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Chapter 1

Scheduling with communication
delays

R. Giroudeau and J.C. Konig
LIRMM, 161 rue Ada,34392 Montpellier Cedex 5, France, UMR&5

1.1 Introduction

More and more parallel and distributed systems (clustéd, ayjvd global comput-
ing) are both becoming available all over the world, and omenew perspectives
for developers of a large range of applications includintgadaining, multime-
dia, and bio-computing. However, this very large potentiiatomputing power
remains largely unexploited this being, mainly due to thek laf adequate and
efficient software tools for managing this resource.

Scheduling theory is concerned with thptimal allocation of scarce resources to
activities over timeOf obvious practical importance, it has been the subjeekef
tensive research since the early 1950’s and an impressigardrof literature now
exists. Theheorydealing with the design of algorithms dedicated to schedus
much younger, but still has a significant history.

An application which will be scheduled on a parallel arcttilee may be repre-
sented by an acyclic gragh = (V, E) (or precedence graph) whevedesignates
the set of tasks, which will be executed on a setroprocessors, and wheig
represents the set of precedence constraints. A processiags allotted to each
taski € V.

From the very beginning of the study about scheduling problenodels kept up
with changing and improving technology. Indeed,
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e In the PRAM s nodel , in which communication is considered instanta-
neous, the critical path (the longest path from a source fold gives the
length of the schedule. So the aim, in this model, is to findridglarder on
the tasks, in order to minimize an objective function.

¢ Inthehonpbgeneous schedul i ng del ay nodel , each ardi, j) €
E represents the potential data transfer betweenitaskl taskj provided
thati andj are processed on two different processors. So the aim,sn thi
model, is to find a compromise between a sequential execatidra parallel
execution.

These two models have been extensively studied over théelagtears from both
the complexity and the (non)-approximability points ofwiésee [23] and [12]).
With the increasing importance of parallel computing, theesjion of how to
schedule a set of tasks on a given architecture becomesatréind has received
much attention. More precisely, scheduling problems wingl precedence con-
straints are among the most difficult problems in the areaathime scheduling
and they are part of the most studied problems in the domain.

In this chapter, we adopt tHa@erarchical communication mod§r] in which we
assume that the communication delays are not homogenepomeg) the proces-
sors are connected intdustersand the communications inside a same cluster are
much faster than those between processors belonging évatiff ones.

This model incorporates the hierarchical nature of the camoations using to-
day’s parallel computers, as shown by many PCs or worksiatietworks (NOWS)
[33, 1]. The use of networks (clusters) of workstations asaealfel computer
[33, 1] has not only renewed the user’s interest in the doragparallelism, but it
has also brought forth many new challenging problems relai¢he exploitation
of the potential power of computation offered by such a syste

Several approaches meant to try and model these systemgrop@sed taking
into account this technological development:

e One approach concerning the form of programming system,amegaote
work [36, 37, 11, 9].

¢ In abstract model approach, we can quote work [41, 26, 27,028, 16] on
malleable tasks introduced by [10, 15]. A malleable tasktas& which can
be computed on several processors and of which the exedirtierdepends
on the number of processors used for its execution.

As stated above, the model we adopt here isiibearchical communication model
which addresses one of the major problems that arises irffibieet use of such
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architectures: théask scheduling problemThe proposed model includes one of
the basic architectural features of NOWSs: the hierarclioadimunication assump-
tioni.e., alevel-based hierarchy of communication deigigls successively higher
latencies. In a formal context where both a set of clusteidagitical processors,
and a precedence graph= (V, E) are given, we consider that if two communi-
cating tasks are executed on the same processor (resp.fenemkifprocessors of
the same cluster) then the corresponding communicatiay dehegligible (resp.
is equal to what we calhter-processor communication dejayOn the contrary,

if these tasks are executed on different clusters, thendherwnication delay is
more significant and is callddter-cluster communication delay

We are givenn multiprocessor machines (or clusters denotedibythat are used
to process: precedence-constrained tasks. Each macHingluster) comprises
several identical parallel processors (denoted}QyA couple(c;;, €;;) of commu-
nication delays is associated to each(@rg) between two tasks in the precedence
graph. In what followsg;; (resp.e¢;;) is called inter-cluster (resp. inter-processor)
communication, and we consider thaf > ¢;;. If tasksi andj are allotted on
different machinedI’ andIl/, thenj must be processed at least time units af-
ter the completion of. Similarly, if i andj are processed on the same machine
I1* but on different processors; and m, (with k& # k') thenj can only stark;;
units of time after the completion af However, ifi andj are executed on the
same processor, thencan start immediately after the end ©f The communi-
cation overhead (inter-cluster or inter-processor ded@s not interfere with the
availability of processors and any processor may execitdask. Our goal is to
find a feasible schedule of tasks minimizing thakespani.e., the time needed to
process all tasks subject to the precedence graph.

Formally, in thehi er ar chi cal schedul i ng del ay nodel a hierarchi-
cal couple of valuegc;;, €;;) will be associated with;; < ¢;; V(i,7) € E such
that :

o if Il = TV and if ), = 7/ thent; + p; < t;
e elseifIl’ = II7 and I'|:7T]ZC #* Wi, with k # &’ thent; + p; + €5 < t;
e elsell’ =+ I i +pi +cj <t

wheret; denotes the starting time of the taistndp; its duration. The objective is
to find a schedule, i.e., an allocation of each task to a titeeval on one processor,
such that communication delays are taken into account atdctimpletion time
(makespan) is minimized (the makespan is denoted’Ry, and it corresponds to
max;cy{t; + p;}). In what follows, we consider the simplest cagec V,p;, =
I,Cij =c> 2,6Z‘j =c > 1 with ¢ > c.
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Note that the hierarchical model that we consider here isnargdization of clas-
sical scheduling model with communication delays ([124])1 Consider, for in-
stance, that for every af¢, j) of the precedence graph we haye = ¢;;. In such
a case, the hierarchical model is exactly the classicaldsdimg communication
delays model.

