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Chapter 1

Scheduling with communication
delays

R. Giroudeau and J.C. König
LIRMM, 161 rue Ada,34392 Montpellier Cedex 5, France, UMR 5506

1.1 Introduction

More and more parallel and distributed systems (cluster, grid and global comput-
ing) are both becoming available all over the world, and opening new perspectives
for developers of a large range of applications including data mining, multime-
dia, and bio-computing. However, this very large potentialof computing power
remains largely unexploited this being, mainly due to the lack of adequate and
efficient software tools for managing this resource.
Scheduling theory is concerned with theoptimal allocation of scarce resources to
activities over time. Of obvious practical importance, it has been the subject ofex-
tensive research since the early 1950’s and an impressive amount of literature now
exists. Thetheorydealing with the design of algorithms dedicated to scheduling is
much younger, but still has a significant history.
An application which will be scheduled on a parallel architecture may be repre-
sented by an acyclic graphG = (V,E) (or precedence graph) whereV designates
the set of tasks, which will be executed on a set ofm processors, and whereE
represents the set of precedence constraints. A processingtime is allotted to each
taski ∈ V .
From the very beginning of the study about scheduling problems, models kept up
with changing and improving technology. Indeed,
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• In the PRAM’s model, in which communication is considered instanta-
neous, the critical path (the longest path from a source to a sink) gives the
length of the schedule. So the aim, in this model, is to find a partial order on
the tasks, in order to minimize an objective function.

• In thehomogeneous scheduling delay model, each arc(i, j) ∈
E represents the potential data transfer between taski and taskj provided
that i andj are processed on two different processors. So the aim, in this
model, is to find a compromise between a sequential executionand a parallel
execution.

These two models have been extensively studied over the lastfew years from both
the complexity and the (non)-approximability points of view (see [23] and [12]).
With the increasing importance of parallel computing, the question of how to
schedule a set of tasks on a given architecture becomes critical, and has received
much attention. More precisely, scheduling problems involving precedence con-
straints are among the most difficult problems in the area of machine scheduling
and they are part of the most studied problems in the domain.
In this chapter, we adopt thehierarchical communication model[7] in which we
assume that the communication delays are not homogeneous anymore; the proces-
sors are connected intoclustersand the communications inside a same cluster are
much faster than those between processors belonging to different ones.
This model incorporates the hierarchical nature of the communications using to-
day’s parallel computers, as shown by many PCs or workstations networks (NOWs)
[33, 1]. The use of networks (clusters) of workstations as a parallel computer
[33, 1] has not only renewed the user’s interest in the domainof parallelism, but it
has also brought forth many new challenging problems related to the exploitation
of the potential power of computation offered by such a system.
Several approaches meant to try and model these systems wereproposed taking
into account this technological development:

• One approach concerning the form of programming system, we can quote
work [36, 37, 11, 9].

• In abstract model approach, we can quote work [41, 26, 27, 15,10, 28, 16] on
malleable tasks introduced by [10, 15]. A malleable task is atask which can
be computed on several processors and of which the executiontime depends
on the number of processors used for its execution.

As stated above, the model we adopt here is thehierarchical communication model
which addresses one of the major problems that arises in the efficient use of such
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architectures: thetask scheduling problem. The proposed model includes one of
the basic architectural features of NOWs: the hierarchicalcommunication assump-
tion i.e., a level-based hierarchy of communication delayswith successively higher
latencies. In a formal context where both a set of clusters ofidentical processors,
and a precedence graphG = (V,E) are given, we consider that if two communi-
cating tasks are executed on the same processor (resp. on different processors of
the same cluster) then the corresponding communication delay is negligible (resp.
is equal to what we callinter-processor communication delay). On the contrary,
if these tasks are executed on different clusters, then the communication delay is
more significant and is calledinter-cluster communication delay.
We are givenm multiprocessor machines (or clusters denoted byΠi) that are used
to processn precedence-constrained tasks. Each machineΠi (cluster) comprises
several identical parallel processors (denoted byπi

k). A couple(cij , εij) of commu-
nication delays is associated to each arc(i, j) between two tasks in the precedence
graph. In what follows,cij (resp.εij) is called inter-cluster (resp. inter-processor)
communication, and we consider thatcij ≥ εij . If tasksi andj are allotted on
different machinesΠi andΠj, thenj must be processed at leastcij time units af-
ter the completion ofi. Similarly, if i andj are processed on the same machine
Πi but on different processorsπi

k andπj
k′ (with k 6= k′) thenj can only startεij

units of time after the completion ofi. However, if i andj are executed on the
same processor, thenj can start immediately after the end ofi. The communi-
cation overhead (inter-cluster or inter-processor delay)does not interfere with the
availability of processors and any processor may execute any task. Our goal is to
find a feasible schedule of tasks minimizing themakespan, i.e., the time needed to
process all tasks subject to the precedence graph.
Formally, in thehierarchical scheduling delay model a hierarchi-
cal couple of values(cij , εij) will be associated withεij ≤ cij ∀(i, j) ∈ E such
that :

• if Πi = Πj and ifπi
k = πj

k thenti + pi ≤ tj

• else ifΠi = Πj and ifπi
k 6= πj

k′ with k 6= k′ thenti + pi + εij ≤ tj

• elseΠi 6= Πj ti + pi + cij ≤ tj

whereti denotes the starting time of the taski andpi its duration. The objective is
to find a schedule, i.e., an allocation of each task to a time interval on one processor,
such that communication delays are taken into account and that completion time
(makespan) is minimized (the makespan is denoted byCmax and it corresponds to
maxi∈V {ti + pi}). In what follows, we consider the simplest case∀i ∈ V, pi =
1, cij = c ≥ 2, εij = c′ ≥ 1 with c ≥ c′.
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Note that the hierarchical model that we consider here is a generalization of clas-
sical scheduling model with communication delays ([12], [14]). Consider, for in-
stance, that for every arc(i, j) of the precedence graph we havecij = εij. In such
a case, the hierarchical model is exactly the classical scheduling communication
delays model.
Note that the valuesc andl are considered as constant in the following.
The chapter is organized as follow: In the next section, someresults forUET -
UCT model will be presented. In the section 1.3, a lower and upperbound for
large communication delays scheduling problem will presented. In the section
1.4, the principal results in hierarchical communication delay model will be pre-
sented. In the section 1.5, an influence of an introduction ofthe duplication on
the complexity of scheduling problem is presented. In the section 1.6, some re-
sults non-approximability results are given for the total sum of completion time
minimization. In the section 1.7, we will conclude on the complexity and approx-
imation scheduling problem in presence of communication delays. In Appendix
section, some classicalNP−complete problems are listed which are used in this
chapter for the polynomial-time transformations.

