
Paper 25.1 INTERNATIONAL TEST CONFERENCE 1
1-4244-1128-9/07/$25.00 © 2007 IEEE

A Novel Scheme to Reduce Power Supply Noise
for High-Quality At-Speed Scan Testing

Xiaoqing Wen 1, Kohei Miyase 1, Seiji Kajihara 1, Tatsuya Suzuki 1, Yuta Yamato 1, Patrick Girard 2
Yuji Ohsumi 3, and Laung-Terng Wang 4

1 Kyushu Institute of Technology, Iizuka 820-8502, Japan
2 LIRMM, 161 rue Ada, 34392 Montpellier cedex 05, France

3 Hibikino R&D Center, DNP Co. Ltd., Kitakyushu 808-0135, Japan
4 SynTest Technologies, Inc., 505 S. Pastoria Ave., Sunnyvale, CA 94086, USA

Abstract
High-quality at-speed scan testing, characterized by high
small-delay-defect detecting capability, is indispensable to
achieve high delay test quality for DSM circuits. However,
such testing is susceptible to yield loss due to excessive
power supply noise caused by high launch-induced
switching activity. This paper addresses this serious
problem with a novel and practical post-ATPG X-filling
scheme, featuring (1) a test relaxation method, called path
keeping X-identification, that finds don’t-care bits from a
fully-specified transition delay test set while preserving its
delay test quality by keeping the longest paths originally
sensitized for fault detection, and (2) an X-filling method,
called justification-probability-based fill (JP-fill), that is
both effective and scalable for reducing launch-induced
switching activity. This scheme can be easily implemented
into any ATPG flow to effectively reduce power supply
noise, without any impact on delay test quality, test data
volume, area overhead, and circuit timing.

1. Introduction
Shrinking feature size, growing circuit complexity, increasing
clock speed, and decreasing power supply voltage have
made timing-related defects, usually of small delays, the
dominant failure mechanism in the deep submicron (DSM)
era [1]. As a result, high-quality delay testing, characterized
by high small-delay-defect detecting capability, is required
in order to reduce the defect level of DSM circuits [2].

1.1 At-Speed Scan Testing
Delay testing is mostly conducted by at-speed scan testing
[3]. This is due to its strong fault diagnosis support, easy
implementation, and high fault coverage.
As illustrated in Fig. 1 (a), the essence of at-speed scan
testing is to launch a transition at the start-point of a path
(FF output) and capture its response at the end-point of the
path (FF input) at the system speed. That is, the test cycle
(T) is at-speed in order to directly check the delay of the
path. As shown in Fig. 1 (b), a path may have three types of
possible delays: nominal path delay (ND), defect-induced
delay (DD), and power-supply-noise-induced delay (PD).
A chip is identified to be defective if ND + DD + PD > T,
that will cause an incorrect logic value to be loaded into the
end-point FF due to the unsatisfied timing requirement.

Combinational
Portion

Scan
FFs

Test
Vector

Start End

scan_in

scan_out

Shift

Capture

CK SE

Launch CaptureTest Cycle
(T)

Path

(SE = 0)

(SE = 1) Test
Response

Combinational
Portion

Scan
FFs

Test
Vector

Start End

scan_in

scan_out

Shift

Capture

CK SE

Launch CaptureTest Cycle
(T)

Path

(SE = 0)

(SE = 1) Test
Response

(a) Basic concept

Start
End

Path

Nominal Path Delay
(ND)

Defect-Induced Delay
(DD)

Power-Supply-Noise-Induced Delay
(PD)

Start
End

Path

Nominal Path Delay
(ND)

Defect-Induced Delay
(DD)

Power-Supply-Noise-Induced Delay
(PD)

(b) Types of possible delay

 Fig. 1 At-Speed Scan Testing.

The launch of transitions in at-speed scan testing can be
realized by either the launch-off-shift (LOS) through a shift
pulse (SE = 1) or the launch-off-capture (LOC) scheme
through a capture pulse (SE = 0) [3]. This paper focuses on
LOC as shown in Fig. 2, since it is widely applied due to
the use of a slow SE signal and conventional scan FFs.

CK
Test Cycle

SE

C1 C2 S1SL

Launch Capture

Launch-Induced Switching Activity

CK
Test Cycle

SE

C1 C2 S1SL

Launch Capture

Launch-Induced Switching Activity
Fig. 2 Launch-off-Capture (LOC) Scheme.

1.2 High-Quality At-Speed Scan Testing
The quality of at-speed testing is measured by defect level
(the fraction of defective chips passing a test), which depends
on test vectors and test timing [4], as illustrated in Fig. 3.

Fig. 3 shows a defect with delay size s. Among paths
passing through the defect spot, p1 is the longest sensitized
path while p2 is the actual longest path in function mode.

 Paper 25.1 INTERNATIONAL TEST CONFERENCE 2

Clearly, Tmgn is the maximum redundant delay size for the
defect spot, while Tdet is the minimum detectable delay size
for the defect spot under the given test set. Note that TSC =
TTC in at-speed scan testing.

Launch
t

Test Cycle

Defect
with

Delay s

Capture

Actual Longest Path Delay

Tmgn
System
Clock

p2:
Longest Sensitized Path Delay

Tdet Test
Clockp1:

TSC

TTC

Launch
t

Test Cycle

Defect
with

Delay s

Capture

Actual Longest Path Delay

Tmgn
System
Clock

p2:
Longest Sensitized Path Delay

Tdet Test
Clockp1:

TSC

TTC

Fig. 3 Detection Condition in Delay Testing.

If the delay size s is non-negligibly small (Tmgn < s < Tdet),
test escape occurs since the defect can not be detected by
the sensitized path (s < Tdet) but may cause a functional
problem (s > Tmgn). Since such small-delay defects are
dominant in DSM circuits [1, 4], the capability to detect
them determines the quality of at-speed scan testing.

Generally, in order to achieve high-quality at-speed scan
testing, it is necessary to narrow the gap between Tmgn and
Tdet so as to reduce the occurrence of test escapes. Since
Tmgn is fixed by design, the only choice is to reduce Tdet.

One approach for reducing Tdet is to tighten the test clock
(moving TTC in Fig. 3 to the left). This is referred to as
pattern-dependent timing or faster-than-at-speed scan
testing [5, 6]. The basic idea is to group tests according to
their lengths, and properly tighten the test clock for each
group so that the corresponding Tdet is reduced in effect.

Another approach for reducing Tdet is to increase the length
of sensitized paths by biasing ATPG towards sensitizing
long paths for fault detection. This can be directly achieved
by path delay test generation [3], but the number of paths
is prohibitively high. In practice, the transition delay fault
model [3] is widely used since its fault count is manageable
in that it is proportional to the number of nodes in a circuit.
However, timing-aware transition delay test generation is
needed in order to sensitize as long paths as possible in
transition delay fault detection, for the purpose of achieving
high small-delay-defect detecting capability [2, 7-9].

From Fig. 3, it is also clear that the delay test quality of a
transition delay test set for at-speed scan testing depends on
the set of longest paths sensitized for fault detection [2, 4,
9]. In this paper, this set of paths is called the characteristic
path set (CPS) of the transition delay test set.

1.3 Power Supply Noise

When switching activity occurs in a circuit, current flows
through the equivalent RLC network, resulting in IR and
L⋅di/dt voltage drop at logic cells. This is called power
supply noise [10], which has severe impact on high-quality
at-speed scan testing due to the following factors:
• High Launch-Induced Switching Activity: The switching
activity caused by the launch operation (Fig. 1 (a)) is much
higher than that of functional operation [11-13]. This

results in voltage drop at cells, increasing cell delays and
thus path delay. This means larger PD in Fig. 1 (b).
• Long Path Sensitization: Long paths are sensitized for
fault detection in high-quality at-speed scan testing. This
means larger ND in Fig. 1 (b).
• Short Test Cycle: The time between launch and capture is
short. This means smaller T in Fig. 1 (a).

All these factors cause ND + PD > T to occur frequently,
which often makes a normal circuit to fail in testing. Since
this results in power-supply-noise-induced yield loss, power
supply noise has become a critical issue in high-quality at-
speed scan testing [14, 15].

