the satisfaction of the preferences expressed by the user.

Example 3 Based on the fuzzy sets presented in Fig. 12:

• A selection criterion (Temperature ≈ HumanBodyTemperature) means that the
user is interested by tuples with a Temperature value belonging to the interval

J Intell Inf Syst (2007) 29:279–304 293

[36.5, 37.5]. He/she also accepts values from 36 to 36.5 or 37.5 to 40 with a lower
preference degree;

• A selection criterion (Substrate ≈ MilkProductPref erence) means that the user
is interested by tuples with a Substrate value equal to WholeMilk. He/she also
accepts HalfSkimMilk with a lower preference degree.

Definition 5 A selection criterion in the MIEL query language is of the form (a ≈ v),
a being an attribute and v being an attribute value expressed by a fuzzy set.

We consider that the result of the evaluation of a selection criterion (a ≈ v) on a
tuple τ is composed of two measures:

– The possibility degree of matching �(v, τ [a]) (see Zadeh, 1978). When �(v,

τ [a]) = 0 there is no overlap between v and τ [a];
– The necessity degree of matching N(v, τ [a]) (see Dubois & Prade, 1988). When

N(v, τ [a]) = 0 there is no inclusion of τ [a] into v ;

The selection criterion (a ≈ v) is satisfied iff �(v, τ [a]) > 0 (we always have
� ≥ N).

In other words, a selection criterion is satisfied if there is an overlap between the
selection value of the criterion and the corresponding value of the tuple.

Remark 4 The expressions of preferences allow the users to prioritize the values they
searched for in their queries. In the actual MIEL system, the users simply set a partial
order on the attribute values they are interested in by means of a Graphical User
Interface (see Fig. 17). The MIEL system associates automatically decreasing weights
with the searched values.

In the following paragraph, we present how the comparisons between fuzzy sets
used in Definition 5 are computed.

3.1.4 Comparisons on fuzzy sets in the MIEL system

As we saw previously, the fuzzy sets in the MIEL database can be defined on
three types of variation domains: numerical, symbolic and hierarchized. The classic
comparison operators on fuzzy sets make it necessary that the fuzzy sets to be
compared are defined on a same domain.

3.1.4.1 Comparisons on numerical or symbolic fuzzy sets The comparisons on
numerical or symbolic fuzzy sets do not present any kind of problem since the fuzzy
sets are defined on the same domain (respectively IR or the set of symbolic constants).

3.1.4.2 Comparisons on hierarchized fuzzy sets In the special case of fuzzy sets
defined on a subset of a hierarchized variation domain, it is possible to consider
that degrees on the whole variation domain of the considered attribute are implicitly
defined.

For example, assume the user chooses the selection criterion (Substrate ≈
MilkProductPref erence) in a query. Such a criterion can be interpreted as: “the user
wants WholeMilk as a substrate but he/she also accepts HalfSkimMilk with a lower

294 J Intell Inf Syst (2007) 29:279–304

adequation degree.” Since the domain is hierarchized by the “kind-of” relation, it is
possible to consider that the user who is interested in WholeMilk is also interested in
all the kinds of WholeMilk such as WholePasteurizedMilk.

We propose to associate a fuzzy set closure defined on all the variation domain
with each fuzzy set defined on a subset of a hierarchized variation domain. That fuzzy
set closure takes into account the implicit degrees induced by the “kind-of” relation,
by propagating the degree associated with a value to all the specializations of that
value.

There are special cases when the user associates different degrees with comparable
values in the “kind-of” relation. We consider such a case with semantics of reinforce-
ment when the most specific value has a greater degree than the most general one,
with semantics of restriction otherwise. For example, the user can be interested in
Milk but more particularly in WholeMilk (he/she can give a lower degree to Milk than
to WholeMilk). On the contrary, he/she can be interested in Milk but with a lower
preference for WholeMilk (in such a case, he/she gives a lower degree to WholeMilk).