1.2 Some results for theUET -UCT model

In thehomogeneous scheduling delay model, each arc(i, j) ∈ E rep-
resents the potential data transfer between taski and taskj provided thati andj are
processed on two different processors. So the aim, in this model, is to find a com-
promise between a sequential execution and a parallel execution.These two models
have been extensively studied over the last few years from both the complexity and
the (non)-approximability points of view (see [23] and [12]).

1. at any time, a processor executes at most one task;

2. ∀(i, j) ∈ E, if πi = πj thentj ≥ ti + pi, otherwisetj ≥ ti + pi + cij .

Themakespanof scheduleσ is: Cσ
max = maxi∈V (ti + pi).

In theUET -UCT model, we have∀i, pi = 1 and∀(i, j) ∈ E, cij = 1.

1.2.1 Unbounded number of processors

In the case of there is no communication delays, the problem becomes polynomial
(even if we consider that∀i, pi 6= 1). In fact, the Bellman algorithm can be used.

Theorem 1.2.1 The problem of deciding whether an instance ofP̄ |prec, pi =
1, cij = 1|Cmax problem has a schedule of length5 is polynomial, see [42].
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Proof
The proof is based on the notion of total unimdularity matrix, see [42] and see [39].

�

Theorem 1.2.2 The problem of deciding whether an instance ofP̄ |prec, pi =
1, cij = 1|Cmax problem has a schedule of length6 isNP−complete see [42].

Proof
The proof is based on the following reduction3SAT ∝ P̄ |prec; cij = 1; pi =
1|Cmax = 6.

variablex

clausec = (xc, yc, zc)

x2 x3 x6

x

xc

yc

zc

x̄c

ȳc

z̄c

xcyc

yczc

xczc

x̄

x̂c

ŷc

ẑc

x1

c

Figure 1.1: The variables-tasks and the clauses-tasks

It is clear that the problem is inNP .
Let beπ∗ an instance of3SAT problem, we construct an instanceπ of the problem
P̄ |prec; cij = 1; pi = 1|Cmax in the following way:

• For each variablex, six tasks are introduced :x1, x2, x3, x, x̄ andx6; the
precedence constraints are given by Figure 1.1.

• for each clausec = (xc, yc, zc), where the literalsxc, yc and zc

are occurrences of negated or unnegated,13 variables are introduced:
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x̂c, ŷc, ẑc, xc, x̄c, yc, ȳc, zc, z̄c, xcyc, yczc, xczc andc: the precedence
constraints between these tasks are also given by Figure 1.1.

• If the occurrence of variablex in the clausec is unnegated then we add
xc → x andx̄c → x̄.

• If the occurrence of variablex in the clausec is negated, then we addxc → x̄
andx̄c → x.

Clearly,xc represents the occurrence of variablex in the clausec; it precedes the
corresponding variable tasks. This is a polynomial-time transformation illustrated
by Figure 1.1.
It can be proved that, there exists a schedule of length at most six if only if there is
a truth assignmentI : V → {0, 1} such that each clause inC has at least one true
literal.

�

Corollary 1.2.1 There is no polynomial-time algorithm for the problem
P̄ |prec; cij = c = 1; pi = 1|Cmax with performance bound smaller than7/6
unlessP 6= NP , see [42].

Proof
The proof of Corollary 1.2.1 is an immediate consequence of the Impossibility
Theorem, (see [14], [17]).

�

1.2.2 Approximate solutions with guaranteed performance

Good approximation algorithms seem to be be very difficult todesign, since the
compromise between parallelism and communication delays is not easy to han-
dle. In this section, we will present a approximation algorithm with a performance
ratio bounded by4/3 for the problemP̄ |prec; cij = 1; pi = 1|Cmax. This algo-
rithm is based on a formulation on a integer linear program. Afeasible schedule
is obtained by a relaxation and rounding procedure. Notice that it exists a trivial
2-approximation algorithm: the tasks without predecessorsare executed att = 0,
the tasks admitting predecessors scheduled att = 0 are executed att = 2 and so
on.
Given a precedence graphG = (V,E) a predecessor(resp.successor) of a taski
is a taskj such that(j, i) (resp.(i, j)) is an arc ofG. For every taski ∈ V,Γ+(i)
(resp. Γ−(i)) denotes the set of immediate successors (resp. predecessors) of i.
We denote the tasks without predecessor (resp. successor) by Z (resp.U ). We call
sourceevery task belonging toZ.
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The integer linear program The aim of this section is to model the problem
P̄ |prec; cij = 1; pi = 1|Cmax by an integer linear program (ILP) denoted, in what
follows, byΠ.
We model the scheduling problem by a set of equations defined on the starting
times vector(t1, . . . , tn):
For every arc(i, j) ∈ E, we introduce a variablexij ∈ {0, 1} which indicates the
presence or not of an communication delay, and the followingconstraints:∀(i, j) ∈
E, ti + pi + xij ≤ tj
In every feasible schedule, every taski ∈ V −U has at most one successor, w.l.o.g.
call themj ∈ Γ+(i), that can be performed by the same processor asi at timetj =
ti+pi. The other successors ofi, if any, satisfy:∀k ∈ Γ+(i)−{j}, tk ≥ ti+pi+1.

Consequently, we add the constraints:
∑

j∈Γ+(i)

xij ≥ |Γ+(i)| − 1

Similarly, every taski of V − Z has at most one predecessor, w.l.o.g. call them
j ∈ Γ−(i), that can be performed by the same processor asi at timestj satisfying

ti− (tj +pj) < 1. So, we add the following constraints:
∑

j∈Γ−(i)

xji ≥ |Γ−(i)|−1.

