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Abstract— A model-based FES would be very helpful for the
adaptive movement synthesis of spinal-cord-injured patients.
For the fulfillment, we need a precise skeletal muscle model
to predict the force of each muscle. Thus, we have to estimate
many unknown parameters in the nonlinear muscle system. The
identification process is essential for the realistic force predic-
tion. We previously proposed a mathematical muscle model of
skeletal muscle which describes the complex physiological sys-
tem of skeletal muscle based on the macroscopic Hill-Maxwell
and microscopic Huxley concepts. It has an original skeletal
muscle model to enable consideration for the muscular masses
and the viscous frictions caused by the muscle-tendon complex.
In this paper, we present an experimental identification method
of biomechanical parameters using Sigma-Point Kalman Filter
applied to the nonlinear skeletal muscle model. Result of the
identification shows its effective performance. The evaluation
is provided by comparing the estimated isometric force with
experimental data with the stimulation of the rabbit medial
gastrocnemius muscle. This approach has the advantage of fast
and robust computation, that can be implemented for online
application of FES control.

I. INTRODUCTION

Functional Electrical Stimulation (FES) is well known
as an effective technique to evoke artificial contractions of
paralyzed skeletal muscles. It has been employed as a general
method in modern rehabilitation medicine to partially restore
motor function for the patients with upper neural lesions
[1], [2]. Recently, the rapid progress in microprocessor
technology provided the means for computer-controlled FES
systems [3], [4], [5], which enable flexible programming of
stimulation sequences. A fundamental problem concerning
FES is to handle the high complexity and nonlinearity of
the neuro-musculo-skeletal system [6], [7]. Moreover, effect
such as muscle fatigue, spasticity, and limited force in the
stimulated muscle complicate the control task further. The
use of mathematical model would improve the development
of neuroprosthetics by using optimized operation for individ-
ual patients. A mathematical model may enable to describe
the relevant characteristics of the patient’s skeletal muscle
and predict the precise force against certain stimulation.
Therefore it can enhance the design and functions of control
strategies applied to FES. Until now, a great variety of
muscle models has been proposed over the years, differing
in the intended application, mathematical complexity, level
of structure considered, and fidelity to the biological facts.
Some of them have been attempted to exhibit the microscopic
or macroscopic functional behavior like Huxley [8] and Hill
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[9]. The distribution-moment model [10] constitutes a bridge
between the microscopic and macroscopic levels. It is a
model for sarcomeres or whole muscle which is extracted
via a formal mathematical approximation from Huxley cross-
bridge models. Models integrating geometry of the tendon
and other macroscopic consideration can be found in [11].
A study, based on Huxley and Hill-Maxwell type model
by Bestel-Sorine [12], proposed an explanation of how the
beating of cardiac muscle may be performed through a
chemical control input. It was connected to the calcium dy-
namics in muscle cell that stimulates the contractile element
of the model. Starting with this concept, we adapted it to
the striated muscle [13]. We proposed a musculotendinous
model considering the muscular masses and viscous frictions
in muscle-tendon complex. This model is represented by
differential equations where the outputs are the muscle active
stiffness and force. The model input represents the actual
electrical signal as provided by the stimulator in FES.

Under general FES, you have to make detailed empirical
tuning by actually stimulating the patient’s muscle for each
task. If this adjustment can be calculated in the simulation,
and if we can find best signal pattern using virtual skeletal
muscle, it would be very helpful for the movement synthesis
for paraplegic patient. However, to perform this simulation,
a precise skeletal muscle model is required to produce the
well-predicted force of each muscle. The skeletal muscle
dynamics are highly nonlinear, and we have to identify many
unknown physiological and biomechanical parameters. The
principal objective of this study is then to develop an exper-
imental identification method to identify unknown internal
parameters from the limited information. This process is
essential for realistic force prediction in the skeletal muscle
modeling for FES. For the parameter estimation in our mus-
cle model, the force information corresponding to isometric
contractions was used along with the electrical input. Sigma-
Point Kalman Filter (SPKF) was applied to the in-vivo rabbit
experimental data to identify internal states in the nonlinear
dynamics of skeletal muscle. SPKF has higher accuracy and
consistency for nonlinear estimation than Extended Kalman
Filter (EKF). The identification protocol and the detailed
results are described to show the feasibility of our approach
and the quality of the identification.