Definition 6 Let f be a fuzzy set defined on a hierarchized attribute a on the domain
D ⊆ Domv(a) with the membership function μ. The fuzzy set closure f ∗ associated
with f is defined on the whole variation domain Domv(a). Its membership function
μ∗ is computed as follows:

For each element e of Domv(a), let M = {u1, . . . , un} be the set of most specific
elements of D such that uk ≥ e in the partial order on Domv(a),

• If M is not empty, μ∗(e) = max1≤k≤n(μ(k));
• Otherwise μ∗(e) = 0.

For example, let f = (1/Milk, 0.8/PasteurizedMilk, 0.6/WholeMilk) a fuzzy
set defined on D = {Milk, PasteurizedMilk, WholeMilk} ⊆ Domv(Substrate). The
fuzzy set closure f ∗ associated with the fuzzy set f is presented in Fig. 13.
The value associated with PasteurizedWholeMilk in f ∗ is computed as follows:
(a) the degrees associated with elements belonging to D remain unchanged in

Whole milk Half skim
milk

Milk Meat

Substrate

Skim
milk

Poultry

Beef Pork
Pasteurized

milk

Pasteurized
whole milk

1

0.8

1 1

0.6

0,8

0

0 0

0

Fig. 13 The fuzzy set closure f ∗ corresponding to f = (1/Milk, 0.8/Pasteurized milk, 0.6/Whole
milk)

J Intell Inf Syst (2007) 29:279–304 295

f ∗, (b) those degrees are propagated to the subtypes when there is no conflict
(SkimMilk and HalfSkimMilk get the degree of Milk in f ∗), (c) when there is a
conflict (for example, 0.6 or 0.8 could be propagated to PasteurizedWholeMilk) the
maximum degree of the most specialized generalizations of the considered element
is chosen (in our example, {PasteurizedMilk, WholeMilk} are the most specialized
generalizations of PasteurizedWholeMilk in Domv(a), 0.8 is then associated with
PasteurizedWholeMilk in f ∗), (d) 0 is associated with the other elements of f ∗.

When a fuzzy set defined on a hierarchized variation domain is used as a value in
a selection criterion of a query, the fuzzy set closure is computed and then used as
the actual selection value used to search for satisfying answers in the database. Note
that, in order to compare a selection criterion and an imprecise value represented by
two fuzzy sets defined on a hierarchized variation domain, we use this mechanism of
computation of the fuzzy set closure to both fuzzy sets to be compared.

3.1.4.3 Comparison operators Since after the computation of the fuzzy set closure
the domains of the fuzzy sets are homogeneous, the classical comparison operators
on fuzzy sets (possibility and necessity degrees of matching) can be applied (see
Zadeh, 1978; Dubois & Prade, 1988).

3.1.5 The answers

An answer A to a query Q in the MIEL system is a set of tuples. Each tuple is
composed of values (which are fuzzy sets as presented in Def 1). Each tuple satisfies
the selection criteria (as defined in Def 5) of the query.

Definition 7 Let Q = {a1, . . . , al|∃al+1, . . . , an(PV(a1, . . . , an) ∧ (al+1 ≈ vl+1) ∧ . . . ∧
(am ≈ vm))} be a query. The answer A to the query Q is: A = {τ1, . . . , τr}, the
set of tuples of the form {τi[a1], . . . , τi[al], ni, πi}1≤i≤r, such that every tuple of A
satisfies all the selection criteria of Q, with ni = mini=l+1,...,m N(vi, τ [ai]) and πi =
mini=l+1,...,m�(vi, τ [ai]) – πi being strictly positive – their respective necessity and
possibility degrees of matching.

Note that the min operator is classically used as an aggregator when the query
expresses a conjunction of elementary requirements (Dubois & Prade, 1995).