If we denote byCmax the makespan of the schedule,∀i ∈ V, ti + pi ≤ Cmax

Thus, in what follows,the following ILP will be considered:

(Π)


























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














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




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
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min Cmax

∀(i, j) ∈ E, xij ∈ {0, 1}
∀i ∈ V, ti ≥ 0
∀(i, j) ∈ E, ti + pi + xij ≤ tj

∀i ∈ V − U,
∑

j∈Γ+(i)

xij ≥ |Γ+(i)| − 1

∀i ∈ V − Z,
∑

j∈Γ−(i)

xji ≥ |Γ−(i)| − 1

∀i ∈ V, ti + pi ≤ Cmax

Let Πinf denote the linear program corresponding toΠ in which we relax the
integrity constraintsxij ∈ {0, 1} by settingxij ∈ [0, 1]. Given that the number
of variables and the number of constraints are polynomiallybounded, this linear
program can be solved in polynomial time. The solution ofΠinf will assign to
every arc(i, j) ∈ E a valuexij = eij with 0 ≤ eij ≤ 1 and will determine a lower
bound of the value ofCmax that we denote byΘinf .

Lemma 1.2.1 Θinf is a lower bound on the value of an optimal solution for
P̄ |prec; cij = 1; pi ≥ 1|Cmax.

Proof This is true since any optimal feasible solution of the scheduling problem
must satisfy all the constraints of the integer linear programΠ. �
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Algorithm 1 Rounding Algorithm and construction of the schedule
Step 1[Rounding]
Let beeij the value of an arc(i, j) ∈ E given byPLinf

I

{

si eij < 0.5 =⇒ xij = 0
si eij ≥ 0.5 =⇒ xij = 1

Step 1[Computation of starting time]
if i ∈ Z then

ti = 0
else

ti = max{tj + 1 + xji} avecj ∈ Γ−(i) et (j, i) ∈ Ai

end if
Step 2[Construction of the schedule]
Let beG′ = (V ;E′) whereE′ = E\{(i, j) ∈ E|xij = 1} {G′ is generated by
the0 − arcs.}
Allotted each connected component ofG′ on a different processor.
Each task is executed at it starting time.

In the following, we call an arc(i, j) ∈ E a 0-arc (resp. 1-arc) if xij = 0 (resp.
xij = 1).

Lemma 1.2.2 Every jobi ∈ V has at most one successor (resp. predecessors)
such thateij < 0.5 (resp.eji < 0.5).

Proof We consider a taski ∈ V and his successorsj1, . . . , jk such thatei,j1 ≤

ei,j2 ≤ . . . ≤ ei,jk
. We know that

∑k
l=1 ei,jl

≥ k − 1 , then2ei,j2 ≥ ei,j2 + ei,j1 ≥

k − 1−
∑k

l=3 ei,jl
. Since thatei,jl

∈ [0, 1],
∑k

l=3 ei,jl
≤ k − 2. Then,2ei,j2 ≥ 1.

Therefore∀l ∈ {2, . . . , k} we haveeij ≥ 0.5.We use the same arguments for the
predecessors. �

Lemma 1.2.3 The scheduling algorithm described above provides a feasible
schedule.

Proof It is clear that ech taski admits at most one incoming (resp. outcoming)
0-arcs.

�

Theorem 1.2.3 The relative performanceρh of our heuristic is bounded above by
4
3 [31].
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Proof Let be a pathx1 → x2 → . . . → xk+1 consitutued by(k+1) tasks such that
x (resp.(k − x)) arcs values, given by linear programming, between two tasks are
less (resp. least) than1/2. So the length of this path is less thank+1+1/2(k−x) =
3/2k − 1/2x + 1. Moreover, by the rounding procedure, the length of this path at
most2k − x + 1. Thus, we obtain 2k−x+1

3/2k−1/2x+1 < 4/3,∀x. Thus, for a given path,
of valuep∗ (resp.p) before (resp. after) the rounding, admittingx arcs values less
than1/2, we have p

p∗ ≤ 2k−x+1
3/2k−1/2x+1 < 4/3. A critical path before the rounding

phase is denoted bys∗. It is true for the critical path after the rounding procedure
p = s then, p

p∗ < p
s∗ = s

s∗ < 4/3. �

In fact, the bound is tight (see [31]).

1.2.3 Bounded number of processors

In this section, a lower and upper bound will be presented,

Theorem 1.2.4 The problem of deciding whether an instance ofP |prec, cij =
1, pi = 1|Cmax problem has a schedule of lenght3 is polynomial, see [34].

Theorem 1.2.5 The problem of deciding whether an instance ofP |prec, cij =
1, pi = 1|Cmax problem has a schedule of lenght4 isNP-complete, see [42].

Proof
The proof is based on theNP-complete problemClique.
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Figure 1.2: Example of polynomial-time reductionclique ∝ P |prec; cij = 1; pi =
1|Cmax.

Let be l = k(k−1)
2 the number of edges of a clique of sizek. Let be m′ =

max{|V |+l−k, |E|−l}, the number of processors of an instance ism = 2(m′+1).
It is clear that the problem is inNP . The proof is based on the polynomial-time re-
ductionclique ∝ P |prec, cij = 1, pi = 1|Cmax. Let beπ∗ a instance of theclique
problem. An instanceπ of P |prec, cij = 1, pi = 1|Cmax problem is constructed
in the following way:

• ∀v ∈ V the tasksTv, Kv are introduced,
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• ∀e ∈ E a taskLe is created.

– We add the following precedence constraints:Tv → Kv,∀v ∈ V and
Tv → Le if v is an endpoint ofe.

• Four sets of tasks are introduced:

– Xx = {x = 1, . . . , x = m − l − |V | + k},

– Yy = {y = 1, . . . , y = m − |E| + l},

– Uu = {u = 1, . . . , u = m − k},

– Ww = {w = 1, . . . , w = m − |V |}.

– the precedence constraints are added:Uu → Xx, Uu → Yy, Ww →
Yy

U
W X

Y

Kclique

K − Kclique

T − Tclique

Tclique
L − Lclique

Lclique

Figure 1.3: Example of construction in order to illustrate the proof of theorem 1.2.5

It easy to see that the graphG admits a clique of sizek if only if it exists a schedule
of length4.

�

1.2.4 Approximation algorithm

In this section, we will present a simple algorithm which gives a scheduleσm

on m machines from a scheduleσ∞ on unbounded number of processors for the
P̄ |prec, cij = 1, pi = 1|Cmax. The validity of this algorithm is based on the fact
there is at most a matching between the tasks executed atti and the tasks processed
at ti + 1.