II. SKELETAL MUSCLE MODEL

Our approach is to provide a knowledge model based
on the physiological reality to obtain meaningful internal
parameters. Basically, our muscle model is composed of
two elements in different nature: i) activation model which
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Fig. 1. Outline of skeletal muscle model and its identification.

describes how an electrical stimulus generates an Action
Potential (AP) and initiates the contraction, ii) mechanical
model which describes the dynamics in force scale (Fig.
1). For the detail on the muscle modeling, previously pub-
lished articles should be referenced [13], [14]. Here, a brief
summary of the model and necessary information for the
identification are given.

A. Activation Model

The activation model describes the electrical activity of
muscle. This part of muscle model represents the excitation-
contraction phenomena of muscle and is composed of two
sub-models, fiber recruitment model and dynamic activation
model. The static recruitment model determines the percent-
age of recruited motor units and depends on the pulse width
PW and pulse amplitude of the signal I generated by the
stimulator. The recruitment curve is usually approximated by
a sigmoid function. The recruitment level determines which
units are recruited or not. High threshold values correspond
to motor units that are remote from the electrodes. The
recruitment rate o( PW,T) can be assumed as static value
when PW and I remain constant.

The dynamic activation model was considered as the un-
derlying physiological processes which describes the chem-
ical input signal » that brings one muscle cell into contrac-
tion. Muscle contraction is initiated by an AP along the
muscle fiber membrane, which goes deeply into the cell
through T-tubules. It causes Calcium releases that induce
the contraction process when the concentration goes above
a threshold and is sustained till the concentration goes down
this threshold again. Hatze [15] gives an example of Calcium
dynamics [C'a®*"] modeling. As we focus on the recruitment
and the mechanical phenomena, we choose to use a simpler
model that renders the main characteristics of this dynamics.
The contraction-relaxation cycle is then triggered by the
[Ca®T| to be defined, and associated with two phases: i)
contraction, ii) active relaxation. We use a delayed (7) model
to take into account the propagation time of the AP and an
average time delay due to the calcium dynamics.

B. Mechanical Model

The model is based on the macroscopic Hill-Maxwell type
model and the microscopic description of Huxley [8]. The
link between the scales is obtained using the distribution
moment technique used also by Zahalak [10]. The model
is then composed of macroscopic passive elements, and a
Contractile Element Ec controlled by input commands: the
chemical input u as suggested by Bestel-Sorine [12] for the

Fig. 2.

Macroscopic skeletal muscle model.

cardiac muscle at the sarcomere scale, and the recruitment
rate « at the fiber scale as shown in Fig. 2.

Especially, in order to express isometric contractions
whereas the skeleton is not actuated, our muscle model is
introduced with masses m (kg) and linear viscous dampers
A (Ns/m) to ensure energy dissipation. On both sides of
E., there are elastic springs k. (N/m) and viscous dampers
to express visco-elasticity of muscle-tendon complex. The
parallel element k, mainly represents surrounding tissues,
but it can be omitted in isometric contraction mode. And we
assume the symmetric form that the two masses and passive
elements are identical. L. and L. (m) are the lengths of I,
and k;, especially L.o and Lo at the rest state. At first, we
can define the relative length variation as positive when the
length is increasing, as in (1). Especially, in case of isometric
contraction, there is the relationship of (2):

LS — LS Lc - Lc
e (1)
LSO LcO
2L50€s + LCOEC =0 (2)

ES C

The dynamical equation of one of the masses is given by
(3). F. and k. are intermal variables that express the force
and the stiffness of E,. respectively. The force I, of the
whole muscle model is the sum of the spring force F, and
the damping force Fy. When we measure the tension of
skeletal muscle during in-vivo condition, the experimental
force corresponds to F,. When we take the ratio of F
and F., L, is offset and it can be written as (5). (6)
shows the relational equation in Laplace transform. From the
relationship, the differential equation (7) can be obtained.