In order to be able to sort the answer tuples following the preferences expressed
by the users in their selection criteria, we have to characterize the best-matching
tuples. As proposed in Dubois and Prade (1995), we can consider that the necessity
degree is of greater importance than the possibility degree, because when the ne-
cessity degree is positive, we are (more or less) certain that the item matches the
requirement. A way of ranking the answer tuples could be to sort the tuples on the
values of their n and then on their π in case the n values are equal.

Nevertheless, our system is meant for microbiologists, and we thought that it was
valuable to associate a single ranking value with each tuple instead of a pair com-
posed of a necessity and a possibility degrees. That value which we call adequation
degree of the tuple to the query is defined as follows for a tuple τi: δi = ni+πi

2 .
Since we always have N(vi, τ [ai]) ≤ �(vi, τ [ai]) (Dubois & Prade, 1995), we

obviously have ni ≤ πi for all the tuples τi. Thus we know that δi is an upper bound

296 J Intell Inf Syst (2007) 29:279–304

Fig. 14 A partial instance of
relation LViews IdView FromPart SelectPart WherePart

SubstrateList Publication P, P.Title, P.IdPub=S.IdPub and

Substrate S, S.Substrate S.FuzzySetId=F.FuzzySetId

FuzzyTemp F

for ni and a lower bound for πi, and can be viewed as a synthesis of these two values.
Moreover, in the classic case of a database containing precise data, ni and πi are
equal. These remarks led us to use δi as a unique ranking value for the tuples of the
answer.

The drawback of that unique ranking value is that our system makes no difference
between a tuple τi with ni = 0.6 and πi = 1 and another tuple τ j with n j = π j = 0.8:
δi = δ j = 0.8.

To summarize, let us consider some special values of δ and their respective
meanings. Let τi be an answer tuple to a query with its adequation degree δi:

• δi = 1 means that every selection criterion of the query has been satisfied with a
necessity degree (and then a possibility degree) of matching equal to 1. In other
words, there is a “strong” inclusion of all the attribute values of the tuple in all the
values of the selection criteria, since the supports of the tuple values are included
in the kernels of the values of the respective selection criteria;

• δi > 0.5 means that ni > 0: the minimal necessity degree computed for the
different selection criteria of the tuple implies that there exists an inclusion2 for
all the values of the selection criteria and their respective values in the tuple τi;

• δi < 0.5 means that πi < 1: the minimal possibility degree computed for the
different selection criteria of the tuple implies that there is no overlap3 of the
kernels for all the values of the selection criteria and their respective values in
the tuple τi;

• δi = 0 is impossible, since a selection criterion s is considered to be satisfied iff
πs > 0 (see Definition 5).

3.2 Query definition and processing in the relational subsystem

3.2.1 Views in the relational database

The views in the relational database of the MIEL system are SQL queries. In
the actual implementation of the MIEL system, the views are stored in a specific
table of the database called LViews, in which each tuple represents a view and is
composed of four columns: IdView is the unique identifier of the view, SelectPart is
the list of projection attributes, FromPart is the list of relations involved in the view,
WherePart is the list of join predicates between those relations.

2In the meaning of the necessity degree of matching.
3In the meaning of the possibility degree of matching.

J Intell Inf Syst (2007) 29:279–304 297

Example 4 The SQL query which corresponds to the view SubstrateList defined in
Fig. 14 is : select P.Title, S.Substrate from Publication P, Substrate S, FuzzyTemp F
where P.IdPub = S.IdPub and S.FuzzySetId=F.FuzzySetId.

3.2.2 The relational database query processing

The query processing in the database subsystem is processed as follows:

1. Selection of the view corresponding to the query;
2. Transformation of the fuzzy values of the selection criteria into classic SQL

conditions (we call that process “defuzzification”);
3. Completion of the SQL query corresponding to the view in order to build the

actual “defuzzified” SQL query;
4. Subsmission of the SQL query to a standard relational database management

system (ORACLE in the present version);
5. Computation of the adequation degree of each tuple of the answer.

