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Nonlinear identification of skeletal muscle dynamics

with Sigma-Point Kalman Filter for model-based FES

Mitsuhiro Hayashibe, Philippe Poignet, David Guiraud, Hassan El Makssoud

Abstract— A model-based FES would be very helpful for the
adaptive movement synthesis of spinal-cord-injured patients.
For the fulfillment, we need a precise skeletal muscle model
to predict the force of each muscle. Thus, we have to estimate
many unknown parameters in the nonlinear muscle system. The
identification process is essential for the realistic force predic-
tion. We previously proposed a mathematical muscle model of
skeletal muscle which describes the complex physiological sys-
tem of skeletal muscle based on the macroscopic Hill-Maxwell
and microscopic Huxley concepts. It has an original skeletal
muscle model to enable consideration for the muscular masses
and the viscous frictions caused by the muscle-tendon complex.
In this paper, we present an experimental identification method
of biomechanical parameters using Sigma-Point Kalman Filter
applied to the nonlinear skeletal muscle model. Result of the
identification shows its effective performance. The evaluation
is provided by comparing the estimated isometric force with
experimental data with the stimulation of the rabbit medial
gastrocnemius muscle. This approach has the advantage of fast
and robust computation, that can be implemented for online
application of FES control.

I. INTRODUCTION

Functional Electrical Stimulation (FES) is well known

as an effective technique to evoke artificial contractions of

paralyzed skeletal muscles. It has been employed as a general

method in modern rehabilitation medicine to partially restore

motor function for the patients with upper neural lesions

[1], [2]. Recently, the rapid progress in microprocessor

technology provided the means for computer-controlled FES

systems [3], [4], [5], which enable flexible programming of

stimulation sequences. A fundamental problem concerning

FES is to handle the high complexity and nonlinearity of

the neuro-musculo-skeletal system [6], [7]. Moreover, effect

such as muscle fatigue, spasticity, and limited force in the

stimulated muscle complicate the control task further. The

use of mathematical model would improve the development

of neuroprosthetics by using optimized operation for individ-

ual patients. A mathematical model may enable to describe

the relevant characteristics of the patient’s skeletal muscle

and predict the precise force against certain stimulation.

Therefore it can enhance the design and functions of control

strategies applied to FES. Until now, a great variety of

muscle models has been proposed over the years, differing

in the intended application, mathematical complexity, level

of structure considered, and fidelity to the biological facts.

Some of them have been attempted to exhibit the microscopic

or macroscopic functional behavior like Huxley [8] and Hill
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[9]. The distribution-moment model [10] constitutes a bridge

between the microscopic and macroscopic levels. It is a

model for sarcomeres or whole muscle which is extracted

via a formal mathematical approximation from Huxley cross-

bridge models. Models integrating geometry of the tendon

and other macroscopic consideration can be found in [11].

A study, based on Huxley and Hill-Maxwell type model

by Bestel-Sorine [12], proposed an explanation of how the

beating of cardiac muscle may be performed through a

chemical control input. It was connected to the calcium dy-

namics in muscle cell that stimulates the contractile element

of the model. Starting with this concept, we adapted it to

the striated muscle [13]. We proposed a musculotendinous

model considering the muscular masses and viscous frictions

in muscle-tendon complex. This model is represented by

differential equations where the outputs are the muscle active

stiffness and force. The model input represents the actual

electrical signal as provided by the stimulator in FES.

Under general FES, you have to make detailed empirical

tuning by actually stimulating the patient’s muscle for each

task. If this adjustment can be calculated in the simulation,

and if we can find best signal pattern using virtual skeletal

muscle, it would be very helpful for the movement synthesis

for paraplegic patient. However, to perform this simulation,

a precise skeletal muscle model is required to produce the

well-predicted force of each muscle. The skeletal muscle

dynamics are highly nonlinear, and we have to identify many

unknown physiological and biomechanical parameters. The

principal objective of this study is then to develop an exper-

imental identification method to identify unknown internal

parameters from the limited information. This process is

essential for realistic force prediction in the skeletal muscle

modeling for FES. For the parameter estimation in our mus-

cle model, the force information corresponding to isometric

contractions was used along with the electrical input. Sigma-

Point Kalman Filter (SPKF) was applied to the in-vivo rabbit

experimental data to identify internal states in the nonlinear

dynamics of skeletal muscle. SPKF has higher accuracy and

consistency for nonlinear estimation than Extended Kalman

Filter (EKF). The identification protocol and the detailed

results are described to show the feasibility of our approach

and the quality of the identification.

II. SKELETAL MUSCLE MODEL

Our approach is to provide a knowledge model based

on the physiological reality to obtain meaningful internal

parameters. Basically, our muscle model is composed of

two elements in different nature: i) activation model which
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The dynamics of the contractile element itself correspond to

(8) and (9). For the detail, you should refer to [12][13]. km

and Fm are the maximum values for kc and Fc respectively.

From (2), (3) and (7), the differential equations of Fe and εc

are obtained as in (10), (11). The internal state vector of this

system should be set as x =
[

kc Fc Fe Ḟe εc ε̇c

]

.