mLgoés = Fo — ksLsogs — ALgofs 3)
F. = Fs + Fy = koLoogs + ALsos )
Fo _ més + A, + ket s
F. Aes + kg
L[F,] _ ms? + As + kg ©)
L[F.] As + ks
mF, + AF. + ko F. = AF, + k,F. (7)

Finally, in the isometric contraction, differential equations of
this model can be described as follows:

ke = —kelu| + ok uly — kel.| ®)
FC = _Fc|u| + aFm|u|+ — Fc|€c| + Leookcee 9
A ks Ao ks
Fo=-"F. - 2F.+ " F.+2F, (10)
m m
2F, ke A
£, = — —Ze, Sn (11)



The dynamics of the contractile element itself correspond to
(8) and (9). For the detail, you should refer to [12][13]. &,
and F,, are the maximum values for k. and F| respectively.
From (2), (3) and (7), the differential equations of F, and .
are obtained as in (10), (11). The internal state vector of this
system should be set as x = [ k. F. F. F, e & }

III. EXPERIMENTAL IDENTIFICATION

In this ongoing study, we will develop a method to identify
only the parameters in the mechanical part of skeletal muscle
model. The input controls of the model are the constant static
recruitment rate « and the chemical control input » from
the activation model. These two controls are computed from
FES input signal. It should be mentioned that the experiment
was performed with constant FES parameters for pulse width
and intensity of electrical stimulation so that the recruitment
rate is constant. In addition, calcium dynamics in our model
induces a time delay and an “on/off” control so that a correct
data processing can get rid of this modeling. The trigger
of w signal can be calculated by the timing of electrical
stimulation.

In isometric contraction, the differential equations of
skeletal muscle dynamics are straightly given in (8)-(11). In
this case, k. F. F. €. are unknown time-varying values and
m A\ L¢g are unknown static parameters to be estimated. For
the identification of this model, it is a nonlinear state-space
model, and many state-variables are not measurable. And
then in-vivo experimental data includes some noises. That
is why we need an efficient recursive filter that estimates
the state of a dynamic system from a series of noisy
measurements.

A. Sigma-Point Kalman Filter

For this kind of nonlinear identification, Extended Kalman
Filter (EKF) was well-known as standard method. In EKF,
the nonlinear equation should be linearized to the first order
with partial derivatives (Jacobian matrix) around a mean
of the state. The optimal Kalman filtering is then applied
to the linearized system. When the model is highly non-
linear, EKF may give particularly poor performance and an
easy divergence. In skeletal muscle dynamics, its state-space
is dramatically changed between contraction and relaxation
phase. At this time, partial derivatives will be incorrect due
to the discontinuity. Therefore, we introduced Sigma-Point
Kalman Filter (SPKF). The initial idea was proposed by
Julier [16], and well described by Merwe [17]. SPKF uses
a deterministic sampling technique known as the unscented
transform to pick a minimal set of sample points (called
sigma points) around the mean. These sigma points are
propagated through the true nonlinearity. This approach
results in approximations that are accurate to at least the
second order in Taylor series expansion. In contrast, EKF
results only in first order accuracy.

An outline of the SPKF algorithm is described. For the
detail, you should refer to [17][18]. The general Kalman
framework involves estimation of the state of a discrete-time

nonlinear dynamic system,

12)
13)

Xk+1 = f(Xk,Vk)
yr = h(xp, ng)

where xj represents the internal state of the system to be
estimated and yy is the only observed signal. The process
noise vy drives the dynamic system, and the observation
noise is given by ny. The filter starts by augmenting the state
vector to L dimensions, where L is the sum of dimensions in
the original state, model noise and measurement noise. The
corresponding covariance matrix is similarly augmented to a
L by L matrix. In this form, the augmented state vector X
and covariance matrix P§ can be defined as in (14)(15).

%0 = Elxg] = [xf vf af] (14)
P{ = E[(x} — Xp)(x¢ — %¢)"]
P, 0 0
= Ry, 0 (15)
0 0 Ry,

where Py is the state covariance, R, is the process noise
covariance, R, is the observation noise covariance.