Note that the valuesand! are considered as constant in the following.

The chapter is organized as follow: In the next section, soesalts forU ET-
UCT model will be presented. In the section 1.3, a lower and uppend for
large communication delays scheduling problem will présen In the section
1.4, the principal results in hierarchical communicati@iag model will be pre-
sented. In the section 1.5, an influence of an introductiothefduplication on
the complexity of scheduling problem is presented. In theice 1.6, some re-
sults non-approximability results are given for the totamsof completion time
minimization. In the section 1.7, we will conclude on the gexity and approx-
imation scheduling problem in presence of communicatidayde In Appendix
section, some classicAl’P—complete problems are listed which are used in this
chapter for the polynomial-time transformations.

1.2 Some results for thd/ ET-UCT model

Inthehonogeneous schedul i ng del ay nodel ,each ardi, j) € F rep-
resents the potential data transfer betweentaskl taskj provided that and; are
processed on two different processors. So the aim, in thdem to find a com-
promise between a sequential execution and a parallel éxecthese two models
have been extensively studied over the last few years fradmthe complexity and
the (non)-approximability points of view (see [23] and [L2]

1. at any time, a processor executes at most one task;
2. V(Z,j) ek ifm= v thentj >t + pis OtherWiSij >t +p;+ Cij-

Themakesparf scheduler is: C7,,. = max;ey (t; + pi)-
Inthe U ET-UCT model, we hav&/i, p; = 1 andV(i,j) € E,c;; = 1.

1.2.1 Unbounded number of processors

In the case of there is no communication delays, the probkcorbes polynomial
(even if we consider thati, p; # 1). In fact, the Bellman algorithm can be used.

Theorem 1.2.1 The problem of deciding whether an instanceRiprec, p; =
1, ¢ij = 1|Cinaa problem has a schedule of lengdihis polynomial, see [42].
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Proof
The proof is based on the notion of total unimdularity matsiee [42] and see [39].
O

Theorem 1.2.2 The problem of deciding whether an instanceRiprec, p; =
1, ¢;j = 1|Crnae problem has a schedule of lengthis N’P—complete see [42].

Proof
The proof is based on the following reducti8® AT o Plprec;c;; = 1;p; =
1|Chnaz = 6.

Figure 1.1 The variables-tasks and the clauses-tasks

It is clear that the problem is iNVP.
Letber™ an instance 035 AT problem, we construct an instanc®f the problem
Plprec; cij = 1;p; = 1|Cpay in the following way:

e For each variable, six tasks are introducedz;, x2, z3, =, T andxzg; the
precedence constraints are given by Figure 1.1.

e for each clausec = (z.vc,2:), Where the literalsz., y. and z.
are occurrences of negated or unnegatégl,variables are introduced:
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Tey Yoy Zes Tes Tes Yo Yoy Zey Zer Tele, YeZes TeZe andc: the precedence
constraints between these tasks are also given by Figure 1.1

¢ If the occurrence of variable in the clausec is unnegated then we add
T, — v andz, — .

e If the occurrence of variable in the clause: is negated, then we add — =
andz, — x.

Clearly, z. represents the occurrence of variablen the clause:; it precedes the
corresponding variable tasks. This is a polynomial-tinaasformation illustrated
by Figure 1.1.
It can be proved that, there exists a schedule of length att snoi only if there is
a truth assignment : ¥V — {0, 1} such that each clause éhhas at least one true
literal.

O

Corollary 1.2.1 There is no polynomial-time algorithm for the problem
Plprec;cij = ¢ = 1;p; = 1|Cpae With performance bound smaller thaiy6
unlessP # NP, see [42].

Proof
The proof of Corollary 1.2.1 is an immediate consequenceheflinpossibility
Theorem, (see [14], [17]).

O

1.2.2 Approximate solutions with guaranteed performance

Good approximation algorithms seem to be be very difficuliésign, since the
compromise between parallelism and communication deky®i easy to han-
dle. In this section, we will present a approximation altori with a performance
ratio bounded byt/3 for the problemP|prec;c;j = 1;p; = 1|Cynaz- This algo-
rithm is based on a formulation on a integer linear progranfeasible schedule
is obtained by a relaxation and rounding procedure. Notie¢ it exists a trivial
2-approximation algorithm: the tasks without predecesaoesexecuted gt= 0,
the tasks admitting predecessors scheduled=a are executed at= 2 and so
on.

Given a precedence gragh= (V, E') apredecessofresp.successgrof a taski
is a taskj such that(j, ) (resp. (i, j)) is an arc ofG. For every task € V,T'*(4)
(resp. ' (4)) denotes the set of immediate successors (resp. predejesbo
We denote the tasks without predecessor (resp. succegsgrjrbsp.U). We call
sourceevery task belonging t&.
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The integer linear program The aim of this section is to model the problem
Plprec; cij = 1;p; = 1|/Cynaq by an integer linear program (ILP) denoted, in what
follows, byTI.
We model the scheduling problem by a set of equations definetthe starting
times vector(ty, . .., t,):
For every ardi, j) € E, we introduce a variable;; € {0, 1} which indicates the
presence or not of an communication delay, and the followorgstraintsy(i, j) €
E,ti + i —|-l‘ij < tj
In every feasible schedule, every task I — U has at most one successor, w.|.0.g.
call themj € I'* (i), that can be performed by the same processomaatmet; =
t;+p;. The other successors©ff any, satisfy:vk € T (i) —{j},tx > t;+p;i+1.
Consequently, we add the constraintsE: zi; > |TT(0)] — 1
JETT(2)

Similarly, every taski of V' — Z has at most one predecessor, w.l.0.g. call them
j € I'"(i), that can be performed by the same processerasimest; satisfying
ti— (t;+p;) < 1. So, we add the following constraints:z: xzj > I (9)] - 1.