Theorem 1.2.6 From all polynomial-time algorithmh∗ with performance guar-
antee ρ for the problemP̄ |prec, cij = 1, pi = 1|Cmax, we may obtain a
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Algorithm 2 Scheduling onm machines from a scheduleσ∞ on unbounded num-
ber of processors

for i = 0 àC∞
max − 1 do

Let beXi the set of tasks executed atti in σ∞ using a heuristich∗.
TheXi tasks are executed ind |Xi|

m e units of time.
end for

polynomial-time algorithm with performance guarantee(1 + ρ) for the problem
P |prec, cij = 1, pi = 1|Cmax.

Proof

Cm,A
max ≤

C∞

max−1
∑

i=0

d
|Xi|

m
e ≤

C∞

max−1
∑

i=0

(b
|Xi|

m
c + 1) ≤

C∞

max−1
∑

i=0

(b
|Xi|

m
c) + C∞

max

≤

C∞

max−1
∑

i=0

(
|Xi|

m
) + C∞

max ≤ Copt,m
max + C∞,h∗

max ≤ Copt,m
max + ρCopt,m

max

�

For example, the4/3-approximation algorithm gives a7/3-approximation algo-
rithm. Munier et al. [29] propose a(7/3−4/3m)-approximation algorihtm for the
same problem.

1.3 Large communications delays

Scheduling in presence of large communication delays, is one most difficult prob-
lem in scheduling theory, since the starting time of tasks and the communication
delay are not be synchronized.
If we consider the problem of scheduling a precedence graph with large com-
munication delays and unit execution time (UET-LCT), on a restricted num-
ber of processors, Bampis et al. in [4] proved that the decision problem de-
noted byP |prec; cij = c ≥ 2; pi = 1|Cmax for Cmax = c + 3 is anNP-
complete problem, and forCmax = c + 2 (for the special casec = 2), they
develop a polynomial-time algorithm. This algorithm can not be extended for
c ≥ 3. Their proof is based on a reduction from theNP-complete problem
Balanced Bipartite Complete Graph, BBCG [17, 38]. Thus, Bampis et al.
[4] proved that theP |prec; cij = c ≥ 2; pi = 1|Cmax problem does not pos-
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sess a polynomial-time approximation algorithm with ratioguarantee better than
(1 + 1

c+3), unlessP = NP .

Ci
1 Ci

2 Ci
c+1

Ci
c+2

Ai
1

Ai
2

Ai
c+1 Ai

c+2

βl
1 βl

2
βl

c+1 βl
c+2

αl′ l̄′

Di
1 Di

2
Di

c+2
Di

c+3

D′i
1 D′i

2
D′i

c+2

D′i
c+3

l′

l̄′l̂′

∀ l ∈ V

. . .

. . .

. . .

. . .

. . .

Figure 1.4: A partial precedence graph for theNP-completeness of the scheduling prob-
lemP̄ |prec; cij = c ≥ 3; pi = 1|Cmax.

Theorem 1.3.1 The problem of deciding whether an instance ofP̄ |prec; cij =
c; pi = 1|Cmax has a schedule of length equal or less than(c+4) isNP-complete
with c ≥ 3 (see [22]).

Proof
It is easy to see that̄P |prec; cij = c; pi = 1|Cmax = c + 4 ∈ NP .
The proof is based on a reduction fromΠ1. Given an instanceπ∗ of Π1, we con-
struct an instanceπ of the problemP̄ |prec; cij = c; pi = 1|Cmax = c + 4, in the
following way (Figure 1.4 helps understanding of the reduction):
n denotes the number of variables ofπ∗.

1. For all l ∈ V, we introduce(c + 6) variable-tasks:αl′ l̄′ , l′, l̄′, l̂′, βl
j with

j ∈ {1, 2, . . . , c+2}. We add the precedence constraints:αl′ l̄′ → l′, αl′ l̄′ →
l̄′, βl

1 → l̂′, βl
1 → l̄′, βl

j → βl
j+1 with j ∈ {1, 2, . . . , c + 1}.

2. For all clauses of length three denoted byCi = (y ∨ z ∨ t), we introduce
2 × (2 + c) clause-tasksCi

j andAi
j, j ∈ {1, 2, . . . c + 2}, with precedence

constraints:Ci
j → Ci

j+1 andAi
j → Ai

j+1, j ∈ {1, 2, . . . , c + 1}. We add the

constraintsCi
1 → l with l ∈ {y′, z′, t′} andl → Ai

c+2 with l ∈ {ŷ′, ẑ′, t̂′}.

13
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3. For all clauses of length two denoted byCi = (x ∨ ȳ), we introduce(c + 3)
clause-tasksDi

j , j ∈ {1, 2, . . . , c + 3} with precedence constraints:Di
j →

Di
j+1 with j ∈ {1, 2, . . . , c + 2} andl′ → Di

c+3 with l ∈ {x, ȳ}.

The above construction is illustrated in Figure 1.4. This transformation can be
clearly computed in polynomial time.
Remark: l̄′ is in the clauseC ′ of length two associated with the pathD′i

1 →
D′i

2 → . . . D′i
c+2 → D′i

c+3

It easy to see that there is a schedule of length equal or less than(c + 4) if only if
there is a truth assignmentI : V → {0, 1} such that each clause inC has exactly
one true literal (i.e. one literal equal to1), see [22].

�

Theorem 1.3.2 The problem of deciding whether an instance ofP̄ |prec; cij =
2; pi = 1|Cmax has a schedule of length equal or less than six isNP-complete
(see [22]).

Corollary 1.3.1 There is no polynomial-time algorithm for the problem
P̄ |prec; cij = c ≥ 2; pi = 1|Cmax with performance bound smaller than1 + 1

c+4
unlessP 6= NP (see [22]).

Theorem 1.3.3 The problem of deciding whether an instance ofP̄ |prec; cij =
c; pi = 1|Cmax with c ∈ {2, 3} has a schedule of length at most(c+ 2) is solvable
in polynomial time (see [22]).

