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Nonlinear identification of skeletal muscle dynamics with Sigma-Point Kalman Filter for model-based FES

A model-based FES would be very helpful for the adaptive movement synthesis of spinal-cord-injured patients. For the fulfillment, we need a precise skeletal muscle model to predict the force of each muscle. Thus, we have to estimate many unknown parameters in the nonlinear muscle system. The identification process is essential for the realistic force prediction. We previously proposed a mathematical muscle model of skeletal muscle which describes the complex physiological system of skeletal muscle based on the macroscopic Hill-Maxwell and microscopic Huxley concepts. It has an original skeletal muscle model to enable consideration for the muscular masses and the viscous frictions caused by the muscle-tendon complex. In this paper, we present an experimental identification method of biomechanical parameters using Sigma-Point Kalman Filter applied to the nonlinear skeletal muscle model. Result of the identification shows its effective performance. The evaluation is provided by comparing the estimated isometric force with experimental data with the stimulation of the rabbit medial gastrocnemius muscle. This approach has the advantage of fast and robust computation, that can be implemented for online application of FES control.

I. INTRODUCTION

Functional Electrical Stimulation (FES) is well known as an effective technique to evoke artificial contractions of paralyzed skeletal muscles. It has been employed as a general method in modern rehabilitation medicine to partially restore motor function for the patients with upper neural lesions [1], [2]. Recently, the rapid progress in microprocessor technology provided the means for computer-controlled FES systems [3], [4], [5], which enable flexible programming of stimulation sequences. A fundamental problem concerning FES is to handle the high complexity and nonlinearity of the neuro-musculo-skeletal system [6], [7]. Moreover, effect such as muscle fatigue, spasticity, and limited force in the stimulated muscle complicate the control task further. The use of mathematical model would improve the development of neuroprosthetics by using optimized operation for individual patients. A mathematical model may enable to describe the relevant characteristics of the patient's skeletal muscle and predict the precise force against certain stimulation. Therefore it can enhance the design and functions of control strategies applied to FES. Until now, a great variety of muscle models has been proposed over the years, differing in the intended application, mathematical complexity, level of structure considered, and fidelity to the biological facts. Some of them have been attempted to exhibit the microscopic or macroscopic functional behavior like Huxley [8] and Hill

The authors are with INRIA Sophia-Antipolis -DEMAR Project and LIRMM, UMR5506 CNRS UM2, 161 Rue Ada -34392 Montpellier Cedex 5, France hayashibe,guiraud,poignet@lirmm.fr [9]. The distribution-moment model [10] constitutes a bridge between the microscopic and macroscopic levels. It is a model for sarcomeres or whole muscle which is extracted via a formal mathematical approximation from Huxley crossbridge models. Models integrating geometry of the tendon and other macroscopic consideration can be found in [11]. A study, based on Huxley and Hill-Maxwell type model by , proposed an explanation of how the beating of cardiac muscle may be performed through a chemical control input. It was connected to the calcium dynamics in muscle cell that stimulates the contractile element of the model. Starting with this concept, we adapted it to the striated muscle [13]. We proposed a musculotendinous model considering the muscular masses and viscous frictions in muscle-tendon complex. This model is represented by differential equations where the outputs are the muscle active stiffness and force. The model input represents the actual electrical signal as provided by the stimulator in FES.

Under general FES, you have to make detailed empirical tuning by actually stimulating the patient's muscle for each task. If this adjustment can be calculated in the simulation, and if we can find best signal pattern using virtual skeletal muscle, it would be very helpful for the movement synthesis for paraplegic patient. However, to perform this simulation, a precise skeletal muscle model is required to produce the well-predicted force of each muscle. The skeletal muscle dynamics are highly nonlinear, and we have to identify many unknown physiological and biomechanical parameters. The principal objective of this study is then to develop an experimental identification method to identify unknown internal parameters from the limited information. This process is essential for realistic force prediction in the skeletal muscle modeling for FES. For the parameter estimation in our muscle model, the force information corresponding to isometric contractions was used along with the electrical input. Sigma-Point Kalman Filter (SPKF) was applied to the in-vivo rabbit experimental data to identify internal states in the nonlinear dynamics of skeletal muscle. SPKF has higher accuracy and consistency for nonlinear estimation than Extended Kalman Filter (EKF). The identification protocol and the detailed results are described to show the feasibility of our approach and the quality of the identification.

II. SKELETAL MUSCLE MODEL

Our approach is to provide a knowledge model based on the physiological reality to obtain meaningful internal parameters. Basically, our muscle model is composed of two elements in different nature: i) activation model which

The dynamics of the contractile element itself correspond to (8) and ( 9). For the detail, you should refer to [12][13]. k m and F m are the maximum values for k c and F c respectively. From (2), ( 3) and ( 7), the differential equations of F e and ε c are obtained as in ( 10), (11). The internal state vector of this system should be set as x = k c F c F e Ḟe ε c εc .