For example, assume the query asked through the MIEL graphical user inter-
face is: {Title, Substrate|SubstrateList(Title, Substrate) ∧ (Temperature ≈ Human
BodyTemperature)}. The selected view is that of Example 4. The defuzzification
of the selection criterion leads to the actual selection criterion: (F.MinSupp < 43)

and (F.MaxSupp > 35): 35 and 43 are respectively the lower and the upper bounds
of the support of the fuzzy value HumanBodyTemperature; that “defuzzified” con-
dition ensures there is an overlap between the two fuzzy sets and thus a satisfaction
of the selection criterion.

The SQL query submitted to the ORACLE query processor is then: select P.Title,
S.Substrate from Publication P, Substrate S, FuzzyTemp F where P.IdPub = S.IdPub
and S.FuzzySetId=F.FuzzySetId and ((F.MinSupp<43) and (F.MaxSupp>35)).

3.3 Query definition and processing in the conceptual graph subsystem

3.3.1 The views

The conceptual graph subsystem relies on a set of view graphs which allow us to
define views on the conceptual graph database.

Definition 8 A view graph S associated with a view V on n queryable attributes
{a1, . . . , an} is a pair {G, C} where G is an acyclic conceptual graph and C =
{c1, . . . , cn} is a set of distinct concept vertices of G corresponding to the queryable
attributes of the view. The type of each ci is the concept type associated with the
attribute ai (as presented in Sections 2.3.2.1–2.3.2.3).

The graph presented in Fig. 15 is a view graph for the view BacteriocinInteraction,
the concepts of C are framed in bold.

298 J Intell Inf Syst (2007) 29:279–304

NumVal NumVal

NumericalValue : *NumericalValue : *

1 1

2
2

Temp. M.U. : *

Temperature : * Duration : *

Substrate : *

Time M.U. : *

Expe. Result : *

Interaction : *Experiment : *

Bacteriocin : *Pathogenic Germ : *

Temperature UnitTime Unit

ResAgt

Char

Obj

Char

Obj Char
1

2

1
2

1

2

1

2

1

2
1

2

1

2

1

2
1

2

Fig. 15 An example of a view graph for the view BacteriocinInteraction

3.3.2 The queries

When a query is asked in the conceptual graph subsystem, the view graph corre-
sponding to the considered view is specialized by the “instantiation” of concept
vertices in order to take into account the selection attributes, resulting in a query
graph.

Definition 9 Let (a ≈ v) be a selection criterion and S = {G, C} a view graph to be
instantiated in order to build a query graph. Let c be the concept vertex correspond-
ing to the attribute a in C. The specialization of G in order to obtain a query graph is
done as follows:

• If Type(a) is symbolic, then the generic marker of c is replaced by the individual
marker v;

• If Type(a) is numerical, then the generic marker of the concept vertex of type
NumericalValue linked to c by a relation vertex NumVal is replaced by the
individual marker v;

• If Type(a) is hierarchized, then the type of the concept vertex c is restricted to
the concept type labelled by v, which has been inserted in the concept type set
(Cf. Section 2.3.1).

Example 5 The query graph presented in Fig. 16, which is a specialization of the
view graph presented in Fig. 15, corresponds to the query Q of Example 2 presented
in Section 3.1.2. Since the type of the selection attribute Temperature is not hier-
archized, the specialization is done by means of the definition of a marker in the
concept vertex NumericalValue : HumanBodyTemperature (the marker is a fuzzy
one in that example). The query graph is instantiated differently for the selection
attribute (Bacteriocin ≈ Nisin): the type of the selection attribute is hierarchized, a
restriction of the corresponding concept type to its subtype “Nisin” is done.