1.3.1 Approximation by expansion

In this section, a new polynomial-time approximation algorithm with performance
guarantee non-trivial for the problem̄P |prec; cij = c ≥ 2; pi = 1|Cmax will be
proposed.
Notation: We denote byσ∞, the UET-UCT schedule, and byσ∞

c the UET-LCT
schedule. Moreover, we denote byti (resp.tci ) the starting time of the taski in the
scheduleσ∞ (resp. in the scheduleσ∞

c ).
Principle: We keep an assignment for the tasks given by a “good” feasiblesched-
ule on an unrestricted number of processorsσ∞. We proceed to an expansion of
the makespan, while preserving communication delays (tcj ≥ tci + 1 + c) for two
tasks,i andj with (i, j) ∈ E, processing on two different processors.
Consider a precedence graphG = (V,E), we determine a feasible scheduleσ∞,
for the model UET-UCT, using a(4/3)−approximation algorithm proposed by
Munier and König [31]. This algorithm gives a couple∀i ∈ V, (ti, π) on the

14
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scheduleσ∞ corresponding to:ti the starting time of the taski for the schedule
σ∞ andπ the processor on which the taski is processed atti.
Now, we determine a couple∀i ∈ V, (tci , π

′) on scheduleσ∞
c in the following

way: The starting timetci = d × ti = (c+1)
2 ti and,π = π′. The justification of the

expansion coefficient is given below. An illustration of theexpansion is given in
Figure 1.5.

π1

π1

π2

π2

1

c

x

x

y

y

z

z

k k + 1 k + 2 k + 3

(c+1)k
2

(c+1)k
2 + 1 (c+1)(k+1)

2

(c+1)(k+1)
2 + 1

(c+1)(k+2)
2

(c+1)(k+2)
2 + 1

Model UET-UCT

Model UET-LCT

communication delay

communication delay

Figure 1.5: Illustration of notion of an expansion

Lemma 1.3.1 The coefficient of an expansion isd = (c+1)
2 .

Proof Consider two tasksi andj such that(i, j) ∈ E, which are processed on two
different processors in the feasible scheduleσ∞. Let bed a coefficientd such that
tci = d× ti andtcj = d× tj. After an expansion, in order to respect the precedence
constraints and the communication delays we must havetcj ≥ tci + 1 + c, and so

d × ti − d × tj ≥ c + 1, d ≥ c+1
ti−tj

, d ≥ c+1
2 . It is sufficient to choosed = (c+1)

2 .
�

Lemma 1.3.2 An expansion algorithm gives a feasible schedule for the problem
denoted bȳP |prec; cij = c ≥ 2; pi = 1|Cmax.

Proof It is sufficient to check that the solution given by an expansion algorithm
produces a feasible schedule for the model UET-LCT. Consider two tasksi andj

15
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such that(i, j) ∈ E. We denote byπi (resp.πj) the processor on which the taski
(resp. the taskj) is executed in the scheduleσ∞. Moreover, we denote byπ′

i (resp.
π′

j) the processor on which the taski (resp. the taskj) is executed in the schedule
σ∞

c . Thus,

• If πi = πj thenπ′
i = π′

j . Since the solution given by Munier and König [31]
gives a feasible schedule on the model UET-UCT, then we haveti + 1 ≤
tj ,

2
c+1tci + 1 ≤ 2

c+1tcj; t
c
i + 1 ≤ tci + c+1

2 ≤ tcj .

• If πi 6= πj thenπ′
i 6= π′

j. We haveti + 1 + 1 ≤ tj,
2

c+1tci + 2 ≤ 2
c+1tcj; t

c
i +

(c + 1) ≤ tcj .

�

Theorem 1.3.4 An expansion algorithm gives a2(c+1)
3 −approximation algorithm

for the problemP̄ |prec; cij = c ≥ 2; pi = 1|Cmax.

Proof
We denote byCh

max (resp.Copt
max) the makespan of the schedule computed by the

Munier and König (resp. the optimal value of a scheduleσ∞). In the same way
we denote byCh∗

max (resp.Copt,c
max ) the makespan of the schedule computed by our

algorithm (resp. the optimal value of a scheduleσ∞
c ).

We know thatCh
max ≤ 4

3Copt
max. Thus, we obtainCh∗

max

Copt,c
max

=
(c+1)

2
Ch

max

Copt,c
max

≤
(c+1)

2
Ch

max

Copt
max

≤
(c+1)

2
4
3
Copt

max

Copt
max

≤ 2(c+1)
3 . �

This expansion method can be used for other scheduling problems.

1.4 Complexity and approximation of hierarchical
scheduling model

On negative side, Bampis et al. in [6] studied the impact of the hierarchical com-
munications on the complexity of the associated problem. They considered the
simplest case, i.e., the problem̄P (P2)|prec; (cij , εij) = (1, 0); pi = 1|Cmax, and
they showed that this problem did not possess a polynomial-time approximation
algorithm with a ratio guarantee better than5/4 (unlessP = NP). Recently, [19]
Giroudeau proved that there is no hope to find aρ-approximation withρ < 6/5 for
the couple of communication delays(cij , εij) = (2, 1). If duplication is allowed,
Bampis et al. [5] extended the result of [13] in the case of hierarchical communi-
cations, providing an optimal algorithm for̄P (P2)|prec; (cij , εij) = (1, 0); pi =
1; dup|Cmax. These complexity results are given in Table 1.1.
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Lower bound
(cij , εij) Cmax References
(1, 0) ρ ≥ 5/4 see [6]
(2, 1) ρ ≥ 6/5 see [19]
(c, c′) ρ ≥ 1 + 1

c+3 see [20]

Table 1.1: Previous complexity results for unbounded number of machines for
hierarchical communication delay model

On positive side, the authors presented in [8] a8/5-approximation algorithm for
the problemP̄ (P2)|prec; (cij , εij) = (1, 0); pi = 1|Cmax which is based on an
integer linear programming formulation. They relax the integrity constraints and
they produce a feasible schedule by rounding. This result isextended to the prob-
lem P̄ (Pl)|prec; (cij , εij) = (1, 0); pi = 1|Cmax leading to a 4l

2l+1 -approximation
algorithm.
The challenge is to determinate a threshold for the approximation algorithm con-
cerning the two more general problems:P̄ (Pl ≥ 4)|prec; (cij , εij) = (c, 1); pi =
1|Cmax andP̄ (Pl ≥ 4)|prec; (cij , εij) = (c, c′); pi = 1|Cmax with c′ < c.
In the classical scheduling communication delay model, we know that (see [25])
the decision problem associated withP̄ |prec; cij = 1; pi = 1|Cmax becomesNP-
complete even forCmax ≥ 6, and that it is polynomial forCmax ≤ 5 (this problem
is denoted in what follows the UET-UCT (Unit Execution Time Unit Communi-
cation Time) homogeneous scheduling communication delaysproblem). Recently,
in [22], the authors proved that there is no possibility of finding aρ-approximation
with ρ < 1+1/(c+4) (unlessP = NP) for the case where all tasks of the prece-
dence graph have unit execution times, where the multiprocessor is composed of
an unrestricted number of machines, and wherec denotes the communication delay
between two tasksi andj both submitted to a precedence constraint and which have
to be processed by two different machines (this problem is denoted in the follow-
ing UET-LCT (Unit Execution Time Large Communication Time)homogeneous
scheduling communication delays problem). The problem becomes polynomial
whenever the makespan is at most(c + 1). The case of(c + 2) is still partially
opened. In the same way as for the hierarchical communication delay model, for
the couple of communication delay values(1, 0), the authors proved in [6] that
there is no possibility of finding aρ-approximation withρ < 5/4 (this problem is
detailed in following the UET-UCT hierarchical schedulingcommunication delay
problem).