The impact of power supply noise can be analyzed in terms
of voltage drop and/or delay increase. Approximation
methods [10, 14, 15] are often used since accurate analysis
is time-consuming. Their results are used to guide test
generation [14] or reduce the number of target test vectors
before accurate analysis is conducted for sign-off [15].

Power supply noise reduction is more important, which
requires to lower launch-induced switching activity. For
LOC-based at-speed scan testing, this means that switching
activity due to the first capture (C1 in Fig. 2) should be
reduced. Three approaches are available for this purpose:
(1) Test Clocking: One-hot and multi-capture clocking
schemes can reduce the number of clock domains that
capture simultaneously [3].
(2) Circuit Change: DFT methods, such as partial capture
[16], can be used to allow only part of a circuit to capture.
(3) Test Generation: Switching activity can be directly
reduced by generating proper logic values in ATPG [17,
18], assigning logic values to don’t care bits by in-ATPG or
post-ATPG X-filling [19-24], and test compaction [25].

Generally, the test generation approach is preferable.
Especially, post-ATPG X-filling is now widely used in
practice for power supply noise reduction [22, 24], since it
can be easily implemented into any ATPG flow, without
any impact on test data volume, area overhead, and circuit
timing. More details will be described below.

1.4 Motivation

Post-ATPG X-filling for power supply noise reduction is
illustrated in Fig. 4, which consists of two major steps:
(1) Test Relaxation: This is the process to identify don’t
care bits, referred to as X-bits, from a set of fully-specified
test vectors under the condition that the property of the test
set, e.g. its fault coverage, is preserved [26-28]. The result
of this step is a set of test cubes with X-bits.
(2) X-Filling: This is the process to assign logic values to
the X-bits in a test cube so that the resulting fully-specified
test vector has low launch-induced switching activity. Logic
values can be determined by minimizing either the Hamming
distance between a test vector and its response at FFs [19-
22] or the weighted node transition count in a circuit [23].

 Paper 25.1 INTERNATIONAL TEST CONFERENCE 3

Test Relaxation

ATPG
with Dynamic Compaction & Random-Fill

Compact Initial Test Vector Set High Noise

X-Filling

Compact Final Test Vector Set Low Noise

0/1

0/1/X

0/1

Same Size Intermediate Test Cube Set

Test Relaxation

ATPG
with Dynamic Compaction & Random-Fill

Compact Initial Test Vector Set High Noise

X-Filling

Compact Final Test Vector Set Low Noise

0/1

0/1/X

0/1

Same Size Intermediate Test Cube Set

Fig. 4 Post-ATPG X-Filling for Power Supply Noise Reduction.
The major advantage of post-ATPG X-filling is that it
reduces power supply noise without inflating test data
volume. As shown in Fig. 4, this is achieved by using test
relaxation to obtain X-bits from a compact initial test vector
set generated by ATPG with dynamic compaction and
random-fill [3]. Forcing ATPG to leave unspecified bits as
X-bits without using them to improve detection efficiency
will result in much larger test sets. Note that, although over
90% of bits may remain unspecified even after dynamic
compaction, not conducting random-fill on them will still
significantly increase test data volume [21, 22].

However, previous post-ATPG X-filling methods for power
supply noise reduction suffer from two major problems with
respect to high-quality at-speed scan testing:
Problem-1: Test Quality Degradation in Test Relaxation
Previous test relaxation methods [26-28] can be readily
extended for the transition delay fault model to identify X-
bits from a fully-specified transition delay test set while
preserving its fault coverage. However, all of them totally
ignore the paths sensitized for transition delay fault
detection. Consequently, X-filling the test cubes obtained by
such test relaxation methods results in a final test set with
different sensitized paths. As illustrated in Fig. 5, if the
initial test set has high delay test quality characterized by its
characteristic path set, the delay test quality of the final test
set can be very different, usually low, since it has a different
characteristic path set with possibly shorter paths. Therefore,
test relaxation ignoring path sensitization information may
result in significant delay test quality degradation.

Fully-Specified
Test Vectors

Test Cubes
with X-Bits

Fully-Specified
Test Vectors

High Test Quality Path Info. Lost Low Test QualityTe
st

 R
el

ax
at

io
n

X
-F

ill
in

g

Initial Intermediate Final

Fully-Specified
Test Vectors

Test Cubes
with X-Bits

Fully-Specified
Test Vectors

High Test Quality Path Info. Lost Low Test QualityTe
st

 R
el

ax
at

io
n

X
-F

ill
in

g

Initial Intermediate Final

Fig. 5 Test Quality Degradation.

Problem-2: Effectiveness vs. Scalability in X-Filling
Ideal X-filling should be both effective in reducing launch-
induced switching activity as much as possible and scalable
to large circuits in terms of short CPU time. Previous X-
filling methods use time-consuming justification to
maximize effectiveness [19, 21] or aggressive approximation

based on signal probability to maximize scalability [22]. As
illustrated in Fig. 6, there is a need for more balanced X-
filling, which is highly effective and sufficiently scalable,
especially for high-quality at-speed scan testing of industrial
circuits. This is due to the facts of (1) growing circuit scale,
(2) less X-bits identified by test relaxation since more
properties, e.g. fault coverage as well as delay test quality,
should be preserved, and (3) the need of using part of X-bits
for other purposes, such as test compression [3].

Scalability
(Probability-Based)

Effectiveness
(Justification-Based)

Larger Circuit • Less X-Bits • Other Uses

Required

Previous X-Filling Methods

Scalability
(Probability-Based)

Effectiveness
(Justification-Based)

Larger Circuit • Less X-Bits • Other Uses

Required

Previous X-Filling Methods

Fig. 6 Effectiveness vs. Scalability.

1.5 Contributions

This paper tackles the above problems with a new post-
ATPG X-filling scheme. (1) Problem-1 is solved by a
unique test relaxation method, called path-keeping X-
identification, which finds X-bits from a set of fully-
specified transition delay test vectors while keeping the set
of longest paths, i.e. characteristic path set, sensitized by
the original fully-specified test vectors for fault detection.
This preserves the delay test quality, as well as the fault
coverage, of the original test set. (2) Problem-2 is solved by
an effective and scalable X-filling method, called
justification-probability-based fill (JP-fill), in which
techniques based on justification and probability are used
selectively, depending on how X-bits appear at the inputs
and outputs of corresponding flip-flops. This achieves
effectiveness and scalability in a more balanced manner.

The new post-ATPG X-filling scheme can be easily
implemented into any ATPG flow to effectively reduce
power supply noise without any impact on delay test quality,
test data volume, area, and timing. This greatly improves
the applicability of high-quality at-speed scan testing.

1.6 Organization
The rest of the paper is organized as follows: Section 2
describes the background. Section 3 outlines the new scheme.
Sections 4 and 5 present the details of path-keeping X-
identification and JP-fill, respectively. Section 6 shows
experimental results, and Section 7 concludes the paper.

2. Background

We first discuss issues related to delay test quality. Then,
we review test relaxation and X-filling in detail.

2.1 Delay Test Quality

A. Characteristic Path Set

As illustrated in Fig. 1 (a), scan-based delay testing for a
path is conducted by creating a start transition at the start-
point of the path and establishing a sensitization path to
propagate the transition effect to the end-point of the path.

 Paper 25.1 INTERNATIONAL TEST CONFERENCE 4

A sensitization path can be established either explicitly by
path delay test generation or implicitly by transition delay
test generation [3]. In path delay test generation, a target
path is explicitly specified and test generation is conducted
to sensitize it directly. In transition delay test generation, a
slow-to-rise or slow-to-fall transition fault is assumed at a
node, which by itself does not specify any path. As
illustrated in Fig. 7, transition delay test generation then
tries to establish an excitation path from the start-point of
the path to the fault site for creating a proper transition at
the fault site and a propagation path for passing the fault
effect from the fault site to the end-point of the path. This
way, a sensitization path, which is the combination of the
excitation path and the propagation path, is established
implicitly. In this paper, we focus on transition delay test
generation since it is more widely used in practice.