III. EXPERIMENTAL IDENTIFICATION

In this ongoing study, we will develop a method to identify only the parameters in the mechanical part of skeletal muscle model. The input controls of the model are the constant static recruitment rate α and the chemical control input u from the activation model. These two controls are computed from FES input signal. It should be mentioned that the experiment was performed with constant FES parameters for pulse width and intensity of electrical stimulation so that the recruitment rate is constant. In addition, calcium dynamics in our model induces a time delay and an "on/off" control so that a correct data processing can get rid of this modeling. The trigger of u signal can be calculated by the timing of electrical stimulation.

In isometric contraction, the differential equations of skeletal muscle dynamics are straightly given in ( 8)-( 11). In this case, k c F c F e ε c are unknown time-varying values and m λ L c0 are unknown static parameters to be estimated. For the identification of this model, it is a nonlinear state-space model, and many state-variables are not measurable. And then in-vivo experimental data includes some noises. That is why we need an efficient recursive filter that estimates the state of a dynamic system from a series of noisy measurements.

A. Sigma-Point Kalman Filter

For this kind of nonlinear identification, Extended Kalman Filter (EKF) was well-known as standard method. In EKF, the nonlinear equation should be linearized to the first order with partial derivatives (Jacobian matrix) around a mean of the state. The optimal Kalman filtering is then applied to the linearized system. When the model is highly nonlinear, EKF may give particularly poor performance and an easy divergence. In skeletal muscle dynamics, its state-space is dramatically changed between contraction and relaxation phase. At this time, partial derivatives will be incorrect due to the discontinuity. Therefore, we introduced Sigma-Point Kalman Filter (SPKF). The initial idea was proposed by Julier [16], and well described by Merwe [17]. SPKF uses a deterministic sampling technique known as the unscented transform to pick a minimal set of sample points (called sigma points) around the mean. These sigma points are propagated through the true nonlinearity. This approach results in approximations that are accurate to at least the second order in Taylor series expansion. In contrast, EKF results only in first order accuracy.

An outline of the SPKF algorithm is described. For the detail, you should refer to [17][18]. The general Kalman framework involves estimation of the state of a discrete-time nonlinear dynamic system,

x k+1 = f (x k , v k ) (12) y k = h(x k , n k ) (13)
where x k represents the internal state of the system to be estimated and y k is the only observed signal. The process noise v k drives the dynamic system, and the observation noise is given by n k . The filter starts by augmenting the state vector to L dimensions, where L is the sum of dimensions in the original state, model noise and measurement noise. The corresponding covariance matrix is similarly augmented to a L by L matrix. In this form, the augmented state vector xa k and covariance matrix P a k can be defined as in ( 14) (15).

xa k = E[x a k ] = xT k vT k nT k T ( 14 
)
P a k = E[(x a k -xa k )(x a k -xa k ) T ] =   P x k 0 0 0 R v k 0 0 0 R n k   (15) 
where P x is the state covariance, R v is the process noise covariance, R n is the observation noise covariance.

In the process update, the 2L+1 sigma points are computed based on a square root decomposition of the prior covariance as in ( 16), where γ = √ L + λ, and λ is found using λ = α 2 (L + κ) -L. α is chosen in 0 < α < 1 which determines the spread of the sigma-points around prior mean and κ is usually chosen equal to 0. The augmented sigma point matrix is formed by the concatenation of the state sigma point matrix, the process noise sigma point matrix, and the measurement noise sigma point matrix, such that X a = (X x ) T (X v ) T (X n ) T T . The sigma point weights to be used for mean and covariance estimates are defined as in (17). The optimal value of 2 is usually assigned to β.

X a 0,k-1 = xa k-1 X a i,k-1 = xa k-1 + γ P a k-1 i i=1,...,L (16) 
X a i,k-1 = xa k-1 -γ P a k-1 i-L i=L+1,...,2L ω m 0 = λ/(L + λ) ω c 0 = ω m 0 + (1 -α 2 + β) (17) ω c i = ω m i = 1/(2(L + λ)) i=1,.
..,2L where P a k-1 i is the ith column of the square root of the covariance P a k-1 . The square root of a symmetric matrix is typically calculated by Cholesky factorization. Then these sigma-points are propagated through the nonlinear function. Predicted mean and covariance are computed as in (19)(20) and predicted observation is calculated like (22).

X x k|k-1 = f (X x k-1 , X v k-1 ) (18) 
x-

k = 2L i=0 ω m i X x i,k|k-1 (19) 
P - x k = 2L i=0 ω c i (X x i,k|k-1 -x- k )(X x i,k|k-1 -x- k ) T (20)