Theorem 1.4.1 The problem of deciding whether an instance ofP̄ (Pl ≥ 4)|prec;
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(cij , εij) = (c, c′); pi = 1|Cmax having a schedule of length at most(c + 3) is
NP-complete, see [20].

Corollary 1.4.1 There is no polynomial-time algorithm for the problem̄P (Pl ≥
4)|prec; (cij , εij) = (c, c′); pi = 1|Cmax with c > c′ performance bound smaller
than1 + 1

c+3 unlessP 6= NP , see [20]..

The problem of deciding whether an instance ofP̄ (Pl)|prec; (cij , εij) = (c >
0, c′); pi = 1|Cmax having a schedule of length at most(c + 1) is solvable in
polynomial time sincel andc are constant.
In the same way as the section 1.2.2, the aim is to model the problem
P̄ (P2)|prec; (cij , εij) = (1, 0); pi ≥ 1|Cmax by an integer linear program (ILP)
denoted, in what follows, byΠ.
In this section, we will precis only the difference between the ILP given for the
problemP̄ |prec; cij = 1; pi = 1|Cmax andP̄ (P2)|prec; (cij , εij) = (1, 0); pi ≥
1|Cmax.
In every feasible schedule, every taski ∈ V − U has at most two successors,
w.l.o.g. call themj1 andj2 ∈ Γ+(i), that can be performed by the same cluster
asi at timetj1 = tj2 = ti + pi. The other successors ofi, if any, satisfy:∀k ∈
Γ+(i)− {j1, j2}, tk ≥ ti + pi + 1. Consequently, the constraints:

∑

j∈Γ+(i) xij ≥

|Γ+(i)| − 2 are added.
Similarly, every taski of V − Z has at most two predecessors, w.l.o.g. call them
j1 andj2 ∈ Γ−(i), that can be performed by the same cluster asi at timestj1, tj2
satisfyingti−(tj1+pj1) < 1 andti−(tj2+pj2) < 1. So, the following constraints:
∑

j∈Γ−(i) xji ≥ |Γ−(i)| − 2 are added
The above constraints are necessary but not sufficient conditions in order to get a
feasible schedule for the problem. For instance, a solutionminimizing Cmax for
the graph of case (a) in Figure 1.6 will assign to every arc thevalue 0. However,
since every cluster has two processors, and so at most two tasks can be processed
on the same cluster simultaneously, the obtained solution is clearly not feasible.
Thus, the relaxation of the integer constraints, by considering 0 ≤ xij ≤ 1, and the
resolution of the resulting linear program with objective function the minimization
of Cmax, gives just a lower bound of the value ofCmax.
In order to improve this lower bound, we consider every sub-graph ofG that is
isomorphic to the graphs given in Figure 1.6 –cases (a) and (b). It is easy to see
that in any feasible schedule ofG, at least one of the variables associated to the
arcs of each one of these graphs must be set to one. So, the following constraints
are added:
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i

ij

jk

kl

lm

m

case (a) case (b)

Figure 1.6: Special sub-graphs considered in the ILP.

• For the case (a):

∀i, j, k, l,m ∈ V, such that(j, i), (j, k), (l, k), (l,m) ∈ E, xji+xjk+xlk +
xlm ≥ 1

• For the case (b):

∀i, j, k, l,m ∈ V, such that(i, j), (k, j), (k, l), (m, l) ∈ E, xij +xkj+xkl+
xml ≥ 1

Thus, in what follows, the following ILP will be considered:

(Π)











































































min Cmax

∀(i, j) ∈ E, xij ∈ {0, 1}
∀i ∈ V, ti ≥ 0
∀(i, j) ∈ E, ti + pi + xij ≤ tj

∀i ∈ V − U,
∑

j∈Γ+(i)

xij ≥ |Γ+(i)| − 2

∀i ∈ V − Z,
∑

j∈Γ−(i)

xji ≥ |Γ−(i)| − 2

∀i, j, k, l,m ∈ V, \(j, i), (j, k), (l, k), (l,m) ∈ E, xji + xjk + xlk + xlm ≥ 1
∀i, j, k, l,m ∈ V, \(i, j), (k, j), (k, l), (m, l) ∈ E, xij + xkj + xkl + xml ≥ 1
∀i ∈ V, ti + pi ≤ Cmax

Once again the integer linear program given above does not always imply a feasible
solution for thescheduling problem. For instance, if the precedence graph given in
Figure 1.7 is considered, the optimal solution of the integer linear program will set
all the arcs to 0. Clearly, this is not a feasible solution forour scheduling problem.
However, the goal in this step is to get a good lower bound of the makespan and a
solution –eventually not feasible– that we will transform to a feasible one.
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0 0 00

00

Figure 1.7: An optimal solution of the ILPΠ does not always imply a feasible solution.

Let Πinf denote the linear program corresponding toΠ in which we relax the
integrability constraintsxij ∈ {0, 1} by settingxij ∈ [0, 1]. Given that the number
of variables and the number of constraints are polynomiallybounded, this linear
program can be solved in polynomial time. The solution ofΠinf will assign to
every arc(i, j) ∈ E a valuexij = eij with 0 ≤ eij ≤ 1 and will determine a lower
bound of the value ofCmax that we denote byΘinf .

Lemma 1.4.1 Θinf is a lower bound on the value of an optimal solution for
P̄ (P2)|prec; (cij , εij) = (1, 0); pi ≥ 1|Cmax.

Proof
See the proof of Theorem 1.2.1.