Fault
f

Excitation Path Propagation Path

Sensitization Path
Start End

Fault
f

Excitation Path Propagation Path

Sensitization Path
Start End

Fig. 7 Paths in Transition Delay Test Generation.

Definition 1: Suppose that V is a transition delay test set
and {f1, f2, . . ., fd} is the set of all transition delay faults
detected by V. The longest path sensitized by vectors in V
for a fault fi is called the characteristic path of the fault fi
under the test set V, denoted by CP(fi, V). The set of all
characteristic paths under V, {CP(fi, V) | i = 1, 2, . . ., d}, is
called the characteristic path set of V, denoted by CPS(V).

For example, a test set V can detect two faults: fa and fb.
Suppose that fa can be detected with three paths: pa1(7), pa2
(9), pa3(5), while fb can be detected with two paths: pb1(5),
pb2 (3). Here, the number in the parenthesis is the length of
the corresponding path. In this case, CPS(V) = {pa2, pb1}.

There are two approaches for obtaining the CPS(V) for a
transition delay test set V, depending on what type of ATPG,
timing-ignoring or timing-aware, is used to generate V.
Case-1 (Timing-Ignoring ATPG): In this case, a transition
delay fault f is declared “detected” by a test vector v ∈ V
whenever a sensitization path is established, no matter how
short the path may be [3]. As a result, there is no guarantee
that the path sensitized by v is the longest for the detection
of f under the whole test set V. Therefore, timing-based
simulation is needed in order to find the longest sensitization
path for each detected fault in order to obtain CPS(V).
Case-2 (Timing-Aware ATPG): In this case, the excitation
and propagation paths by a test vector v are made as long as
possible to detect a fault f [2, 7-9]. As a result, the path
sensitized by v is usually the longest for the detection of f
under the whole test set V [2, 9]. Therefore, it is only
necessary to simply record the sensitization path at the time
when the corresponding fault f is detected in test generation.
That is, CPS(V) is obtained as a by-product of timing-aware
ATPG, and post-ATPG timing-simulation is not needed.

B. Delay Test Quality Metric

Generally, the delay test quality of a transition delay test set
can be quantified by the Statistical Delay Quality Level
(SDQL) metric [4]. The SDQL value for a transition delay
test set V, denoted by SDQL(V), is defined as

SDQL(V) =∑ ∫
=

n

i

)V,fi(detT

)fi(Tmgn

)s(F
1

ds

where the set of all possible faults is {f1, f2, . . ., fn}, and F(s)
is the delay defect distribution function, i.e. the probability
of a defect having the delay size of s. In addition, Tmgn(fi)
and Tdet(fi, V) are defined as follows [4]:
• Tmgn(fi) is the maximum redundant delay size with respect
to fault fi. As shown in Fig. 3, Tmgn(fi) = TSC – (the delay of
the actual longest path passing through fi in function mode),
where TSC is the system clock period. Note that Tmgn(fi) is
determined by design, and is independent of the test set V.
• Tdet(fi, V) is the minimum detectable delay size with respect
to fault fi by the test set V. If fi is undetected, Tdet(fi, V) = ∞;
otherwise, as shown in Fig. 3, Tdet(fi, V) = TTC – (the delay
of CP(fi, V)), where TTC is the test clock period. Note that
Tdet(fi, V) is determined by CP(fi), which depends on the test
set V. Also note that TSC = TTC in at-speed scan testing.

Thus, it is clear that the delay test quality of a transition
delay test set V, measured by SDQL(V), is determined by
CPS(V), if the test timing (the relation between TSC and TTC)
and the delay defect distribution F(s) are given. Generally,
the longer the characteristic paths in CPS(V), the higher the
delay test quality of the transition delay test set V.

C. Test Quality Preservation
Definition 2: Suppose that V1 and V2 are two transition
delay test sets, both detecting faults f1, f2, . . ., fd. If the length
of CP(fi, V2) is equal to or longer than that of CP(fi, V1) for i
= 1, 2, . . ., d, it is said that CPS(V2) ≥ CPS(V1), and that the
delay test quality of V1 is preserved by V2.

Since each characteristic path corresponds to a detected
fault, CPS(V2) ≥ CPS(V1) means that the fault coverage and
the delay test quality, measured by the SDQL metric [4], of
V2 are guaranteed to be no lower than those of V1.

2.2 Test Relaxation
Test relaxation is the process of identifying X-bits from a
set of fully-specified test vectors, while preserving its
property, such as fault coverage. The resulting test cubes
are often used for test data reduction [26], test quality
improvement [28], and test power/noise reduction [19-25].

The major advantage of obtaining test cubes by test
relaxation, instead of simply keeping unspecified bits in
ATPG, is that a compact initial test set can be obtained
through dynamic compaction and random-fill; otherwise,
the test vector count may even double [22]. After a compact
initial test set is generated, test relaxation can then be applied
to obtain X-bits, usually as much as over 50% [27, 28].

 Paper 25.1 INTERNATIONAL TEST CONFERENCE 5

Previous test relaxation methods are as follows: (1) Bit-
stripping [26] changes one bit in a test vector into an X-bit
and checks whether all the faults that are only detected by
the vector are still detected. (2) The method in [27]
identifies newly detected faults by a test vector, and marks
all the lines whose values are required for each such fault to
be detected. The unmarked input lines are set to X-bits. (3)

X-identification [28] uses justification and implication to
find input bits needed to detect each fault that is detected by
only one test vector. Other input bits are turned into X-bits
after adjustment is made so that all faults are detected.

However, all previous test relaxation methods only preserve
fault coverage, but totally ignore the information on
sensitization paths. Thus, the initial test set V1 and the final
test set V2, obtained by X-filling the test cubes identified by
such test relaxation, usually have different characteristic
path sets, i.e. CPS(V1) ≠ CPS(V2). It is highly possible that
CPS(V2) has shorter characteristic paths. As described in
Section 2.1, this means that the delay test quality of the
final test set V2 is lower than that of the initial test set V1.

Thus, test relaxation ignoring sensitization paths is not
feasible for high-quality at-speed scan testing. This is
tackled by a new test relaxation method, called path-keeping
X-identification, whose details are described in Section 4.

2.3 X-Filling
X-filling is the process of properly assigning logic values to
the X-bits in a test cube for achieving a specific goal. Here,
the goal is to reduce launch-induced switching activity.

There are two major approaches to such X-filling, as shown
in Figs. 8 and 9. Here, c is a test cube and f(c) is the
response of the combinational portion f. Logic values need
to be determined for the X-bits in c, such that the Hamming
distance between <p1, q1, r1> and <p2, q2, r2> is reduced.
• Justification-Based X-Filling [19, 21]: This is a multi-pass
approach illustrated in Fig. 8. PPI-PPO bit-pairs of the form
<logic value, X> are processed first, followed by those of
the form <X, X>, one at a time. Here, <p1, p2> is processed
first by justifying 0 on p2 since p1 has 0. Suppose that this is
achieved by setting 1 to a. Then, bit-pairs of the form <X,
X> are processed. Note that one such bit-pair may require
two passes of justification. For example, for <r1, r2> = <X,
X>, 1 is first justified on r2 and 1 is assigned to r1. If this
fails, 0 is then justified on r2 and 0 is assigned to r1. This
approach is highly effective. However, it is less scalable due
to long run time, especially for bit-pairs of the form <X, X>.

p1

q1

p2

q2

r1 r2

a
x
y

(Pass-1) Justify 0
(Pass-2) Justify 1

Multiple Passes

f(c)

X
0
X
X

0
1
X
X
X

PI PO

PPI PPO

f

(Pass-1) 1

(Pass-3) Justify 1
(Pass-2) 1
(Pass-4) 0 fail

(Pass-4) Justify 0

c
Test Cube

p1

q1

p2

q2

r1 r2

a
x
y

(Pass-1) Justify 0
(Pass-2) Justify 1

Multiple Passes

f(c)

X
0
X
X

0
1
X
X
X

PI PO

PPI PPO

f

(Pass-1) 1

(Pass-3) Justify 1
(Pass-2) 1
(Pass-4) 0 fail

(Pass-4) Justify 0

c
Test Cube

Fig. 8 Justification-Based X-Filling.