jer—(i
If we denote byC,.. the makespan of the scheduté,é V, éi)+ Pi < Craz
Thus, in (vvhat follows,the following ILP will be considered:

min Caz
V(Z,j) € F, Ti5 € {O, 1}
Vi eV, t;i >0

V(Z,j) € E, t; + p; +.Tij < tj
(I1) VieV-U Y ay;>TF0)-1

jEr(i)

VieV—Z, > wu>[T() -1
JET=(3)

Vi eV, ti + i < Crae

-\
Let IT"/ denote the linear program correspondingltdn which we relax the

integrity constraintse;; € {0,1} by settingz;; € [0,1]. Given that the number
of variables and the number of constraints are polynomiatlynded, this linear
program can be solved in polynomial time. The solutiodt/ will assign to
every arq(i, j) € E avaluex;; = e;; with 0 < e;; < 1 and will determine a lower
bound of the value of,,,, that we denote bpi*/.

Lemma1.2.1 © is a lower bound on the value of an optimal solution for
P|pT€c; Cij = Lip; > 1|Cma;t-

Proof This is true since any optimal feasible solution of the scifiag problem
must satisfy all the constraints of the integer linear paogtl. O
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Algorithm 1 Rounding Algorithm and construction of the schedule

Step 1JRounding] '
Let bee;; the value of an aréi, j) € F given byPL}"f

Siej; <05 = ;=0
Sieij20.5 — ZCZ'J‘ZI

Step JJComputation of starting time]

if ¢ € Z then

t; =0
else

t; = max{tj + 1+ xji} avecj € F_(Z) et (j,Z) € A;
end if

Step 2 Construction of the schedulé

LetbeG’' = (V; E') whereE’ = E\{(3,j) € E|z;; = 1} {G' is generated by
the0 — arcs.}

Allotted each connected component@fon a different processor.

Each task is executed at it starting time.

In the following, we call an ar¢i, j) € E aO0-arc (resp. 1-arc) if xz;; = 0 (resp.

Lemma 1.2.2 Every jobi € V has at most one successor (resp. predecessors)
such thate;; < 0.5 (resp.e;; < 0.5).

Proof We consider a task € V' and his successorg, . .., ji such thate; ;, <
€i,js <...< € k- We know thathzl €i.j, >k—1 ,then2em-2 > €i 4o + €i gy >
k—1-YF se.;. Sincethae, j, € [0,1], S2F e, <k —2. Then,2e; j, > 1.
Thereforevl € {2,...,k} we havee;; > 0.5.We use the same arguments for the
predecessors. O

Lemma 1.2.3 The scheduling algorithm described above provides a féasib
schedule.

Proof It is clear that ech task admits at most one incoming (resp. outcoming)

0O-arcs.
O

Theorem 1.2.3 The relative performancg” of our heuristic is bounded above by
4
3 [31].
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Proof Let be a pathr; — x5 — ... — 11 consitutued byk + 1) tasks such that
x (resp.(k — x)) arcs values, given by linear programming, between twostas&
less (resp. least) than'2. So the length of this path is less than1+1/2(k—x) =
3/2k — 1/2x + 1. Moreover, by the rounding procedure, the length of this et
most2k — x + 1. Thus, we obtaings—="t1 < 4/3,Va. Thus, for a given path,
of valuep* (resp.p) before (resp. after) the rounding, admittiagrcs values less
than1/2, we havel: < % < 4/3. A critical path before the rounding
phase is denoted by. It is true for the critical path after the rounding procealur
p:sthen,1%<s%zsi*<4/3. O

In fact, the bound is tight (see [31]).

1.2.3 Bounded number of processors

In this section, a lower and upper bound will be presented,

Theorem 1.2.4 The problem of deciding whether an instance[dprec, c;; =
1, p; = 1|Cpqs problem has a schedule of lenghis polynomial, see [34].

Theorem 1.2.5 The problem of deciding whether an instance[dprec, c;; =
1, p; = 1|Cinaz problem has a schedule of lenghis N'P-complete, see [42].

Proof
The proof is based on th&P-complete problenClique.

9
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Figure 1.2 Example of polynomial-time reductiotiique o Plprec;c;; = 1;p; =
1|Cmam-

Let bel = @ the number of edges of a clique of size Let bem’ =
max{|V|+l—k,|E|—1}, the number of processors of an instanceis- 2(m’+1).

It is clear that the problem is iN“P. The proof is based on the polynomial-time re-
ductionclique oc Plprec, ¢;j = 1,p; = 1|Crqq. Letber* ainstance of theligue
problem. An instancer of P|prec,c;; = 1,p; = 1|Cyuq, problem is constructed
in the following way:

e Vv € V the tasksl,, K, are introduced,

10
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e Ve ¢ F ataskL, is created.

— We add the following precedence constrairity: — K,,vv € V and
T, — L. if vis an endpoint oé.

e Four sets of tasks are introduced:

- Xy={xz=1,....,.2=m—1—|V|+ k},
-Y,={y=1,...,y=m— |E|+1},
-U,={u=1,...,u=m—k},
-Wy={w=1,...,.w=m—|V|}.

— the precedence constraints are addeég:— X,, U, — Y,, W, —

Yy

Lcliqu% L— Lc ique

K — K%l ique

Tclique Kclique

Figure 1.3 Example of construction in order to illustrate the proof lbébrem 1.2.5

It easy to see that the graphadmits a clique of sizg if only if it exists a schedule

of length4.
O

1.2.4 Approximation algorithm

In this section, we will present a simple algorithm whicheagva schedule™
onm machines from a schedute® on unbounded number of processors for the
P|prec, cij = 1,pi = 1|Chuae- The validity of this algorithm is based on the fact
there is at most a matching between the tasks executedrad the tasks processed
att; + 1.