�

We use the algorithm 1 for the rounding algorithm by changingthe value rounded:
eij < 0.25 insteadeij < 0.5 The solution given byStep 1is not necessarily
a feasible solution (take for instance the precedence graphof Figure 1.7), so we
must transform it to a feasible one. Notice that the cases given in Figure 1.6 are
eliminated by the linear program. In the next step we need thefollowing definition.

Definition 1.4.1 A critical path with terminal vertexi ∈ V is the longest path from
an arbitrary source ofG to taski. The length of a path is defined as the sum of the
processing times of the tasks belonging to this path and of the valuesxij for every
arc in the path.

1. Step 2[Feasible Rounding]: We change the integer solution as follows:

(a) If i is a source then we keep unchanged the values ofxij obtained in
Step 1.

(b) Let i be a task such that all predecessors are already examined. Let
Ai be the subset of incoming arcs ofi belonging to a critical path with
terminal vertex the taski.
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i. If the setAi contains a0-arc, then all the outcoming arcsxij take
the value 1.

ii. If the setAi does not contain any0-arc (all the critical incoming
arcs are valued to 1), then the value of all the outcoming arcsxij

remains the same as inStep 1, and all the incoming0-arcs are
transformed to1-arcs.

In Step 1(b)iichanging the value of an incoming0-arc to 1 does not
increase the length of any critical path having as terminal vertex i,
because it exists at least one critical path with terminal vertex i such
that an arc(j, i) ∈ E is valued by the linear program to at least0.25
(eji ≥ 0.25), and soxji is already equal to1.

Lemma 1.4.2 Every jobi ∈ V has at most two successors (resp. predecessors)
such thateij < 0.25 (resp. eji < 0.25) and The scheduling algorithm described
above provides a feasible schedule.

Theorem 1.4.2 The relative performanceρh of our heuristic is bounded above by
8
5 and the bound is tight, see [7].

Proof
See the proof of the Theorem 1.2.3.

�

1.5 Duplication

The duplication of the tasks has been introduced first by Papadimitriou and
Yannakakis [32] in order to reduce an influence of the communication delays
on the schedule. In [32], the authors developp a2-approximation algorithm
for the problemP̄ |prec; cij = c ≥ 2; pi = 1; dup|Cmax. The problem
P̄ |prec;SCT |Cmax (the problemP̄ |prec; cij = 1; pi = 1|Cmax is a subprob-
lem of P̄ |prec;SCT |Cmax) becomes easy. In the following, we will describe the
procedure. We may assume w.l.o.g. that all the copies of any taski ∈ V start their
execution at the same time, call itti.

1.5.1 Colin-Chrétienne Algorithm see [13]

The algorithm uses two steps: the first step computes the release times, and the
second step use a critical determinated from the first step inorder to produces a
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optimal schedule in which all the tasks and their copies are executed at their release
times.
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Figure 1.8: P0 problem.

TheP0 problem given by Figure 1.8 will be illustrated the algorithm.
The algorithm which computes the release times is given next:

Algorithm 3 Release date algorithm and Earliest schedule
for i := 1 to n do

if PRED(i) = ∅ then
bi := 0

else
C := max{bk + pk + cki | k ∈ PRED(i)};
Let bes such that :bs + ps + csi = C;
bi := max{bs + ps,max{bk + pk + cki | k ∈ PRED(i) − {s}}}.

end if
end for
Each connected componentGc = (V ;Ec) on different processor;
Each copy is executed at his release time.

Without lost of generality, all copies of the taski admit the same starting , denoted
by ti, as the the taski. A arc (i, j) ∈ E is a critical arc ifbi + pi + cij > bj. From
this definition, it is clear that if(i, j) is a critical arc, then in all as soon as possible
schedule , each copy of a taskj must be preceded by a copy of a taski on the same
processor. In order to construct a earliest schedule, each critical path is allotted on
a processor, and each copy is executed at his release date.

Theorem 1.5.1 Let bebi the starting time computed by the procedure. For all
feasible schedule for a graphG, the release date of a taski cannot be less thanbi.
All sub-graph is spanning forest. The procedure gives a feasible schedule and the
overall complexity isO(n2).
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Lower and Upper bound
α|(cij , εij) Lower bound References Upper bound References

P |(1, 1), dup ρ ≥ 5/4 see [8] 2-approx [30]
P̄ |(1, 1), dup poly see [13] poly see [13]
P |(c, c), dup ρ ≥ 1 + 1

c+3 see [4] 3-approx [40]
P̄ |(c, c), dup NP-complete see [32] 2-approx [32]

P (P2)|(1, 0), dup ρ ≥ 4/3 see [2]
P̄ (P2)|(1, 0), dup poly see [5] poly see [5]
P (P2)|(c, c), dup ρ ≥ 1 + 1

c+3 see [20]
P̄ (P2)|(c, c), dup

Table 1.2: Complexity and approximation results in presence of duplication
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Figure 1.9: The critical sub-graph ofP0.

An earliest schedule of the precedence graphP0 is given by Figure 1.10.
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Figure 1.10: An earliest schedule ofP0.

The study of duplication in presence of unbounded number of processors is the-
oritical. Indeed, the results on unbounded processors do not improved the results
on limited number of processors. So, concerning the hierachical model, since the
number of processors per cluster is limited, the autors in [5] are investigate only on
the theoritical aspect of associated scheduling problem.
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Lower bound
(cij , εij) Cmax References
(1, 1) ρ ≥ 9/8 see [24]
(c, c) ρ ≥ 1 + 1

2c+5 see [22]
(1, 0) ρ ≥ 7/6 see [18]
(2, 1) ρ ≥ 9/8 see [19]
(c, c′) ρ ≥ 1 + 1

2c+4 see [20, 21]

Table 1.3: Thresold for the total sum of completion time minimization of unbouned
number of machines

1.6 Total sum of completion time minimization

In this section, a thresold for total sum of completion time minimization problem
is presented for some problems in the homogeneous and hierarchical model. The
following table summarize all the results in the homogeneous communication delay
model and the hierarchical communication delay model.

Theorem 1.6.1 There is no polynomial-time algorithm for the problem
P̄ |prec; cij = 1; pi = 1|

∑

j Cj with performance bound smaller than9/8 un-
lessP 6= NP see [24].