• Probability-Based X-Filling [22]: This is a single-pass
approach illustrated in Fig. 9. The 0 and 1 probabilities of
each node are first calculated by setting 0.50 as the 0 and 1
probabilities for each input X-bit and conducting probability
propagation. Then, the logic value for a PPI X-bit is
determined by using the relation between the 0 and 1
probabilities of its corresponding PPO X-bit. For example,
(0.93, 0.07) on q2 means that q2 is likely to be 0, thus, it is
reasonable to set 0 to q1. This approach is highly scalable.
However, its effect may be damaged by approximation in
probability calculation. Especially, if the difference between
the 0 and 1 probabilities at a PPO X-bit is negligibly small,
e.g. (0.49, 0.51) on r2, logic value determination for its
corresponding PPI X-bit becomes highly inaccurate.

1
0
X
X

0
1
X
X
X

PI PO

PPI PPO

c
f(c)

f

p1

q1

p2

q2

Test Cube

r1 r2

a
x
y

Single Pass

(0.50, 0.50)
(0.50, 0.50)

(1.00, 0.00)
(0.00, 1.00)

(0.93, 0.07)
(0.49, 0.51)

(0.73, 0.27)
q1: 0
r1: 1

(0-probability, 1-probability)

1
0
X
X

0
1
X
X
X

PI PO

PPI PPO

c
f(c)

f

p1

q1

p2

q2

Test Cube

r1 r2

a
x
y

Single Pass

(0.50, 0.50)
(0.50, 0.50)

(1.00, 0.00)
(0.00, 1.00)

(0.93, 0.07)
(0.49, 0.51)

(0.73, 0.27)
q1: 0
r1: 1

(0-probability, 1-probability)
Fig. 9 Probability-Based X-Filling.

Thus, there is a need for more balanced X-filling, that is
highly effective and sufficiently scalable. This is achieved
by a new X-filling method, called justification-probability-
based fill (JP-fill), whose details are described in Section 5.

3. New Post-ATPG X-Filling Scheme
The general flow of the new post-ATPG X-filling scheme
is shown in Fig. 10. It is a post-processing procedure
conducted on an initial transition delay test set V1, such that
the resulting final test set V2 has lower launch-induced
switching activity, thus lower power supply noise.

Test Relaxation
Path-Keeping X-Identification

High NoiseV1: Initial Test Vector Set CPS(V1)

X-Filling
JP-Fill

Low NoiseCPS(V2)

Preserve ReduceC: Intermediate Test Cube Set

V2: Final Test Vector Set

Test Relaxation
Path-Keeping X-Identification

High NoiseV1: Initial Test Vector Set CPS(V1)

X-Filling
JP-Fill

Low NoiseCPS(V2)

Preserve ReduceC: Intermediate Test Cube Set

V2: Final Test Vector Set
Fig. 10 General Flow of New Post-ATPG X-Filling.

The new scheme has two unique characteristics:
(1) Test Quality Preservation in Test Relaxation: Delay
test quality, as well as fault coverage, of the original test set
is preserved, i.e. CPS(V2) ≥ CPS(V1). This is achieved by
path-keeping X-identification, to be described in Section 4.
(2) Balanced Effectiveness and Scalability in X-Filling:
The effectiveness and scalability of X-filling are achieved
in a more balanced manner by justification-probability-
based fill (JP-fill), to be described in Section 5.

 Paper 25.1 INTERNATIONAL TEST CONFERENCE 6

4. New Test Relaxation Method
As described in 2.1, the delay test quality of a transition
delay test set V is largely determined by its characteristic
path set CPS(V). Therefore, test relaxation with the delay
test quality preservation capability can be achieved by path-
keeping X-identification as stated below:
Path-Keeping X-identification: Given a fully-specified
transition delay test set V and its characteristic path set
CPS(V), find a partially-specified test cube set C, such that
CPS(C) = CPS(V).
Suppose that V1 is the original fully-specified test set, and C
is the partially-specified test cube set obtained by path-
keeping X-identification. That is, CPS(C) = CPS(V1). Also
suppose that V2 is the final fully-specified test set obtained
by X-filling C. Since X-filling cannot affect characteristic
paths already sensitized by C but may sensitize even longer
paths, we have CPS(C) ≤ CPS(V2). As a result, CPS(V2) ≥
CPS(V1). This means that the delay test quality of V2,
measured by SDQL [4] discussed in Section 2.1, is not
lower than that of V1. Therefore, the delay test quality of V1,
as well as its fault coverage, is preserved by V2 in post-
ATPG X-filling because of path-keeping X-identification.
In the following, we first describe the basic idea of path-
keeping X-identification. Then, we present its key operation.
Finally, we show its general flow.

4.1 Basic Idea
The relation between V and its characteristic path set
CPS(V) can be expressed by a sensitization table, which
lists all test vectors and all characteristic paths sensitized by
each test vector. An example is shown in Table 1.

Table 1 Sensitization Table
Test Vector

v3 = <111>

Sensitized Characteristic Paths
p1

p3

p3

p2

p4

p5

v2 = <101>
v1 = <011>
Test Vector

v3 = <111>

Sensitized Characteristic Paths
p1

p3

p3

p2

p4

p5

v2 = <101>
v1 = <011>

In Table 1, V = {v1, v2, v3} and CPS(V) = {p1, p2, . . ., p5}.
Note that one characteristic path may be sensitized by two
or more test vectors. For example, p3 is sensitized by both
v2 and v3. However, such cases are seldom for test vectors
generated by timing-aware ATPG [2, 9].
The basic idea of path-keeping X-identification is as
follows: For each fully-specified test vector vi in a test
vector set V = {vi | i = 1, 2, . . ., n}, create a partially-
specified test cube ci, such that ci sensitizes all characteristic
paths sensitized by vi. Obviously, for the resulting test cube
set C = {ci | i = 1, 2, . . ., n}, CPS(C) = CPS(V) holds.
Table 2 shows an example of the basic idea, for the test
vector set V = {v1, v2, v3} given in Table 1. Path-keeping X-
identification turns V into the test cube set C = {c1, c2, c3},
such that c1 sensitizes p1 and p2 as v1, c2 sensitizes p3 and p4
as v2, and c3 sensitizes p5 as v3. Obviously, CPS(C) = {p1,
p2, . . ., p5}. This means that CPS(C) = CPS(V).

Table 2 Example of Basic Idea

Test Vector Sensitized Characteristic Paths
p1

p3

p2

p4

p5

Test Cube

Path-Keeping X-Identification

v3 = <111>
v2 = <101>
v1 = <011>

c3 = <1XX>
c2 = <1X1>
c1 = <X11>

Test Vector Sensitized Characteristic Paths
p1

p3

p2

p4

p5

Test Cube

Path-Keeping X-IdentificationPath-Keeping X-Identification

v3 = <111>
v2 = <101>
v1 = <011>

c3 = <1XX>
c2 = <1X1>
c1 = <X11>

Note that if a characteristic path is sensitized by multiple
test vectors, then it will be targeted by just one test vector
in test relaxation, so that more X-bits can be identified. In
Table 1, for example, p3 is sensitized by both v2 and v3. As
shown in Table 2, since c2 sensitizes both p3 and p4, it is
only necessary to make c3 sensitize p5, instead of both p3
and p5. As a result, c3 contains more X-bits.

4.2 Test Cube Creation
From the basic idea described in Section 4.1, it can be seen
that the key operation of path-keeping X-identification is
test cube creation. Its purpose is to create a partially-
specified test cube c from a fully-specified test vector v,
such that c sensitizes all the characteristic paths, p1, p2, . . .,
pk, that are originally sensitized by v.

Test cube creation for obtaining such a test cube c is
conducted by the following two steps:
Step-1 (Creating Primary Test Cubes): k primary test
cubes, c1, c2, . . ., ck, are created from the test vector v for the
k characteristic paths, p1, p2, . . ., pk, respectively, such that
ci also sensitizes pi as v does (i = 1, 2, . . ., k).
Step-2 (Merging Primary Test Cubes): All primary test
cubes, c1, c2, . . ., ck, are merged into a final test cube c, such
that c also sensitizes p1, p2, . . ., pk as v does. Here, ci
sensitizes pi (i = 1, 2, . . ., k).