Theorem 1.2.6 From all polynomial-time algorithnh* with performance guar-
antee p for the problemP|prec,c;; = 1,p; = 1|Cpar, We may obtain a

11
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Algorithm 2 Scheduling onn machines from a schedu€® on unbounded num-
ber of processors
fori=0aCy,, —1do
Let be X; the set of tasks executedtain ¢°° using a heuristi¢.*.
The X, tasks are executed [ﬁxﬁ"} units of time.

end for

polynomial-time algorithm with performance guarantge+ p) for the problem
P|p’rec, Cij = 17292‘ = 1|Cma$-

Proof
Cce -—1 Ce —1 Cce -—1
D Dl L S (e I T D D (L= Eyer
=0 =0 =0
C'ronoaa:_l |X ‘
< () + v < O™ + O™ < Ol + oGyt

O

For example, thel/3-approximation algorithm gives @/3-approximation algo-
rithm. Munier et al. [29] propose @ /3 — 4/3m)-approximation algorihtm for the
same problem.

1.3 Large communications delays

Scheduling in presence of large communication delays,esnoost difficult prob-
lem in scheduling theory, since the starting time of tasks thie communication
delay are not be synchronized.

If we consider the problem of scheduling a precedence graifi large com-
munication delays and unit execution time (UET-LCT), on atmeted num-
ber of processors, Bampis et al. in [4] proved that the dewcigiroblem de-
noted by Plprec;ci; = ¢ > 2;p; = 1|Chgq fOr Crnax = ¢ + 3 is an N'P-
complete problem, and fof',,.x = ¢ + 2 (for the special case = 2), they
develop a polynomial-time algorithm. This algorithm cart be extended for
¢ > 3. Their proof is based on a reduction from th&P-complete problem
Balanced Bipartite Complete Graph, BBCG [17, 38]. Thus, Bampis et al.
[4] proved that theP|prec;c;j = ¢ > 2;p; = 1|Cpyar problem does not pos-

12
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sess a polynomial-time approximation algorithm with rajicarantee better than
(14 —5), unlessP = N'P.

Ci Cé Cé—&—l Cé+2
P .——.
i ' Al Al
A] S +1 +2

; %
Di Dc+3
1
.T'. /i e /i ‘D C+3
D5 D Dcys

Figure 1.4 A partial precedence graph for th&P-completeness of the scheduling prob-
lem Plprec; ci; = ¢ > 3;p; = 1|Crgq-

Theorem 1.3.1 The problem of deciding whether an instanceRiprec; ¢;; =
¢; pi = 1|Cae has a schedule of length equal or less thian-4) is NP-complete
with ¢ > 3 (see [22]).

Proof

Itis easy to see tha®|prec; c;j = ¢;p; = 1|Crpar = ¢+ 4 € N'P.

The proof is based on a reduction frdiy. Given an instance™ of II;, we con-
struct an instance of the problemP|prec; ¢;; = ¢;p; = 1|Crnaz = ¢ + 4, inthe
following way (Figure 1.4 helps understanding of the recimt

n denotes the number of variablesof.

1. For alll € V, we introduce(c + 6) variable-tasksxo, .z, I, 1/, I, ﬂ§ with
j €{L,2,...,c+2}. We add the precedence constraints; — I, oy —
U6 =16 — l/,gé, N ﬁéﬂ with j € {1,2,...,c+ 1}.

2. For all clauses of length three denoted®y= (y Vv z V t), we introduce
2 x (2 + ) clause-task€ and A%, j € {1,2,...c + 2}, with precedence
constraints:C;'. — Cl, andAl — AL g e {1, 2, .o, e+ 1} We agld the
constraintsC] — Iwith € {y/,2/,#'} andl — A _, withl € {7/, 2/, t'}.

13
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3. For all clauses of length two denoted®y= (z V 3), we introduce(c + 3)
cIause—tasksDj-, j €41,2,...,c+ 3} with precedence constraintﬁ?;ﬁ —
Dl withj e {1,2,...,c+2} andl’ — Di,zwith | € {z,3}.

The above construction is illustrated in Figure 1.4. Thasformation can be
clearly computed in polynomial time. 4
Remark: !’ is in the clause”’ of length two associated with the paft/; —
D/i _ D/i _ D/i
2 7 ego c+3

It easy to see that there is a schedule of length equal orHasgd + 4) if only if
there is a truth assignment: ¥V — {0, 1} such that each clause ¢hhas exactly
one true literal (i.e. one literal equal 19, see [22].

O

Theorem 1.3.2 The problem of deciding whether an instanceRiprec; c;; =
2;p; = 1|Chae has a schedule of length equal or less than six/i®-complete
(see [22]).

Corollary 1.3.1 There is no polynomial-time algorithm for the problem
Plprec;cij = ¢ > 2;p; = 1|Cpqq With performance bound smaller than+ cﬁ
unlessP # NP (see [22]).

Theorem 1.3.3 The problem of deciding whether an instanceRiprec; c;; =
¢;pi = 1|Chaq With ¢ € {2, 3} has a schedule of length at mdstt- 2) is solvable
in polynomial time (see [22]).

1.3.1 Approximation by expansion

In this section, a new polynomial-time approximation aitjon with performance
guarantee non-trivial for the problef|prec; cij = ¢ > 2;p; = 1|Cpax Will be
proposed.

Notation: We denote by>°, the UET-UCT schedule, and y° the UET-LCT
schedule. Moreover, we denote hyresp.t;) the starting time of the taskin the
schedules™ (resp. in the schedulgX®).

Principle: We keep an assignment for the tasks given by a “good” feasiied-
ule on an unrestricted number of processsts. We proceed to an expansion of
the makespan, while preserving communication deldys-(¢7 + 1 + ) for two
tasks,i andj with (i, j) € E, processing on two different processors.