In the process update, the 2L+1 sigma points are computed
based on a square root decomposition of the prior covariance
as in (16), where v = L+ A, and X is found using
A= a*(L +k)— L. ais chosen in 0 < o < 1 which
determines the spread of the sigma-points around prior mean
and « is usually chosen equal to 0. The augmented sigma
point matrix is formed by the concatenation of the state
sigma point matrix, the process noise sigma point matrix, and
the measurement noise sigma point matrix, such that X =
[(xm)T ()T (X")T]T. The sigma point weights to be
used for mean and covariance estimates are defined as in
(17). The optimal value of 2 is usually assigned to (.

a _Jsa
Xo,kq = Xg-1

X =% v (VPLy),  i=lL (16)
Xy =%y (PL_)), , i=L+1..2L

wy' =AM/ (L+ )

wi=wi' +(1—a*+p) (17)

=1/(2(L+ X))

where (, /Pg_l)i is the ith column of the square root of
the covariance P¢_,. The square root of a symmetric matrix
is typically calculated by Cholesky factorization. Then these
sigma-points are propagated through the nonlinear function.
Predicted mean and covariance are computed as in (19)(20)
and predicted observation is calculated like (22).

c m .
w;i = w; i=1,...,2L

Xlg]k 1 :f(le 1 Xk—1) (13)
mwaiml (19)
Z‘U D1 — %) (X — %) (20)
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The predictions are then updated with new measurements
by first calculating the measurement covariance and state-
measurement cross correlation matrices, which are then used
to determine the Kalman gain. Finally, updated estimate and
covariance are decided through this kalman gain as below.

9L
Py, = wa(yi,k\kq — ¥ ) Vik—1 — V)b (23)
i—0

2L
Pryi = O wi( X1 — %) Vike1 = 95)7 (24
=0

Ky = Py,y. P37, (25)
Xy =%, +Kiu(yr —¥,) (26)
Py, =P, —K,P; K] (27)

These process update and measurement update should be
recursively calculated in £ = 1, ..., co until the end point of
the measurement.

B. Experimental data for identification

To obtain the experimental data, the Medial Gastrocnemius
(MG) muscle of a rabbit was investigated and the muscle
force against the electrical stimulation was measured in
isometric conditions. It was performed on New-Zealand
white rabbits at SMI (research center for Sensory-Motor
Interaction) in the Aalborg University as depicted in Fig.
3. Anesthesia was induced and maintained with periodic
intramuscular doses of a cocktail of 0.15mg/kg Midazolam
(Dormicum, Alpharma A/S), 0.03mg/kg Fetanyl and 1mg/kg
Fluranison (combined in Hypnorm, Janssen Pharmaceutica)
[19]. The left leg of the rabbit was anchored at knee and
ankle joints to a fixed mechanical frame using bone pins
placed through the distal epiphyses of the femur and tibia.
Tendon of medial gastrocnemius muscle was attached to the
arm of a motorized lever system (Dual-mode system 310B
Aurora Scientific Inc.) as shown in Fig. 4. The position and
force of the lever arm were recorded. An initial muscle-
tendon length was established by flexing the ankle to 90°. A
bipolar cuff electrode was implanted around the sciatic nerve,
allowing to stimulate the MG muscle. Data acquisition was
performed with 48 kHz sampling rate. For the identification
of mechanical parameters, the signal input was synchronized
to the beginning of the force response so that the delays in-
duced by action potential propagation and calcium dynamics
were cancelled.

IV. RESULT OF IDENTIFICATION

In order to facilitate the convergence of the identification,
the estimation process has been split into two steps. In the
first step, we only estimate geometrical parameter Lc0. In the
second step, we estimate the dynamic parameters: m and A.
The biomechanical muscle model to be identified is presented

i Sciatic nerve

BN

Stimulator
Fig. 3. Appearance of rabbit experiment.
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Fig. 4. Scheme of skeletal muscle force measurement.

as (8)-(11). We define the state vectors for geometric and
dynamic estimations in SPKF as follows:

[kc Fc Fe Fe Ec éc LCO]
[k. F. F. F, e é m X]