The two steps are described in more detail in the following.

A. Creating Primary Test Cubes

Given a fully-specified test vector v and a characteristic
path pi sensitized by v, a primary test cube ci needs to be
created from v, such that ci also sensitizes pi as v does. This
task can be accomplished by a simple but powerful cone-
analysis-based technique. An example is shown in Fig. 11.

Fig. 11 (a) shows a full-scan circuit with b1, b2, . . ., b5 as
inputs to its combinational portion, and Fig. 11 (b) shows
its two-time-frame circuit model for the launch-off-capture-
based at-speed scan testing (Fig. 2). A test vector v = <0 1
1 0 1> is applied to b1, b2, . . ., b5. Suppose that v sensitizes
the characteristic path pi, whose start and end points are
denoted by S and E, respectively.

In Fig. 11 (b), cone analysis is conducted from the end-
point (E) of the characteristic path pi in both time frames, in
order to identify which inputs in {b1, b2, b3, b4, b5} can
affect the sensitization of pi. Note that the cone analysis
from the end-point of pi in the 2nd time-frame should be
conducted in both time-frames as shown in Fig. 11 (b).

 Paper 25.1 INTERNATIONAL TEST CONFERENCE 7

S

E

Combinational
Portion

Scan
FFs

v

Characteristic Path

Test Vector

pi

0
1
1
0
1 b5

b4

b3

b1
b2

S

E

Combinational
Portion

Scan
FFs
Scan
FFs

v

Characteristic Path

Test Vector

pi

0
1
1
0
1 b5

b4

b3

b1
b2

(a) Test vector and sensitized characteristic path

S

E

S

E

1st Time-Frame 2nd Time-FrameSL C1 C2

Test Cube

X
1
1
0
X b5

b4

b3

b1
b2

Essential Inputs

ci

S

E

S

E

1st Time-Frame 2nd Time-FrameSL C1 C2

Test Cube

X
1
1
0
X b5

b4

b3

b1
b2

Essential Inputs

ci

(b) Essential inputs and primary test cube

Fig. 11 Creating a Primary Test Cube.
The result of the cone analysis shows that only b2, b3, and
b4 can affect the path pi for sensitization, and they are
called the essential inputs for the characteristic path pi. On
the other hand, b1 and b5 have no impact on pi, and they are
called the non-essential inputs for the characteristic path pi.
Therefore, the 1st and 5th bits in v = <0 1 1 0 1>, which
correspond to the non-essential inputs b1 and b5, respectively,
can be turned into X-bits to create a test cube ci, without
affecting the sensitization state of the characteristic path pi
at all. This way, a primary test cube, ci, is created.

Note that primary test cube creation is based on fast cone
analysis to identify X-bits. This makes the process highly
efficient even for large industrial circuits. More aggressive
techniques based on timing analysis may identify more X-
bits, but are too time-consuming to be practical.

B. Merging Primary Test Cubes

Generally, if a test vector v sensitizes k characteristic paths
p1, p2, . . ., pk, the above cone-analysis-based technique can
be applied to create k primary test cubes c1, c2, . . ., ck,
respectively. It is obvious that the merged test cube c = c1
∩ c2 . . . ∩ ck also sensitizes p1, p2, . . ., pk as the test vector v.
That is, a final test cube c is created that sensitizes the same
set of characteristic paths as the test vector v. This way, test
cube creation in path-keeping X-identification is completed.

Note that the ∩ operation is a bit-wise operation conducted
on a pair of corresponding bits in two test cubes, based on
the following rules:

X ∩ X = X X ∩ 0 = 0 X ∩ 1 = 1
An example is shown in Fig. 12. Here, the test vector v =
<0 1 1 0 1> sensitizes characteristic paths p1 and p2. Two
primary test cubes are created: c1 = <X 1 1 X X> sensitizes
p1, and c2 = <X 1 X 0 X> sensitizes p2. The final test cube is
c = c1 ∩ c2 = <X 1 1 X X> ∩ < X 1 X 0 X > = < X 1 1 0 X >.
Obviously, c sensitizes characteristic paths p1 and p2 as v.

<0 1 1 0 1>v
p1

p2

<X 1 1 X X>c1

<X 1 X 0 X>c2

<X 1 1 0 X>c<0 1 1 0 1>v
p1

p2

<X 1 1 X X>c1

<X 1 X 0 X>c2

<X 1 1 0 X>c

Fig. 12 Merging Primary Test Cubes.

4.3 General Flow
The flow of path-keeping X-identification is shown in Fig.
13. The inputs are a fully-specified test vector set V and its
characteristic path set CPS(V), and the output is a partially-
specified test cube set C, and CPS(C) = CPS(V).

Select a test vector v.

Fully-Specified
Test Vector Set

Characteristic
Path Set

All vectors processed?

N

Get the set P of characteristic
paths sensitized by v.

Merge all primary test cubes
into a final test cube c.

Add c to C.

Partially-Specified
Test Cube Set

Create a primary test cube
for each characteristic path in P.

Y

V

C

CPS(V)

Select a test vector v.

Fully-Specified
Test Vector Set

Characteristic
Path Set

All vectors processed?

N

Get the set P of characteristic
paths sensitized by v.

Merge all primary test cubes
into a final test cube c.

Add c to C.

Partially-Specified
Test Cube Set

Create a primary test cube
for each characteristic path in P.

Y

V

C

CPS(V)

Fig. 13 General Flow of Path-Keeping X-Identification.

The time complexity of path-keeping X-identification is
O(N1 × N2), where N1 is the number of test vectors in V and
N2 is the maximum number of characteristic paths sensitized
by a test vector. Since N2 is small, especially for test vectors
generated by timing-aware ATPG [2, 9], it is clear that
path-keeping X-identification is efficient and scalable.

5. New X-Filling Method
As described in Section 2.3, justification-based X-filling is
effective but less-scalable, while probability-based X-filling
is scalable but less-effective. This is tackled by justification-
probability-based fill (JP-fill), based on two techniques:
(1) Limited Justification: Justification-based X-filling is
only conducted for PPI-PPO bit-pairs of the form <logic
value, X>, but not for any PPI-PPO bit-pair of the form <X,
X> for which multiple passes of justification may be needed.
This is to achieve higher scalability.
(2) Probability Re-Calculation: Probability-based X-filling
is conducted for PPI-PPO bit-pairs of the form <X, X>, but
in multiple passes. That is, the logic value for a PPI X-bit is
determined only if its corresponding PPO X-bit has
significantly different 0 and 1 probabilities; otherwise,
probabilities are re-calculated in the next pass. This is to
achieve higher effectiveness through improved accuracy.
Obviously, compared to previous X-filling methods based
on only justification [19, 21] or only probability (no re-
calculation) [22], JP-fill can achieve both effectiveness and
scalability in a more balanced manner.

 Paper 25.1 INTERNATIONAL TEST CONFERENCE 8

5.1 Circuit Model and Bit-Pairs
Fig. 14 shows the circuit model of LOC-based at-speed scan
testing (Fig. 2). c is a test cube, whose PPI part is denoted
by <c: PPI>. The response of the combinational portion to
c is f(c), whose PPO part is denoted by <f(c): PPO>. When
the first capture (C1 in Fig. 2) is conducted, <f(c): PPO> is
loaded into all scan FFs to replace <c: PPI>. This causes
launch-induced switching activity.

c
Combinational

Portion

PIs

Scan
FFs

f

POs

Capture for Transition Launch

f(c)PPIs PPOs
<c: PI>

<c: PPI>

<f(c): PO>

<f(c): PPO>
c

Combinational
Portion

PIs

Scan
FFs

f

POs

Capture for Transition Launch

f(c)PPIs PPOs
<c: PI>

<c: PPI>

<f(c): PO>

<f(c): PPO>

Fig. 14 Circuit Model for Launch-Induced Switching Activity.

The corresponding bits in <c: PPI> and <f(c): PPO> forms
a bit-pair, whose types are shown in Table 3. X-filling
action for each type of bit-pair in JP-fill is also shown.