Consider a precedence gragh= (V, E'), we determine a feasible schedul®,
for the model UET-UCT, using & /3)—approximation algorithm proposed by
Munier and Kénig [31]. This algorithm gives a coupté € V, (t;,7) on the

14
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schedules®® corresponding tot; the starting time of the taskfor the schedule
o> andr the processor on which the tasls processed d.

Now, we determine a couplei € V, (t¢,7’) on schedules2° in the following
way: The starting time{ = d x t; = @ti and,r = 7’. The justification of the
expansion coefficient is given below. An illustration of tepansion is given in
Figure 1.5.

E k+1k+2k+3
™ T Y

L
T2 <

Model UET-UCT
communication delay

(c+21)/€ (c+21)k 1 (c+1)2(k+1) (c+1)2(k+1) 1
PE—
1 z Yy

s %‘ z
2 < (1) (k+2)

Model UET-LCT (ADkt2) g +1

2
communication delay

Figure 1.5 lllustration of notion of an expansion

Lemma 1.3.1 The coefficient of an expansionds= @

Proof Consider two tasksand; such thati, j) € F, which are processed on two
different processors in the feasible schediffe. Let bed a coefficientd such that

t; = dx t; andtj = d x t;. After an expansion, in order to respect the precedence

constraints and the communication delays we must Wave ¢7 + 1 + ¢, and so

dxt;—dxt;>c+1, d> £ 4> <L Itis sufficient to choosed = (<31

ti—t;°
[l

Lemma 1.3.2 An expansion algorithm gives a feasible schedule for thélpro
denoted byP|prec; ¢ij = ¢ > 2;p; = 1|Crpax-

Proof It is sufficient to check that the solution given by an expansklgorithm
produces a feasible schedule for the model UET-LCT. Conside tasksi and j
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such that(z, j) € E. We denote byr; (resp.7;) the processor on which the task
(resp. the task) is executed in the schedwé®. Moreover, we denote by, (resp.
w;-) the processor on which the taskresp. the task) is executed in the schedule
o2°. Thus,

o If m; = 7; thenm; = 7. Since the solution given by Munier and Konig [31]
gives a feasible schedule on the model UET-UCT, then we hayel <

tj, 25t +1 < 21585+ 1 <t + < <46

o If m; # mj thenn] # /. We havel; + 1+ 1 < t;, Z27#6 +2 < 251546 +
(c+1) <t

O

Theorem 1.3.4 An expansion algorithm gives-?éczj—l)—approximation algorithm
for the problemP|prec; ¢;; = ¢ > 2;p; = 1|Cax.

Proof

We denote byC” .. (resp. CPPt.) the makespan of the schedule computed by the
Munier and Kénig (resp. the optimal value of a schedifte). In the same way
we denote byC"" (resp. C%5¢) the makespan of the schedule computed by our
algorithm (resp. the optimal value of a schedufe).

h 4 Opt H Ch* (Cgl)crf‘raam
We know thatCy,,, < 3Cna- Thus, we obtamcﬁg,a;’c = Zops
(c+1) (c+1) 4 ~opt
2 C’r};uza: P gcnfam < 2(c+1) D
Chlee = Cilaa = 3

This expansion method can be used for other schedulinggrahl

1.4 Complexity and approximation of hierarchical
scheduling model

On negative side, Bampis et al. in [6] studied the impact efttlerarchical com-
munications on the complexity of the associated problemeyTd¢onsidered the
simplest case, i.e., the probleR{P2)|prec; (cij, €i;) = (1,0); pi = 1|Cpaz, and
they showed that this problem did not possess a polynoimnig-approximation
algorithm with a ratio guarantee better thigft (unlessP = N'P). Recently, [19]
Giroudeau proved that there is no hope to fingapproximation withp < 6/5 for
the couple of communication delays;;, ¢;;) = (2,1). If duplication is allowed,
Bampis et al. [5] extended the result of [13] in the case ofdnEhical communi-
cations, providing an optimal algorithm fdt(P2)|prec; (cij, €:5) = (1,0);p; =
1; dup|Cnaz- These complexity results are given in Table 1.1.
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Lower bound

(cijs €j) Crnaz References
(1,0) p=>5/4 see [6]
(2,1) p>6/5 see [19]

(e,d) | p>1+ ;13 see [20]

Table 1.1: Previous complexity results for unbounded nurdfenachines for
hierarchical communication delay model

On positive side, the authors presented in [&/&-approximation algorithm for
the problemP(P2)|prec; (cij, €5) = (1,0);p; = 1|Cinaz Which is based on an
integer linear programming formulation. They relax theegrity constraints and
they produce a feasible schedule by rounding. This reselttsnded to the prob-
lem P(Pl)|prec; (cij, €ij) = (1,0); p; = 1|Crnaz leading to aﬁ%—approximation
algorithm.

The challenge is to determinate a threshold for the appraam algorithm con-
cerning the two more general problemi3( Pl > 4)|prec; (cij, €ij) = (¢, 1);p; =
1|Crnaz @and P(PL > 4)|prec; (cij, €ij) = (¢, ); pi = 1|Crnaz With ¢ < c.

In the classical scheduling communication delay model, m@nkthat (see [25])
the decision problem associated wWithprec; c;; = 1; p; = 1|Cinax becomesVP-
complete even fo€,,.x > 6, and that it is polynomial fo€\,,., < 5 (this problem

is denoted in what follows the UET-UCT (Unit Execution Tim@iuCommuni-
cation Time) homogeneous scheduling communication dglegfsem). Recently,
in [22], the authors proved that there is no possibility oflfing ap-approximation
with p < 1+1/(c+4) (unlessP = N'P) for the case where all tasks of the prece-
dence graph have unit execution times, where the multigsarels composed of
an unrestricted number of machines, and wletenotes the communication delay
between two tasksandj both submitted to a precedence constraint and which have
to be processed by two different machines (this problem ietdel in the follow-
ing UET-LCT (Unit Execution Time Large Communication Tinmf&)mogeneous
scheduling communication delays problem). The problenofmes polynomial
whenever the makespan is at mgst 1). The case ofc + 2) is still partially
opened. In the same way as for the hierarchical communicatétay model, for
the couple of communication delay valugels 0), the authors proved in [6] that
there is no possibility of finding a-approximation withy < 5/4 (this problem is
detailed in following the UET-UCT hierarchical scheduliogmmunication delay
problem).