III. EXPERIMENTAL IDENTIFICATION

In this ongoing study, we will develop a method to identify

only the parameters in the mechanical part of skeletal muscle

model. The input controls of the model are the constant static

recruitment rate α and the chemical control input u from

the activation model. These two controls are computed from

FES input signal. It should be mentioned that the experiment

was performed with constant FES parameters for pulse width

and intensity of electrical stimulation so that the recruitment

rate is constant. In addition, calcium dynamics in our model

induces a time delay and an ”on/off” control so that a correct

data processing can get rid of this modeling. The trigger

of u signal can be calculated by the timing of electrical

stimulation.

In isometric contraction, the differential equations of

skeletal muscle dynamics are straightly given in (8)-(11). In

this case, kc Fc Fe εc are unknown time-varying values and

m λ Lc0 are unknown static parameters to be estimated. For

the identification of this model, it is a nonlinear state-space

model, and many state-variables are not measurable. And

then in-vivo experimental data includes some noises. That

is why we need an efficient recursive filter that estimates

the state of a dynamic system from a series of noisy

measurements.

A. Sigma-Point Kalman Filter

For this kind of nonlinear identification, Extended Kalman

Filter (EKF) was well-known as standard method. In EKF,

the nonlinear equation should be linearized to the first order

with partial derivatives (Jacobian matrix) around a mean

of the state. The optimal Kalman filtering is then applied

to the linearized system. When the model is highly non-

linear, EKF may give particularly poor performance and an

easy divergence. In skeletal muscle dynamics, its state-space

is dramatically changed between contraction and relaxation

phase. At this time, partial derivatives will be incorrect due

to the discontinuity. Therefore, we introduced Sigma-Point

Kalman Filter (SPKF). The initial idea was proposed by

Julier [16], and well described by Merwe [17]. SPKF uses

a deterministic sampling technique known as the unscented

transform to pick a minimal set of sample points (called

sigma points) around the mean. These sigma points are

propagated through the true nonlinearity. This approach

results in approximations that are accurate to at least the

second order in Taylor series expansion. In contrast, EKF

results only in first order accuracy.

An outline of the SPKF algorithm is described. For the

detail, you should refer to [17][18]. The general Kalman

framework involves estimation of the state of a discrete-time

nonlinear dynamic system,

xk+1 = f(xk,vk) (12)

yk = h(xk,nk) (13)

where xk represents the internal state of the system to be

estimated and yk is the only observed signal. The process

noise vk drives the dynamic system, and the observation

noise is given by nk. The filter starts by augmenting the state

vector to L dimensions, where L is the sum of dimensions in

the original state, model noise and measurement noise. The

corresponding covariance matrix is similarly augmented to a

L by L matrix. In this form, the augmented state vector x̂a
k

and covariance matrix Pa
k can be defined as in (14)(15).

x̂a
k = E[xa

k] =
[

x̂T
k v̄T

k n̄T
k

]T
(14)

Pa
k = E[(xa

k − x̂a
k)(xa

k − x̂a
k)T ]

=





Pxk
0 0

0 Rvk
0

0 0 Rnk



 (15)

where Px is the state covariance, Rv is the process noise

covariance, Rn is the observation noise covariance.

In the process update, the 2L+1 sigma points are computed

based on a square root decomposition of the prior covariance

as in (16), where γ =
√

L + λ, and λ is found using

λ = α2(L + κ) − L. α is chosen in 0 < α < 1 which

determines the spread of the sigma-points around prior mean

and κ is usually chosen equal to 0. The augmented sigma

point matrix is formed by the concatenation of the state

sigma point matrix, the process noise sigma point matrix, and

the measurement noise sigma point matrix, such that X a =
[

(X x)T (X v)T (Xn)T
]T

. The sigma point weights to be

used for mean and covariance estimates are defined as in

(17). The optimal value of 2 is usually assigned to β.

X a
0,k−1 = x̂a

k−1

X a
i,k−1 = x̂a

k−1+ γ
(
√

Pa
k−1

)

i
i=1,...,L (16)

X a
i,k−1 = x̂a

k−1− γ
(
√

Pa
k−1

)

i−L
i=L+1,...,2L

ωm
0 = λ/(L + λ)

ωc
0 = ωm

0 + (1 − α2 + β) (17)

ωc
i = ωm

i = 1/(2(L + λ)) i=1,...,2L

where
(
√

Pa
k−1

)

i
is the ith column of the square root of

the covariance Pa
k−1

. The square root of a symmetric matrix

is typically calculated by Cholesky factorization. Then these

sigma-points are propagated through the nonlinear function.

Predicted mean and covariance are computed as in (19)(20)

and predicted observation is calculated like (22).

X x
k|k−1 = f(X x

k−1,X v
k−1) (18)

x̂−
k =

2L
∑

i=0

ωm
i X x

i,k|k−1 (19)

P−
xk

=
2L
∑

i=0

ωc
i (X x

i,k|k−1 − x̂−
k )(X x

i,k|k−1 − x̂−
k )T (20)