J Intell Inf Syst (2007) 29:279–304 299

NumVal NumVal

NumericalValue : HumanBodyTemp.NumericalValue : *

1 1

2
2

Temp. M.U. : *

Temperature : * Duration : *

Substrate : *

Time M.U. : *

Expe. Result : *

Interaction : *Experiment : *

Nisin : *Pathogenic Germ : *

Temperature UnitTime Unit

ResAgt

Char

Obj

Char

Obj Char
1

2

1
2

1

2

1

2

1

2
1

2

1

2

1

2
1

2

Fig. 16 An example of a query graph. The election attributes are framed in bold, the projection
attributes are dashed

3.3.3 Query processing

In Thomopoulos, Buche and Haemmerlé (2003a), we proposed different kinds of
comparisons between fuzzy conceptual graphs (like specialization or more flexi-
ble comparisons). In the conceptual graph subsystem of the MIEL system, the
query processing consists in searching for conceptual graphs which contain a more
precise information than the information contained in the query (we search for
specializations of the query graph) or, at least, for conceptual graphs which contain
“approximate” answers. In order to find such conceptual graphs, we propose to use
the δ-projection operation which is a flexible operation of mapping between two
conceptual graphs.

Definition 10 A δ-projection � from a conceptual graph G into a conceptual graph
G′ is a triple (f, g, δ), f (resp. g) being a mapping from the set of relation (resp.
concept) vertices of G to the set of relation (resp. concept) vertices of G′ such that:
(a) the edges and their labels are preserved; (b) the labels of the relation vertex
may be restricted; (c) each concept c ∈ G labelled t : m is mapped with its image

g(c) ∈ G′ labelled t′ : m′ with a necessity and a possibility degrees of matching
n = min(N(t, t′), N(m, m′)) and π = min(�(t, t′),�(m, m′)). The necessity and pos-
sibility degrees of matching of G and G′ are then computed in the same way as
in Definition 7; their adequation degree denoted by δ is computed as presented in
Section 3.1.5.

Note that the question of the existence of a classic projection of a graph into
another graph is NP-complete. However there are polynomial cases. Our algorithm
of δ-projection is based on a polynomial algorithm which questions the existence of
a projection of an acyclic graph into a graph (Mugnier & Chein, 1992). The only
difference is the comparison operator we use between concept vertices. But we
show in Thomopoulos et al. (2003a) that our algorithm remains polynomial. That
is the reason why we limit the view graphs (and then the query graphs) to acyclic
conceptual graphs (see Definition 8).

300 J Intell Inf Syst (2007) 29:279–304

The query processing in the conceptual graph subsystem consists in selecting the
view graph, building the query graph, and δ-projecting that query graph into all the
conceptual graphs of the database. Every time a δ-projection into a fact graph AG

with an adequation degree δ is found, the conceptual graph query processor considers
that AG is an answer graph. A tuple with the adequation degree δ is built from that
answer graph by extracting the values of the projection attributes.

For example, if we asked the query in Fig. 16 on a conceptual graph data-
base containing the conceptual graph in Fig. 10, the resulting tuple would be:
(′ListeriaScottA′,′ Reduction′, δ = 1).

4 Conclusion and perspectives

In this article we have presented some innovative work concerning the extension of
the conceptual graph model to the representation of fuzzy values, or concerning the
definition of fuzzy sets on hierarchical definition domains. A major contribution of
our work is the implementation of the MIEL system, which provides all the mecha-
nisms presented in this paper. The interface of the MIEL system, developed in Java,
is meant to be used through an Internet browser. When a query is asked through
the MIEL interface, that query is transferred to both subsystems. The answers to the
user’s query take the opposite way in order to be presented in a uniform manner
in the user’s browser. The relational subsystem has been implemented as a Java
query processor interacting with an Oracle relational database. It is composed of
about 90 tables, with data extracted from about 700 microbiological publications.
The conceptual graph subsystem has been implemented in C++ under Linux; it is
composed of a 5.000-line extension of the CoGITaNT platform (Genest & Salvat,
1998). The conceptual graph database contains about 150 conceptual graphs. The
communication between both subsystems and the MIEL interface is done through
the TCP protocole via a communication module, written in C.

Figures 17 and 18 show respectively the window allowing the expression of a query
in the MIEL system and the window presenting the results to the user.