Theorem 1.4.1 The problem of deciding whether an instanceP¢Pl > 4)|prec;

17
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(cijs €ij) = (¢,¢);pi = 1|Crmaz having a schedule of length at mdst+ 3) is
N'P-complete, see [20].

Corollary 1.4.1 There is no polynomial-time algorithm for the probleiPl >
4)|prec; (cij, €i5) = (¢,¢);pi = 1|Cpnae With ¢ > ¢’ performance bound smaller

than1+ — unlessP # NP, see [20]..

The problem of deciding whether an instanceR{P!l)|prec; (cij, €i5) = (¢ >
0,d);p; = 1|Cpas having a schedule of length at magt+ 1) is solvable in
polynomial time sincé andc are constant.

In the same way as the section 1.2.2, the aim is to model thélgmmo
P(P2)|prec; (cij, €5) = (1,0);p; > 1|Cimaq by an integer linear program (ILP)
denoted, in what follows, bii.

In this section, we will precis only the difference betwebr tLP given for the
problem Plprec; c;j = 1;p; = 1|Crnaz @and P(P2)|prec; (cij, €ij) = (1,0);p; >
1Chaz -

In every feasible schedule, every taske V' — U has at most two successors,
w.l.o.g. call themj; andj> € 't (i), that can be performed by the same cluster
asi at timet;, = t;, = t; + p;. The other successors ofif any, satisfy:Vk €
(i) — {j1, 42}, tx > t; + p; + 1. Consequently, the constraints; ; .+ ;) zij >
IT*(7)| — 2 are added.

Similarly, every task of V' — Z has at most two predecessors, w.l.o.g. call them
J1andjp € I'"(7), that can be performed by the same cluster atstimest;, , ¢,
satisfyingt; — (t;, +p;,) < landt;—(t;,+p;,) < 1. So, the following constraints:

> jer-(i) %ji = I (9)] — 2 are added

The above constraints are necessary but not sufficient ttmmslin order to get a
feasible schedule for the problem. For instance, a solutionimizing Ci,.x for

the graph of case (a) in Figure 1.6 will assign to every arovtiiee 0. However,
since every cluster has two processors, and so at most th®tas be processed
on the same cluster simultaneously, the obtained solusiarkearly not feasible.
Thus, the relaxation of the integer constraints, by comside®) < x;; < 1, and the
resolution of the resulting linear program with objectiveétion the minimization

of Crax, gives just a lower bound of the value Gf; ...

In order to improve this lower bound, we consider every staply of G that is
isomorphic to the graphs given in Figure 1.6 —cases (a) andit(ls easy to see
that in any feasible schedule 6f, at least one of the variables associated to the
arcs of each one of these graphs must be set to one. So, thwifglconstraints
are added:
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case (a) case (b)

Figure 1.6: Special sub-graphs considered in the ILP.

e For the case (a):
Vi7j7 k7lum € V7 such tha’t(j72)7 (.]7 k)a (luk)7 (lam) € Eaxﬂ"_w]k"’_djlk"_
Lim > 1

e For the case (b):
Viaj) kalam € V> such tha‘(i)j)v (k)])v (kal)> (m>l) € E,-Tij+-1'lgj+33kl+

Ty 2> 1

Thus, in what follows, the following ILP will be considered:
(

min Caz
V(Z,j) € Ev Lij € {O, 1}
Vi eV, t;i >0
V(i,j)EE, ti+pi+xij <t
VieV —U, > wi > [T -2
(IT) JEL ()
VieV —2Z, > w = [T (i) -2
J€r=(2)
Vi,j,k:,l,m € Vv\(]az)a (.7> k)v (l>k)v (l>m) € Ev Zji +xjk + xi + Tim >1
Vi,j,k:,l,mEV,\(’i,j),(k,j),(k,l),(m,l) GEv xlj+xk]+xkl+xml >1
Vi eV, ti +pi < Crmaz

Once again the integer linear program given above doeswayalimply a feasible
solution for thescheduling problem. For instance, if thecpdence graph given in
Figure 1.7 is considered, the optimal solution of the intdigear program will set
all the arcs to 0. Clearly, this is not a feasible solutiondor scheduling problem.
However, the goal in this step is to get a good lower bound ehtlakespan and a
solution —eventually not feasible— that we will transfororatfeasible one.
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Figure 1.7: An optimal solution of the ILRT does not always imply a feasible solution.

Let II"/ denote the linear program correspondingltan which we relax the
integrability constraints;;; € {0, 1} by settingz;; € [0,1]. Given that the number
of variables and the number of constraints are polynomiadlynded, this linear
program can be solved in polynomial time. The solutiodiéf/ will assign to

every arc(i, j) € I avaluex;; = e;; with 0 < e;; < 1 and will determine a lower
bound of the value of’,,. that we denote bp"/.

Lemma 1.4.1 ©*/ is a lower bound on the value of an optimal solution for

P(P2)|p7’ec; (Cijueij) = (170)§Pi > 1|Cma:c-
Proof

See the proof of Theorem 1.2.1.
O

We use the algorithm 1 for the rounding algorithm by chandiegvalue rounded:
ei; < 0.25 insteade;; < 0.5 The solution given byStep lis not necessarily
a feasible solution (take for instance the precedence goépiigure 1.7), so we
must transform it to a feasible one. Notice that the casesngiv Figure 1.6 are
eliminated by the linear program. In the next step we neeébitaving definition.