Proof
We suppose that there is a polynomial-time approximation algorithm denoted by
A with performance guarantee bound smaller than1 + 1

8 . Let I be the instance of
the problemP̄ |prec; cij = 1; pi = 1|Cmax obtained by a reduction (see Theorem
1.2.2).
Let I ′ be the instance of the problem̄P |prec; cij = 1; pi = 1|

∑

j Cj by addingx
new tasks from an initial instanceI. In the precedence constraints, each group of
x (with x > 36+6ρn

9−8ρ ) new tasks is a successor of the old tasks (old tasks are from
the polynomial transformation used for the proof of Theorem1.2.2). We obtain a
complete directed graph from old tasks to new tasks.
Let A(I ′) (resp. A∗(I ′)) be the result given byA (resp. an optimal result) on an
instanceI ′.

1. If A(I ′) < 8ρx+6ρn thenA∗(I ′) < 8ρx+6ρn. So we can decide that there
exists a scheduling of an instanceI with Cmax ≤ 6. Indeed, we suppose that
at most one (denoted byi) task ofn old tasks is executed att = 6. Among
thex news tasks, at most one task may be executed on the same processor as
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i beforet = 9. ThenA∗(I ′) > 9(x − 1). Thus,x < 9+6ρn
9−8ρ . A contradiction

with x > 36+6ρn
9−8ρ . Thus, it exists a schedule of length6 on an old tasks.

2. We suppose thatA(I ′) ≥ 8ρx + 6ρn. So,A∗(I ′) ≥ 8x + 6n because an al-
gorithmA is a polynomial-time approximation algorithm with performance
guarantee bound smaller thanρ < 9/8. There is no algorithm to decide
whether the tasks from an instanceI admit a schedule of length equal or less
than6.

Indeed, if there exists such an algorithm, by executing thex tasks at time
t = 8, we obtain a schedule with a completion time strictly less than8x+6n
(there is at least one task which is executed before the timet = 6). This is a
contradiction sinceA∗(I ′) ≥ 8x + 6n.

This concludes the proof of Theorem 1.6.1.

�

1.7 Conclusion
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3 , [31] 3, [40]
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no-APX, [22]

2, [32]

Figure 1.11: Principal results inUET -UCT model for the minimization of the length of
the schedule

25



JOB SHOP AND MACHINE SCHEDULING

1.8 Appendix

In this section, we will give some fundamentals results in theory of complexity and
approximation with guaranteed performance. A classical method in order to obtain
a lower for none approximation algorithm is given by the following results called
"Impossibility theorem" [14] and gap technic see [3].

Theorem 1.8.1 (Impossibility theorem) Consider a combinatorial optimization
problem for which all feasible solutions have non-negativeinteger objective func-
tion value (in particular scheduling problem). Letc be a fixed positive integer.
Suppose that the problem of deciding if there exists a feasible solution of value
at mostc is NP-complete. Then, for anyρ < (c + 1)/c, there does not exist a
polynomial-timeρ-approximation algorithmA unlessP = NP , see ([14], [3])

Theorem 1.8.2 (The gap technic)Let Q′ be anNP-complete decision problem
and letQ be anNPO minimization problem. Let us suppose that there exist two
polynomial-time computable functionsf : IQ′ → IQ and d : IQ′ → IN and a
constantgap > 0 such that, for any instancex of Q′,

S∗(f(x)) =

{

d(x)
d(x)(1 + gap)

Then no polynomial-timer-approximate algorithm forQ with r < 1 + gap can
exist, unlessP = NP , see [3].

1.8.1 List ofNP-complete problems

In this section, some classicalNP-complete problems are listed,which are used in
this chapter for the polynomial-time transformation.

One-in-(2, 3)SAT (2, 1̄) problem

Instances:We consider a logic formula with clauses of size two or three,and each
positive literal (resp. negative literal) occurs twice (resp. once). The aim is to find
exactly one true literal per clause. Letn be a multiple of3 and letC be a set of
clauses of size2 or 3. There aren clauses of size2 andn/3 clauses of size3 so
that:

• each clause of size2 is equal to(x ∨ ȳ) for somex, y ∈ V with x 6= y.

• each of then literalsx (resp. of the literals̄x) for x ∈ V belongs to one of
then clauses of size2, thus to only one of them.
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• each of then literalsx belongs to one of then/3 clauses of size3, thus to
only one of them.

• whenever(x∨ ȳ) is a clause of size2 for somex, y ∈ V, thenx andy belong
to different clauses of size3.

We would insist on the fact that each clause of size three yields six clauses of size
two.
Question:
Is there a truth assignment forI : V → {0, 1} such that every clause inC has
exactly one true literal?

Clique problem

Instances:Let beG = (V,E) a graph andk a integer.
Question: There is a clique (a complete sub-graph) of sizek in G ?

3 − SAT problem

Instances:

• Let beV = {x1, . . . , xn} a set ofn logical variables.

• Let beC = {C1, . . . , Cm} a set of clause of length three:(xci
∨ yci

∨ zci
).

Question: There isI : V → {0, 1} a assignment

1.8.2 Ratio of approximation algorithm

This value is defined as the maximum ratio, on all instancesI, between maximum
objective value given by algorithmh (denoted byKh(I)) and the optimal value
(denoted byKopt(I)), i.e.

ρh = max Kh(I)
Kopt(I) .

I

Clearly, we haveρh ≥ 1.

1.8.3 Notations

The notations of this chapter will precised by using thethree fieldsnotation scheme
α|β|γ, proposed by Graham et al. [23]:
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• ∗α ∈ {P, P̄ , P̄ (P2)}

– If α = P the number of processors is limited,

– If α = P̄ , then the number of processors is not limited,

– If α = P̄ (P2), then we have unboued number of clusters constituted
by two processors each,

• β = β1β2β3β4 where:

– If β1 =prec (the precedence graph est quleconsue.

∗β2 ∈ {c}

– If β2 = c (the communication delay betwen to tasks admiting a prece-
dence constraint is equal toc)

∗β3 ∈ {pj}

– If β3 = pj = 1 (the processing time of all the tasks is equal to one).

∗β4 ∈ {dup, .}

– If β4 =dup (the duplication of task is allowed)

– Si β4 = . (the duplication of task is not allowed)

• γ is the objectif function:

– the minimization of the makespan, denoted byCmax

– the minimization of the total sum of completion time, denoted by
∑

j Cj whereCj = tj + pj .
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