Xg =

Xd —

A. Parameter Identification

The stimulation signal input used for the estimation is
composed of two successive pulses at 20Hz which amplitude
is 105pA and pulse width is 300us. The stimulation signal
input is used to prepare the two control inputs («v, ) of the
mechanical model. The current amplitude and pulse width
were selected to recruit the maximum of muscular fibers,
then « is approximated to 90% for the fiber recruitment.
The stiffness k; has been estimated separately from the
experiments achieved on the isolated muscle after the force
acquisition. The stiffness is taken as equal to the slope of
linear line of the passive length-force relationship. k. was
4200N/m. F,, and k,, can be obtained knowing the force
response of muscle to a stimulation pattern with maximum
value of signal parameters (in frequency, amplitude, pulse
width). In this case, k,,=1000N/m and F},,=15N were used.

The experimental muscle force against the doublet stim-
ulation is plotted in Fig.5 with red line. It was used for
parameter estimation as measurement updates for F,. in
SPKF. The blue curve is the estimated muscle force of F..
The part surrounded by the rectangle was magnified at the
upper right side to indicate that the resultant estimated I
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was well filtered against the noisy experimental data. Fig. 6 is
the error covariance for F,. Figs. 7 and 8 show the estimated
parameter Lo and the error covariance. Both of figures show
the convergence of the estimation. The evolutions of internal
state values for . and I are obtained as in Figs 9 and 10.
From these behaviors, we can confirm that the contractile
element of the model is successfully shrunken following
the dynamics of differential equations under the estimation
process.

After the complete estimation process for geometric and
dynamic parameters, the estimated values are: L.=6.86cm,
m=19.2g, A=19.4Ns/m. As seen from resulted computational
behavior in graphs, the internal state vectors of skeletal
model converged well to stationary values. We tested the
estimation from 4 different values for initial states, same
results could be obtained in stable conditions. The estimated
length of contractile element showed close value to its
measured length 6.5cm of the isolated skeletal muscle.

B. Model Cross-validation

A cross-validation of the identified model was carried out
to confirm the validity of this method on data that have not
been used for the estimation. The resultant muscle force was
simulated using the identified values and the information
of stimulation such as electrical intensity, pulse width and
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Fig. 11.  Measured and simulated isometric muscle force with three
successive pulses (in I=105pA, PW=300us, Freq=31.25Hz).

frequency. Fig. 11 shows the measured force response of
the MG muscle of the rabbit and the simulated force with
the identified model. The model could predict the nonlinear
force properties of stimulated muscle quite well. There is
a good agreement between the measured and the predicted
force, but when the muscle fatigue appears, the experimental
force is lower than that of simulation. The small difference
at the third wave can be considered as the error coming from
modeling without fatigue factor. However, we could confirm
the effectiveness of the identification and it would contribute
for the realistic force prediction. For expression of fatigue
phenomena [20], we need to make a further investigation for
the reproduction.

V. CONCLUSIONS

An identification method for biomechanical parameters
of nonlinear skeletal muscle model has been proposed and
developed. This method is based on the in-vivo experimental
data acquisition. It could contribute for the prediction of
the nonlinear force of stimulated muscle under FES. The
comparison of experimental muscle force and the simulated
force shows the feasibility of the identification. In this
study, the estimation was computed by Sigma-Point Kalman
Filter. We tested it also by Extended Kalman Filter [14].
In EKEF, it highly depends on initial values of state vector
and it was not so easy to get the converged results. SPKF
gives much more stable performance than EKF. SPKF has
a great advantage for high nonlinear system. In addition,
this approach performs so fast computation that it could
be implemented for online application of FES control. In
the actual application for FES, some human parameters are
gradually changed following the physiological condition of
the patient. Therefore, the function of on-line identification
is considered as a key factor for the future of model-based
FES.

The future work will concern the identification protocols
based on experiments on paraplegic patients in different
modes: isometric, isotonic, isokinetic contractions. From the
representative data set like the torque, the angle of the joint,
and the EMG during the stimulation, we aim at identifying
the model and obtaining the inner unknown parameters to

enable an accurate muscle force prediction under FES for
paraplegia.
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