Definition 1.4.1 A critical path with terminal vertex € V is the longest path from
an arbitrary source of~ to taski. The length of a path is defined as the sum of the
processing times of the tasks belonging to this path andeofafuesr;; for every

arc in the path.

1. Step ZFeasible Rounding]: We change the integer solution asvdal

(a) If i is a source then we keep unchanged the values abbtained in
Step 1.

(b) Leti be a task such that all predecessors are already examingd. Le
A; be the subset of incoming arcsbelonging to a critical path with
terminal vertex the task
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I. If the setA; contains &-arc, then all the outcoming arcs; take
the value 1.

ii. If the setA; does not contain an§-arc (all the critical incoming
arcs are valued to 1), then the value of all the outcoming aycs
remains the same as Btep 1 and all the incoming)-arcs are
transformed td -arcs

In Step 1(b)iichanging the value of an incomir@arc to 1 does not
increase the length of any critical path having as termireatex i,
because it exists at least one critical path with terminalexel such
that an arqj,i) € E is valued by the linear program to at le@is25
(ej; > 0.25), and sar;; is already equal ta.

Lemma 1.4.2 Every jobi € V has at most two successors (resp. predecessors)
such thate;; < 0.25 (resp. e;; < 0.25) and The scheduling algorithm described
above provides a feasible schedule.

Theorem 1.4.2 The relative performancg” of our heuristic is bounded above by
8 and the bound is tight, see [7].

Proof
See the proof of the Theorem 1.2.3.

1.5 Duplication

The duplication of the tasks has been introduced first by dap@iou and
Yannakakis [32] in order to reduce an influence of the comgaitiin delays
on the schedule. In [32], the authors developR-approximation algorithm
for the problem Plprec;c;; = ¢ > 2;p;i = 1;dup|Caz. The problem
Plprec; SCT|Cpnqy (the problemP|prec;c;j = 1;p; = 1|Cpaq is @ subprob-
lem of P|prec; SCT|Cynaz) becomes easy. In the following, we will describe the
procedure. We may assume w.l.0.g. that all the copies ofaskyi t= V' start their
execution at the same time, caltjt

1.5.1 Colin-Chrétienne Algorithm see [13]

The algorithm uses two steps: the first step computes thaselémes, and the
second step use a critical determinated from the first stepdar to produces a
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optimal schedule in which all the tasks and their copies xeewed at their release
times.

SISTRQ O QO (TR
O I W O T

Figure 1.8 P, problem.

The P, problem given by Figure 1.8 will be illustrated the algomith
The algorithm which computes the release times is given next

Algorithm 3 Release date algorithm and Earliest schedule
for i := 1tondo
if PRED(i) = @ then
b; =0
else
C :=max{by + pr +ci; | k € PRED(i)};
Let bes such that b + ps + ¢5; = C;
b; := max{bs + ps, max{by + pr + cx; | k € PRED(i) — {s}}}.
end if
end for
Each connected componeft = (V; E.) on different processor;
Each copy is executed at his release time.

Without lost of generality, all copies of the taskdmit the same starting , denoted
by t;, as the the task A arc (i, j) € E is a critical arc ifb; + p; + ¢;; > b;. From
this definition, it is clear that ifi, j) is a critical arc, then in all as soon as possible
schedule , each copy of a tagknust be preceded by a copy of a tasin the same
processor. In order to construct a earliest schedule, eéaatpath is allotted on

a processor, and each copy is executed at his release date.

Theorem 1.5.1 Let beb; the starting time computed by the procedure. For all
feasible schedule for a graph, the release date of a taglcannot be less thaky.

All sub-graph is spanning forest. The procedure gives ailbschedule and the
overall complexity i€ (n?).
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Lower and Upper bound

al(cij, €i5) Lower bound | Referenceg Upper bound| Referenceg
P|(1,1),dup p>5/4 see [8] 2-approx [30]
P|(1,1), dup poly see [13] poly see [13]
P|(c, c), dup p>1+—= see [4] 3-approx [40]
P|(¢,c), dup NP-complete| see [32] 2-approx [32]
P(P2)|(1,0),dup p>4/3 see [2]
P(P2)|(1,0), dup poly see [5] poly see [5]
P(P2)|(¢c,c),dup | p>1+ #3 see [20]
P(P2)|(¢, ), dup

Table 1.2: Complexity and approximation results in presesfaduplication

4 c f
2. d\:g\. Z_
b.".e [ ] h

Figure 1.9 The critical sub-graph of.

An earliest schedule of the precedence grapls given by Figure 1.10.

| 9 |
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0123456789 101112

Figure 1.1Q An earliest schedule dfy.

The study of duplication in presence of unbounded numberatgssors is the-
oritical. Indeed, the results on unbounded processors tHonproved the results
on limited number of processors. So, concerning the higzatmodel, since the
number of processors per cluster is limited, the autors]iaf®investigate only on
the theoritical aspect of associated scheduling problem.
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Lower bound
(cij» €i5) Cinaz References
(1,1) p>9/8 see [24]
(c,e) |p>1+55| seel22]
(1,0) p>1/6 see [18]
(2,1) p>9/8 see [19]
(c.d) | p>1+ 51 | see[20,21]

Table 1.3: Thresold for the total sum of completion time mmiziation of unbouned
number of machines

1.6 Total sum of completion time minimization

In this section, a thresold for total sum of completion timmimization problem

is presented for some problems in the homogeneous anddfig@rmodel. The
following table summarize all the results in the homogesemmmunication delay
model and the hierarchical communication delay model.

Theorem 1.6.1 There is no polynomial-time algorithm for the problem
Plprec;cij = 1;p; = 1] >; C; with performance bound smaller thaty8 un-
lessP # NP see [24].

Proof

We suppose that there is a polynomial-time approximatigoréhm denoted by
A with performance guarantee bound smaller tlnainé. Let I be the instance of
the problemP|prec; ¢;; = 1;p; = 1|Cnq, Obtained by a reduction (see Theorem
1.2.2).