The MIEL system has been successfully presented to our microbiologist partners
and is now operational Buche, Dervin, Haemmerlé, Surleau and Thomopoulos
(2003). The technical centers belonging to the Sym’Previus project are currently
working on a business plan which aims at commercializing a new expert tool in
food predictive microbiology, which includes the MIEL system and a simulation tool
(Leporq, Membré, Dervin, Buche & Guyonnet, 2005).

The conceptual graph model appears to be an asset for the MIEL system since
it allows non-specialists to add heterogeneous data into our database. The users
have been impressed by the simplicity of use of the graphical user interface of the
CoGITaNT platform which allows one to acquire conceptual graphs. But it is not
always easy to build a conceptual graph out of nothing so we are currently thinking
about an interface providing pre-written graph patterns. However that may be, the
transparency of the knowledge integration mechanism is really appreciated by the
end-users.

An important goal of our system is to provide relevant answers when no exact
answer can be found. The MIEL system provides several ways of enlarging the
querying mechanism already implemented in the relational database (Buche, Dervin,

J Intell Inf Syst (2007) 29:279–304 301

Haemmerlé, & Thomopoulos, 2005) and in the conceptual graph subsystem (Buche
& Haemmerlé, 2000). The enlargement mechanisms work by generalizing the query.
That generalization is done in different ways. It is possible to enlarge the fuzzy
sets appearing in the selection criteria (for example, if we search for a temperature
between 36 and 38◦C, the system can enlarge the interval to 35–39). It is also possible
to relax a constraint by taking advantage of the hierarchized variation domains
of the attributes (if the user searches for experiments involving HalfSkimMilk, it
can be useful to return answers concerning all kinds of Milk with a decreasing
adequation degree in addition to answers concerning HalfSkimMilk). Other ways
of generalization of the query can be studied, for example by relaxing the structure
of the conceptual graph query.

In the MIEL system, both relational and conceptual graph bases are queried
simultaneously by a unified querying mechanism. Our approach can be compared
to the knowledge integration problematics (Ordille, Levy, & Rajaraman, 1996;
Genesereth, Keller & Duschka, 1997; Goasdoué, Lattes, & Rousset, 2000). We
have defined a uniform query language (the MIEL query language) which uses an
ontology (the set of queryable attributes and their respective variation domains
which can be hierarchized by the “kind-of” relation) and a set of views on the
database. The ontology and the set of views can be considered as the “mediated
schema” of our knowledge integration system. One of the major differences between
our system and a classic information integration system based on mediators is
that each tuple of an answer to a query in the MIEL system comes from a single
data source. There is no declarative description of the different data sources in
the mediated schema allowing the system to rewrite a global query into several
subqueries intended for the different data sources. In the MIEL system, each query
is “totally” asked on each data source, which translates the query expressed in the
MIEL query language into a query well-suited for its query processor (an SQL query

Fig. 17 The graphical user interface used to express a query (in French). The ontology is accessible
to the user by the central hierarchy

302 J Intell Inf Syst (2007) 29:279–304

Fig. 18 The graphical user interface used to display the result of a query execution. The results are
displayed by decreasing adequation degree

or a conceptual graph query). The global answer to a query in the MIEL system
is then the union of the local answers given by the two subsystems. Nevertheless,
we can consider that the MIEL system has become a framework allowing us to
integrate different kinds of databases. We are now working on the integration of
several relational databases existing on our domain of application, but which do not
have a schema nor an ontology compatible with ours. We are also working at the
integration of a new subsystem based on an XML query processor since we think
that XML will become a standard for the representation of data on the Web. We also
consider XML as a useful language for the automatic or semi-automatic translation
of documents such as spreadsheets. That work is done in the framework of the
“e.dot” project, which involves two computer science laboratories and a company.4

The goal is to build a data warehouse composed of our bases, complemented by data
extracted from the Web.