Table 3 Types of Bit-Pairs
<c: PPI> Bit

XPPI
a

<f(c): PPO> Bit
Type-A
Type-B
Type-C
Type-D XPPI

a
b

XPPO
XPPO

b No Action
Assignment
Justification
Probability

X-Filling

(XPPI: PPI X-bit, XPPO: PPO X-bit, a/b: logic value)

<c: PPI> Bit

XPPI
a

<f(c): PPO> Bit
Type-A
Type-B
Type-C
Type-D

Type-A
Type-B
Type-C
Type-D XPPI

a
b

XPPO
XPPO

b No Action
Assignment
Justification
Probability

X-Filling

(XPPI: PPI X-bit, XPPO: PPO X-bit, a/b: logic value)

5.2 The General Flow of JP-Fill
The general flow of JP-fill is shown in Fig. 15. The details
are described in the following.

Y

c: Test Cube with X-Bits

All Type-A?
N

Any Type-B?
N

v: Test Vector w/o X-Bits
Y END

Y

Any Type-C? For each Type-C bit-pair {a, XPPO}
Justify a on XPPO

a → XPPO (if successful)
~a → XPPO (if failed)

For each Type-B bit-pair {XPPI, b}
Assign b to XPPI

Type-B (Assignment-Based X-Filling)

Type-C (Justification-Based X-Filling)

Y

For each Type-D bit-pair {XPPI, XPPO}
(0_Prob, 1_Prob) = signal probability of XPPO

Case-1: |0_Prob – 1_Prob| > ∆
0 → XPPI (if 0_Prob > 1_Prob)
1 → XPPI (if 0_Prob < 1_Prob)
Case-2: |0_Prob – 1_Prob| ≤ ∆

{ no action }

Signal Probability Calculation

∆ = average 0/1 probability difference
for all XPPO bits

Implication

Type-D (Probability-Based X-Filling)
Any Type-D?

N

N

START

Y

c: Test Cube with X-Bits

All Type-A?
N

Any Type-B?
N

v: Test Vector w/o X-Bits
Y END

Y

Any Type-C? For each Type-C bit-pair {a, XPPO}
Justify a on XPPO

a → XPPO (if successful)
~a → XPPO (if failed)

For each Type-B bit-pair {XPPI, b}
Assign b to XPPI

Type-B (Assignment-Based X-Filling)

Type-C (Justification-Based X-Filling)

Y

For each Type-D bit-pair {XPPI, XPPO}
(0_Prob, 1_Prob) = signal probability of XPPO

Case-1: |0_Prob – 1_Prob| > ∆
0 → XPPI (if 0_Prob > 1_Prob)
1 → XPPI (if 0_Prob < 1_Prob)
Case-2: |0_Prob – 1_Prob| ≤ ∆

{ no action }

Signal Probability Calculation

∆ = average 0/1 probability difference
for all XPPO bits

Implication

Type-D (Probability-Based X-Filling)
Any Type-D?

N

N

START

Fig. 15 General Flow of JP Fill.

A. Assignment-Based X-Filling
Assignment-based X-filling is conducted on all Type-B bit-
pairs first, before any bit-pair of other type is processed.
As shown in Fig. 15- , for a Type-B X-pair {XPPI, b}, since
any value can be set to XPPI by scan shift, logic value b is
assigned to XPPI so that a capture transition is avoided.

B. Justification-Based X-Filling
Justification-based X-filling is conducted on all Type-C bit-
pairs before Type-D bit-pairs are processed, after all Type-
B bit-pairs are processed.
As shown in Fig. 15- , for a Type-C bit-pair {a, XPPO},
logic value a is justified for the XPPO bit. If this justification
succeeds, a is set to XPPO, so that a capture transition is
avoided. If this justification fails, ~a is set to XPPO.

C. Probability-Based X-Filling
Probability-based X-filling is conducted on all Type-D bit-
pairs after all bit-pairs of other types are processed.
First, the 0 and 1 probabilities, denoted by (0_Prob, 1_Prob),
are calculated for each node. The initial 0 and 1 probabilities
for an input with an X-bit are assumed to be 50%, and any
probability propagation method can be used [22].
Suppose that the PPO X-bits are XPPO

1, XPPO
2, . . ., XPPO

m, and
that their probabilities are (0_Prob1, 1_Prob1), (0_Prob2,
1_Prob2), . . ., (0_Probm, 1_Probm). The average difference
between their 0 and 1 probabilities is calculated as follows:

∆ = (∑
=

−
m

i

ii |obPr_obPr_|
1

10)/m

Now consider a Type-D bit-pair {XPPI, XPPO}. Suppose that
the 0 and 1 probabilities of XPPO are (0_Prob, 1_Prob). As
shown in Fig. 15- , different X-filling strategies are used,
depending on the relation between 0_Prob and 1_Prob:
Case-1 (|0_Prob - 1_Prob | > ∆): In this case, the 0 and 1
probabilities are significantly different at XPPO; thus, the
chance of XPPO having the logic value corresponding to the
higher probability (0_Prob or 1_Prob) is high. Therefore, if
0_Prob > 1_Prob, 0 is set to XPPI; otherwise, 1 is set to XPPI.
This is the same as the preferred fill method [22].
Case-2 (|0_Prob - 1_Prob | ≤ ∆): In this case, the
difference between the 0 and 1 probabilities at XPPO is
negligibly small, making it inaccurate to use them for
determining a logic value for XPPI. Thus, no action is taken.
This leads to a new pass of X-filling, in which probabilities
are re-calculated to reflect the newly assigned logic values
at inputs. As a result, the accuracy of X-filling is improved.

5.3 Summary
In JP-fill, time-consuming justification for Type-D bit-pairs
is avoided (Fig. 15-), and the inaccuracy in probability
calculation is alleviated by re-calculation (Fig. 15-) when
0 and 1 probabilities are so close that proper logic value
determination becomes impossible. Thus, more balanced
effectiveness and scalability can be achieved by JP-fill.

 Paper 25.1 INTERNATIONAL TEST CONFERENCE 9

6. Experimental Results
Path-keeping X-identification and JP-fill were implemented
in C, and experiments were conducted on 10 ISCAS’89
benchmark circuits on a computer with a 2.6GHz CPU and
16GB memory. The transition delay fault model was used.

A. Test Relaxation Results
Table 4 shows the results of path-keeping X-identification
on initial test sets generated by two types of ATPG: timing-
ignoring and timing-aware [9], both developed internally.
The test vector count, fault coverage, percentage of identified
X-bits, and CPU time are shown under “Test Vec. #”,
“Fault Cov. (%)”, “X (%)”, and “CPU (s)”, respectively.

From Table 4, it is clear that path-keeping X-identification
is effective in that it identified 54.7% and 67.8% of bits as
X-bits from fully-specified initial test sets. This method is
also efficient in that its CPU time was fairly short since the
cone-analysis-based technique used is very fast.

Table 4 Results of Path-Keeping X-Identification

SDQL
Final

44.0
41.8
30.4
70.1
64.7
81.3
71.1
94.2
88.6
91.8

Timing-Aware ATPG

0.0
0.0
0.1
1.0
3.7
4.4
4.0

12.6
12.9
17.0

CPU
(s)

s1196
s1238
s1423
s5378
s9234

s13207
s15850
s35932
s38417
s38584

Circuit Fault
Cov.
(%)

90.8
90.8
85.8
84.8
81.3
79.5
70.2
82.5
98.0
83.9

X
(%)

41.6
41.6
24.7
53.3
50.8
67.4
54.3
92.0
47.1
73.9

Test
Vec.

#
26
26
76

178
376
323
221
337
270
412

Ave. 54.7

Timing-Ignoring ATPG

0.0
0.0
0.2
2.1
8.2

10.4
10.8
27.0
93.2
80.2

24
24

148
379
839
838
703
763

2605
2111

90.8
90.8
85.8
84.8
81.3
79.5
70.2
82.5
98.0
83.9

CPU
(s)

Fault
Cov.
(%)

X
(%)

Test
Vec.