Let I’ be the instance of the problefprec; ¢;; = 1;p; = 1 Zj C; by addingz

new tasks from an initial instance In the precedence constraints, each group of
x (with x > %) new tasks is a successor of the old tasks (old tasks are from
the polynomial transformation used for the proof of Theotk&12). We obtain a
complete directed graph from old tasks to new tasks.

Let A(I") (resp. A*(I")) be the result given byl (resp. an optimal result) on an

instancel’.

1. If A(I") < 8pz+6pnthenA*(I') < 8px+6pn. So we can decide that there
exists a scheduling of an instant&ith C,,,.,. < 6. Indeed, we suppose that
at most one (denoted hy task ofn old tasks is executed at= 6. Among
thex news tasks, at most one task may be executed on the samesaroass

24



SCHEDULING WITH COMMUNICATION DELAYS

i beforet = 9. ThenA*(I') > 9(x — 1). Thus,z < L. A contradiction
with z > %. Thus, it exists a schedule of lengtton an old tasks.

2. We suppose that(I') > 8px + 6pn. So,A*(I') > 8z + 6n because an al-
gorithm A is a polynomial-time approximation algorithm with perfance
guarantee bound smaller than< 9/8. There is no algorithm to decide
whether the tasks from an instantadmit a schedule of length equal or less
than6.

Indeed, if there exists such an algorithm, by executingathasks at time
t = 8, we obtain a schedule with a completion time strictly less8x + 6n
(there is at least one task which is executed before thettim@). This is a
contradiction sinced*(I’) > 8z + 6n.

This concludes the proof of Theorem 1.6.1.

1.7 Conclusion

Without com.
UET —-UCT

P

2 — L [23]Polynomi
No dup
dup
Polynomial 2, [31] I — 2 [29] no-APX, [22] 3, [40]
2, [30] 2,[32]
no-APX, [35]

Figure 1.11 Principal results inU ET-U C'T" model for the minimization of the length of
the schedule
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1.8 Appendix

In this section, we will give some fundamentals results @otly of complexity and
approximation with guaranteed performance. A classicdhotein order to obtain
a lower for none approximation algorithm is given by thedwling results called
"Impossibility theorem™ [14] and gap technic see [3].

Theorem 1.8.1 (Impossibility theorem) Consider a combinatorial optimization
problem for which all feasible solutions have non-negatiteger objective func-
tion value (in particular scheduling problem). Letbe a fixed positive integer.
Suppose that the problem of deciding if there exists a flasitlution of value

at mostc is N'P-complete. Then, for any < (¢ + 1)/c, there does not exist a
polynomial-timep-approximation algorithm4 unlessP = NP, see ([14], [3])

Theorem 1.8.2 (The gap technic)Let Q' be an\P-complete decision problem
and let@ be anN PO minimization problem. Let us suppose that there exist two
polynomial-time computable functiorfs: I — Ig andd : Iopo — IN and a
constantgap > 0 such that, for any instance of ',

[ d(@)
S @) = { d(a)(1 + gap)

Then no polynomial-time-approximate algorithm fo) with » < 1 4+ gap can
exist, unles® = NP, see [3].

1.8.1 List of V’P-complete problems

In this section, some classic&lP-complete problems are listed,which are used in
this chapter for the polynomial-time transformation.

One-in-(2,3)SAT(2,1) problem

Instances: We consider a logic formula with clauses of size two or theew each
positive literal (resp. negative literal) occurs twicesfsgeonce). The aim is to find
exactly one true literal per clause. Letbe a multiple of3 and letC be a set of
clauses of siz& or 3. There aren clauses of siz€ andn /3 clauses of siz& so
that:

e each clause of sizeis equal to(x Vv y) for somex, y € V with = # y.

e each of then literals x (resp. of the literals) for x € V belongs to one of
then clauses of siz&, thus to only one of them.
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e each of then literals = belongs to one of the /3 clauses of siz8, thus to
only one of them.

e wheneverzVy) is a clause of siz2 for somez, y € V, thenz andy belong
to different clauses of siz&

We would insist on the fact that each clause of size threelyigix clauses of size
two.
Question:
Is there a truth assignment fér: V — {0,1} such that every clause if has
exactly one true literal?
Clique problem
Instances:Let beG = (V, F) a graph and a integer.
Question: There is a clique (a complete sub-graph) of gize G ?
3 — SAT problem
Instances:
o LetbeV = {z,...,x,} asetofn logical variables.

e LetbeC = {C1,...,C,,} asetof clause of length three:.. V y., V z,).

Question: Thereisl : V — {0, 1} a assignment

1.8.2 Ratio of approximation algorithm

This value is defined as the maximum ratio, on all instarigé®tween maximum
objective value given by algorithrh (denoted by (1)) and the optimal value
(denoted byCoP! (1)), i.e.

Kr1
ph = max ICTt((I))'

I

Clearly, we have™ > 1.

1.8.3 Notations

The notations of this chapter will precised by usingttimee fieldshotation scheme
a|B|y, proposed by Graham et al. [23]:
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e xa € {P,P,P(P2)}

— If « = P the number of processors is limited,
— If a = P, then the number of processors is not limited,

— If @ = P(P2), then we have unboued number of clusters constituted
by two processors each,

o 3 = (152083054 where:
— If B; =prec (the precedence graph est quleconsue.
0 € {c}

— If B3 = ¢ (the communication delay betwen to tasks admiting a prece-
dence constraint is equal tp

*03 € {pj}
— If 33 = p; = 1 (the processing time of all the tasks is equal to one).
x4 € {dup, .}

— If B4 =dup (the duplication of task is allowed)
— Si B4 = . (the duplication of task is not allowed)

e ~ is the objectif function:

— the minimization of the makespan, denoted®y,,,

— the minimization of the total sum of completion time, dembtey
>_; CjwhereC; =t; + p;.
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