Acknowledgements We would like to thank Marie-Christine Rousset, Juliette Dibie-Barthélemy
and Marion Rougier for their careful reading of this paper. This work is partially supported by the
French Ministries of Agriculture and Research and by the Sym’Previus consortium.

4GEMO Project (INRIA Futurs / Paris XI University), INA P-G and Xyleme.

J Intell Inf Syst (2007) 29:279–304 303

References

Ballows, A., Truper, H., Dworkin, M., Harder, W., & Schleifer, K. (Eds.) (1992) The prokaryotes,
a handbook on the biology of bacteria: Ecophysiology, isolation, identification, applications
(2nd ed.). Berlin Heidelberg New York: Springer.

Bosc, P., & Pivert, O. (1995) SQLf: A relational database language for fuzzy querying. IEEE
Transactions on Fuzzy Systems, 3(1), 1–17.

Buche, P., Dervin, C., Haemmerlé, O., Surleau, E., & Thomopoulos, R. (2003). Carrying out the
microbial risk in food products using the MIEL software: A new tool to query incomplete,
imprecise and heterogeneously structured experimental data stored in a relational database.
In Proceedings of the International Conference on Predictive Modelling in Food, ICPMF’03
Quimper, France (pp. 58–60). Berlin Heidelberg New York: Springer.

Buche, P., Dervin, C., Haemmerlé, O., & Thomopoulos, R. (2005). Fuzzy querying on incomplete,
imprecise and heterogeneously structured data in the relational model using ontologies and rules.
IEEE Transactions on Fuzzy Systems, 13(3), 373–383.

Buche, P., & Haemmerlé, O. (2000) Towards a unified querying system of both structured and
semi-structured imprecise data using fuzzy views. In Proceedings of the 8th international confer-
ence on conceptual structures, Lecture notes in artificial intelligence #1867 Darmstadt, Germany
(pp. 207–220). Berlin Heidelberg New York: Springer.

Cao, T. (1999). Foundations of order-sorted fuzzy set logic programming in predicate logic and
conceptual graphs. Ph.D. thesis, University of Queensland, Australia.

Dubois, D., & Prade, H. (1988). Possibility theory—An approach to computerized processing of
uncertainty. New York: Plenum.

Dubois, D., & Prade, H. (1995). Tolerant fuzzy pattern matching: An introduction. In P. Bosc &
J. Kacprzyk (Eds.), Fuzziness in Database Management Systems (pp. 42–58). Berlin Heidelberg
New York: Springer.

Dubois, D., Prade, H., & Rossazza, J. (1991). Vagueness, typicality and uncertainty in class hierar-
chies. International Journal of Intelligent Systems, 6, 167–183.

Galindo, J., Cubero, J., Pons, O., & Medina, J. (1998). A server for fuzzy SQL queries. In Pro-
ceedings of the 1998 workshop FQAS’98 (Flexible query-answering systems), Roskilde, Denmark
(pp. 161–171). Berlin Heidelberg New York: Springer.

Genesereth, M., Keller, A., & Duschka, O. (1997). Infomaster: An information integration system.
In Proceedings of SIGMOD 97 (pp. 539–542). New York: ACM.

Genest, D., & Salvat, E. (1998). A platform allowing typed nested graphs: how CoGITo be-
came CoGITaNT. In Proceedings of the 6th international conference on conceptual structures
(ICCS’1998), Lecture notes in artificial intelligence #1453, Montpellier, France (pp. 154–161).
Berlin Heidelberg New York: Springer.

Ginsburg, S., & Hull, R. (1983). Order dependency in the relational model. Theoretical Computer
Science, (26), 149–195.

Goasdoué, F., Lattes, V., & Rousset, M.-C. (2000). The use of CARIN language and algorithms for
information integration: The PICSEL system. International Journal of Cooperative Information
Systems, 4(9), 383–401.

Ireland, J., & Moller, A. (2000) Review of international food classification and description. Journal
of Food Composition and Analysis, 13(4), 529–538.