#

67.8

Initial

0.26
0.26
1.46
1.52
6.98
7.53
7.33

118.10
2.39
4.55

0.26
0.26
1.45
1.52
6.09
7.53
7.32

117.95
2.35
4.53

15.01 14.93

SDQL
Final

44.0
41.8
30.4
70.1
64.7
81.3
71.1
94.2
88.6
91.8

Timing-Aware ATPG

0.0
0.0
0.1
1.0
3.7
4.4
4.0

12.6
12.9
17.0

CPU
(s)

s1196
s1238
s1423
s5378
s9234

s13207
s15850
s35932
s38417
s38584

Circuit Fault
Cov.
(%)

90.8
90.8
85.8
84.8
81.3
79.5
70.2
82.5
98.0
83.9

X
(%)

41.6
41.6
24.7
53.3
50.8
67.4
54.3
92.0
47.1
73.9

Test
Vec.

#
26
26
76

178
376
323
221
337
270
412

Ave. 54.7

Timing-Ignoring ATPG

0.0
0.0
0.2
2.1
8.2

10.4
10.8
27.0
93.2
80.2

24
24

148
379
839
838
703
763

2605
2111

90.8
90.8
85.8
84.8
81.3
79.5
70.2
82.5
98.0
83.9

CPU
(s)

Fault
Cov.
(%)

X
(%)

Test
Vec.

#

67.8

Initial

0.26
0.26
1.46
1.52
6.98
7.53
7.33

118.10
2.39
4.55

0.26
0.26
1.45
1.52
6.09
7.53
7.32

117.95
2.35
4.53

15.01 14.93

Path-keeping X-identification preserves the longest path
sensitized by the initial test set for each detected fault when
creating the intermediate test cube set. Therefore, the delay
test quality, as well as the fault coverage, of the final test set
obtained by X-filling the intermediate test cube set is
guaranteed to be no lower than that of the initial test set.

We used the SDQL metric [4] to quantify the delay test
quality of initial and final test sets (obtained by the JP-fill
method) for timing-aware ATPG, and the results are also
shown in Table 4. It can be seen that the final SDQL values
are equal to or even smaller than the values for the initial
test sets. This confirms that the delay test quality was not
degraded due to test relaxation. Note that the smaller the
SDQL value, the higher the delay test quality [4].

B. X-Filling Results
Table 5 shows the X-filling results by a justification-based
method [21], a probability-based method [22], and the JP-
fill method. Initial test vectors were generated by timing-
aware ATPG [9], and test cubes were obtained by path-
keeping X-identification. The WSA (Weighted Switching
Activity) metric [12, 22] was used for estimating the launch-

induced switching activity at the first capture (C1 in Fig. 2).
Table 5 shows the reduction ratios for maximum WSA at
all FFs (“Max. WSA-FF”), maximum WSA at all nodes
(“Max. WSA-Node”), average WSA at all nodes (“Ave.
WSA-Node”), and the CPU time.

Table 5 Results of Various X-Filling Methods

0
0
0
4

15
29
29
59

280
259

0
0
0
3

10
14
15
37

191
112

s1196
s1238
s1423
s5378
s9234

s13207
s15850
s35932
s38417
s38584

Circuit

Ave.

CPU
(s)

Reduction Ratio (%)
Max.

WSA-FF
Max.

WSA-Node
Ave.

WSA-Node

43.2
50.0
17.1
30.1
31.2
30.1
32.1

6.2
30.9
10.5

28.1 28.3

43.2
50.0
14.9
28.8
38.6
29.3
32.1

6.3
29.8
10.5

17.8

16.2
23.7
14.9
14.6
40.7
15.7
28.1

1.0
15.3

7.4

[21] JP [22]

33.1
29.3

6.4
16.7

7.1
24.4
21.3

7.0
15.4
14.2

17.5 15.8

20.2
20.1

4.5
15.9
15.5
29.7
22.2

1.1
14.9
14.3

11.8

17.2
17.1

6.8
6.4

12.3
23.2
19.1
-6.1
12.0

9.8

31.1
30.0

7.7
56.4
18.5
50.1
49.6
25.6
64.9
49.7

38.3 35.8

29.8
27.5

8.7
47.5
23.4
47.7
42.5
24.7
56.8
49.5

23.9

16.8
15.7

8.4
23.2
18.9
29.3
46.4

7.1
28.0
45.2

[21] JP [22] [21] JP [22]

0
0
0
3

23
69
36

708
647
877

[21] JP [22]

0
0
0
4

15
29
29
59

280
259

0
0
0
3

10
14
15
37

191
112

s1196
s1238
s1423
s5378
s9234

s13207
s15850
s35932
s38417
s38584

Circuit

Ave.

CPU
(s)

Reduction Ratio (%)
Max.

WSA-FF
Max.

WSA-Node
Ave.

WSA-Node

43.2
50.0
17.1
30.1
31.2
30.1
32.1

6.2
30.9
10.5

28.1 28.3

43.2
50.0
14.9
28.8
38.6
29.3
32.1

6.3
29.8
10.5

17.8

16.2
23.7
14.9
14.6
40.7
15.7
28.1

1.0
15.3

7.4

[21] JP [22]

33.1
29.3

6.4
16.7

7.1
24.4
21.3

7.0
15.4
14.2

17.5 15.8

20.2
20.1

4.5
15.9
15.5
29.7
22.2

1.1
14.9
14.3

11.8

17.2
17.1

6.8
6.4

12.3
23.2
19.1
-6.1
12.0

9.8

31.1
30.0

7.7
56.4
18.5
50.1
49.6
25.6
64.9
49.7

38.3 35.8

29.8
27.5

8.7
47.5
23.4
47.7
42.5
24.7
56.8
49.5

23.9

16.8
15.7

8.4
23.2
18.9
29.3
46.4

7.1
28.0
45.2

[21] JP [22] [21] JP [22]

0
0
0
3

23
69
36

708
647
877

[21] JP [22]

0

10

20

30

40

50 [21]
JP

[22]

s1196
s12

38
s14

23
s53

78
s9234

s13
207

s15
850

s35
932

s38
417

s38
584

0

10

20

30

40

50 [21]
JP

[22]

s1196
s12

38
s14

23
s53

78
s9234

s13
207

s15
850

s35
932

s38
417

s38
584

(a) Comparison of Max. WSA-FF Reduction

0

10

20

30

40 [21]
JP

[22]

s1196
s12

38
s14

23
s53

78
s9234

s13
207

s15
850

s35
932

s38
417

s38
584

-10

0

10

20

30

40 [21]
JP

[22]

s1196
s12

38
s14

23
s53

78
s9234

s13
207

s15
850

s35
932

s38
417

s38
584

-10

(b) Comparison of Max. WSA-Node Reduction

Ave. SWA-Node

10

20

30

40

50

s1196
s12

38
s1423

s53
78

s92
34

s13
207

s15
850

s35
932

s38
417

s38
584

[21]
JP

[22]

50

60 Ave. SWA-Node

10

20

30

40

50

s1196
s12

38
s1423

s53
78

s92
34

s13
207

s15
850

s35
932

s38
417

s38
584

[21]
JP

[22]

50

60

(c) Comparison of Ave. WSA-Node Reduction

s1196
s12

38
s14

23
s53

78
s92

34

s13
207

s15
850

s35
932

s38
417

s38
584

0
100
200
300
400
500
600
700
800
900 [21]

JP
[22]

s1196
s12

38
s14

23
s53

78
s92

34

s13
207

s15
850

s35
932

s38
417

s38
584

0
100
200
300
400
500
600
700
800
900 [21]

JP
[22]

(d) Comparison of CPU time

Fig. 16 Comparison of Various X-Filling Methods.

 Paper 25.1 INTERNATIONAL TEST CONFERENCE 10

Fig. 16 is the graphical form of the results given in Table 5.
The effectiveness of the X-filling methods was evaluated by
the launch-induced switching activity at all FFs (“WSA-
FF”) and all nodes (“WSA-Node”), at maximum and in
average, as shown in Fig. 16 (a) ~ (c). The scalability of the
X-filling methods was evaluated by CPU time, as shown in
Fig. 16 (d). Evidently, the justification-based method [21] is
the best-performing for effectiveness, while the probability-
based method [22] is the best-performing for scalability.

Fig. 16 (a) ~ (c) also show that, for effectiveness, the JP-fill
method is much closer to the best-performing justification-
based method [21] than the probability-based method [22].
Fig. 16 (d) also shows that, for scalability, the JP-method is
much closer to the best-performing probability-based
method [22] than the justification-based method [21]. This
confirms that the JP-fill method proposed in this paper can
indeed achieve both effectiveness and scalability in a more
balanced manner than the previous X-filling approaches
based on only justification or only probability.

7. Conclusions
This paper proposed a new post-ATPG X-filling scheme,
featuring two novel and practical methods: (1) path
keeping X-identification for finding don’t-care bits from a
fully-specified transition delay test set while preserving its
delay test quality by keeping the longest paths sensitized for
fault detection, and (2) justification-probability-based fill
(JP-fill) for X-filling test cubes in an effective and scalable
manner. This scheme can be easily implemented into any
ATPG flow to effectively reduce power supply noise in
high-quality at-speed scan testing, without any impact on
delay test quality, test data volume, area, and timing.

Experiments on large industrial circuits are currently under
way, and the results will be included in the final version.
Future research subjects include (I) applying the basic idea
and techniques of this paper to path delay test generation,
and (II) extending them for test compression schemes.

References
[1] S. Mitra, E. Volkerink, E. McCluskey, and S. Eichenberger, “Delay

Defect Screening Using Process Monitor Structures,” Proc. VLSI
Test Symp., pp. 43-52, 2004.

[2] X Lin, K. Tsai, C. Wang, M. Kassab, J. Rajaski, T. Kobayashi, R.
Klingenberg, Y. Sato, S. Hamada, and T. Aikyo, “Timing-Aware
ATPG for High Quality At-Speed Testing of Small Delay Defects,”
Proc. Asian Test Symp., pp.139-146, 2006.

[3] L.-T. Wang, C.-W. Wu, and X. Wen, (Editors), VLSI Test
Principles and Architectures: Design for Testability, San
Francisco: Elsevier, 2006.

[4] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama, and S.
Kajihara, “Invisible Delay Quality - SDQM Model Lights Up What
Could Not Be Seen,” Proc. Int’l Test Conf., Paper 47.1, 2005.

[5] N. Ahmed, M. Tehranipoor, and V. Jayaram, “A Novel Framework
for Faster-than-at-Speed Delay Test Considering IR-Drop Effects,”
Proc. Int’l Conf. on Computer-Aided Design, pp. 439-444, 2005.

[6] B. Kruseman, A. Majhi, G. Gronthoud, and S. Eichenberger, “On
Hazard-Free Patterns for Fine-Delay Fault Testing,” Proc. Int’l Test
Conf., Paper 9.1, 2004.

[7] Y. Shao, I. Pomeranz, and S. Reddy, “On Generating High Quality
Tests for Transition Faults,” Proc. Asian Test Symp., pp. 1-8, 2002.

[8] K. Yang, K.-T Cheng, and L.-C Wang, “TranGen: A SAT-Based
ATPG for Path-Oriented Transition Faults,” Proc. Asian and South
Pacific Design Automation Conf., pp. 92-97, 2004.

[9] S. Kajihara, S. Morishima, A. Takuma, X. Wen, T. Maeda, S.
Hamada, and Y. Sato, “A Framework of High-Quality Transition
Fault ATPG for Scan Circuits,” Proc. Int’l Test Conf., Paper 2.1,
2006.

[10] J. Wang, D. M. H. Walker, A. Majhi, B. Kruseman, G. Gronthoud,
L. E. Villagra, P. Wiel, and S. Eichenberger, “Power Supply Noise
in Delay Testing,” Proc. Int’l Test Conf., Paper 17.3, 2006.

[11] J. Saxena, K. M. Butler, V. B. Jayaram, and S. Kundu, “A Case
Study of IR-Drop in Structured At-Speed Testing,” Proc. Int’l Test
Conf., pp. 1098-1104, 2003.

[12] P. Girard, “Survey of Low-Power Testing of VLSI Circuits,” IEEE
Design & Test of Computers, Vol. 19, No. 3, pp. 82-92, May/June
2002.

[13] N. Nicolici and B. Al-Hashimi, Power-Constrained Testing of
VLSI Circuits, Kluwer Academic Publishers, 2003.

[14] M. Nourani, M. Tehranipoor, and N. Ahmed, “Pattern Generation
and Estimation for Power Supply Noise Analysis,” Proc. VLSI Test
Symp., pp. 439-444, 2005.

[15] A. Kokrady and C. P. Ravikumar, “Fast, Layout-Aware Validation
of Test Vectors for Nanometer-Related Timing Failures,” Proc.
Int’l Conf. on VLSI Design, pp. 597-602, 2004.

[16] S. Wang and W. Wei, “A Technique to Reduce Peak Current and
Average Power Dissipation in Scan Designs by Limited Capture,”
Proc. Asian S. Pacific Design Automation Conf., pp. 810-816, 2007.

[17] F. Corno, P. Prinetto, M. Redaudengo, and M. Reorda, “A Test
Pattern Generation Methodology for Low Power Consumption,”
Proc. VLSI Test Symp., pp. 35-40, 1998.

[18] X. Wen, S. Kajihara, K. Miyase, T. Suzuki, K. K. Saluja, L.-T.
Wang, K. S. Abdel-Hafez, and K. Kinoshita, “A New ATPG
Method for Efficient Capture Power Reduction During Scan
Testing,” Proc. VLSI Test Symp., pp. 58-63, 2006.

[19] X. Wen, Y. Yamashita, S. Morishima, S. Kajiihara, L.-T. Wang, K.
K. Saluja, and K. Kinoshita, “On Low-Capture-Power Test
Generation for Scan Testing,” Proc. VLSI Test Symp., pp. 265-270,
2005.

[20] W. Li, S. M. Reddy, I. Pomeranz, “On Reducing Peak Current and
Power during Test,” Proc. ISVLSI, pp. 156-161, 2005.

[21] X. Wen, Y. Yamashita, S. Morishima, S. Kajihara, L.-T. Wang, K.
K. Saluja, and K. Kinoshita, “Low-Capture-Power Test Generation
for Scan-Based At-Speed Testing,” Proc. Int’l Test Conf., Paper
39.2, 2005.

[22] S. Remersaro, X. Lin, Z. Zhang, S. M. Reddy, I. Pomeranz, and J.
Rajski, “Preferred Fill: A Scalable Method to Reduce Capture
Power for Scan Based Designs,” Proc. Int’l Test Conf., Paper 32.2,
2006.

[23] X. Wen, K. Miyase, T. Suzuki, Y. Yamato, S. Kajihara, L.-T. Wang,
and K. K. Saluja, “A Highly-Guided X-Filling Method for Effective
Low-Capture-Power Scan Test Generation,” Proc. Int’l Conf. on
Computer Design, pp. 251-258, 2006.

[24] K. M. Butler, J. Saxena, T. Fryars, G. Hetherington, A. Jain, and J.
Levis, “Minimizing Power Consumption in Scan Testing: Pattern
Generation and DFT Techniques,” Proc. Int’l Test Conf., pp. 355-
364, 2004.

[25] J. Wang, Z. Yue, X. Lu, W. Qiu, W. Shi, and D. M. H. Walker, “A
Vector-Based Approach for Power Supply Noise Analysis in Test
Compaction,” Proc. Int’l Test Conf., Paper 22.2, 2005.

[26] R. Sankaralingam and N. A. Touba, “Controlling Peak Power
during Scan Testing,” Proc. VLSI Test Symp., pp. 153-159, 2002.

[27] A. H. El-Maleh and K. Al-Utaibi, “An Efficient Test Relaxation
Technique for Synchronous Sequential Circuits,” IEEE Trans. on
Computer-Aided Design, Vol. 23, No. 6, pp. 933-940, June 2004.

[28] K. Miyase and S. Kajihara, “XID: Don't Care Identification of Test
Patterns for Combinational Circuits,” IEEE Trans. on Computer-
Aided Design, Vol. 23, No. 2, pp. 321-326, Feb. 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