Leporq, B., Membré, J., Dervin, C., Buche, P., & Guyonnet, J. (2005). The “Sym’Previus” software,
a tool to support decisions to the foodstuff safety. International Journal of Food Microbiology,
100(1–3), 231–237.

Morton, S. (1987). Conceptual graphs and fuzziness in artificial intelligence. Ph.D. thesis, University
of Bristol, UK.

Mugnier, M., & Chein, M. (1992). Polynomial algorithms for projection and matching. In Proceedings
of the 7th annual workshop on conceptual graphs, Lecture notes in artificial intelligence #754, Las
Cruces, New Mexico (pp. 239–251). Berlin Heidelberg New York: Springer.

Mugnier, M., & Chein, M. (1996). Représenter des connaissances et raisonner avec des graphes.
Revue d’intelligence Artificielle, 10(1), 7–56.

Ordille, J., Levy, A., & Rajaraman, A. (1996). Querying heterogeneous information sources using
source descriptions. In Proceedings of the international conference on very large data bases
(pp. 251–262). San Francisco, California: Morgan Kaufmann.

Prade, H., & Testemale, C. (1984). Generalizing database relational algebra for the treatment of
incomplete or uncertain information and vague queries. Information Sciences, 34, 115–143.

304 J Intell Inf Syst (2007) 29:279–304

Sebastiani, F. (1994). A probabilistic terminological logic for modelling information retrieval. In Pro-
ceedings of the 17th annual international ACM-SIGIR conference on research and development
in information retrieval, Dublin, Ireland (pp. 122–130). Berlin Heidelberg New York: Springer.

Sowa, J. (1984). Conceptual structures—Information processing in mind and machine. Reading,
Massachussetts: Addison-Welsey.

Thomopoulos, R., Buche, P., & Haemmerlé, O. (2003a). Different kinds of comparisons be-
tween fuzzy conceptual graphs. In Proceedings of the 11th international conference on con-
ceptual structures, ICCS’2003, Lecture notes in artificial intelligence #2746, Dresden, Germany
(pp. 54–68). Berlin Heidelberg New York: Springer.

Thomopoulos, R., Buche, P., & Haemmerlé, O. (2003b). Representation of weakly structured im-
precise data for fuzzy querying. Fuzzy Sets and Systems, 140-1, 111–128.

Ullman, J. (1988). Principles of database and knowledge-base systems. Rockville, Maryland:
Computer Science.

Umano, M. (1982). , Chapt. FREEDOM-0: a fuzzy database system. In M. Gupta, & E., Sanchez E.
(Eds.), Fuzzy Information and Decision Processes (pp. 339–347). Amsterdam, The Netherlands:
North-Holland.

Zadeh, L. (1965) Fuzzy sets. Information and Control, 8, 338–353.
Zadeh, L. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.
Zadrozny, S., & Kacprzyk, J. (1998). Implementing fuzzy querying via the internet/WWW: Java

applets, activeX controls and cookies. In Proceedings of the workshop FQAS’98 (Flexible query-
answering systems) Roskilde, Denmark (pp. 358–369). Berlin Heidelberg New York: Springer.

	The MIEL system: Uniform interrogation of structured and weakly-structured imprecise data
	Abstract
	Introduction
	The MIEL data model
	The ontology of the MIEL data model
	The schema of the relational database
	Representation of a numerical attribute
	Representation of a symbolic attribute
	Representation of a hierarchized attribute

	The schema of the conceptual graph database
	Representation of the MIEL ontology in the conceptual graph model
	Representation of the values in the conceptual graph database
	Representation of data in the conceptual graph database

	The queries in the MIEL system
	The query language
	The notion of view
	Expression of a query
	The selection criteria
	Comparisons on fuzzy sets in the MIEL system
	The answers

	Query definition and processing in the relational subsystem
	Views in the relational database
	The relational database query processing

	Query definition and processing in the conceptual graph subsystem
	The views
	The queries
	Query processing

	Conclusion and perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

