
HAL Id: lirmm-00196399
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00196399

Submitted on 16 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arc Consistency Projection: A New Generalization
Relation for Graphs

Michel Liquière

To cite this version:
Michel Liquière. Arc Consistency Projection: A New Generalization Relation for Graphs. ICCS:
International Conference on Conceptual Structures, Jul 2007, Sheffield, United Kingdom. pp.333-346,
�10.1007/978-3-540-73681-3_25�. �lirmm-00196399�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00196399
https://hal.archives-ouvertes.fr


Arc Consistency Projection: A New

Generalization Relation for Graphs

Michel Liquiere

LIRMM,
161 Rue ada,

34392 Montpellier cedex 5,
France

Liquiere@lirmm.fr

Abstract. The projection problem (conceptual graph projection, homo-
morphism, injective morphism, θ-subsumption, OI-subsumption) is cru-
cial to the efficiency of relational learning systems. How to manage this
complexity has motivated numerous studies on learning biases, restrict-
ing the size and/or the number of hypotheses explored. The approach
suggested in this paper advocates a projection operator based on the
classical arc consistency algorithm used in constraint satisfaction prob-
lems. This projection method has the required properties : polynomiality,
local validation, parallelization, structural interpretation. Using the arc
consistency projection, we found a generalization operator between la-
beled graphs. Such an operator gives the structure of the classification
space which is a concept lattice.

1 Introduction

The complexity of the computation of the generality relation between two rela-
tional descriptions, is a crucial problem. For conceptual graphs [1] this operation
is named projection. Such an operation is linked to a classical problem in the
graph community: the search for an homomorphism between two graphs. As
stated in [2], “the elementary reasoning operation, projection is a kind of graph
homomorphism that preserves the partial order defined on labels”. The search
for an homomorphism between a tree and a graph is polynomial but between
general graphs, the problem is NP complete [3]. In conceptual graph community,
different algorithms are proposed for the projection problem [4,5,6].

From another point of view, Inductive Logic Programming systems (ILP)
commonly used a generality relation, a decidable restriction of logical implica-
tion named θ-subsumption. The homomorphism is also directly linked to the
θ-subsumption operation [7]. In machine learning, the complexity of this opera-
tion has motivated the use of learning biases: syntactic biases (trees [8], specific
graph [9,10]), efficient implementation [7] and approximation of θ-subsumption
[11].

Finally, the homomorphism is also linked to the classical constraint program-
ming resolution (CSP) [12]. This final link gives an interesting algorithmic point
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of view since CSP community has many results which improve the resolution
algorithm.

In this paper, we propose to use a part of these three domains for a classical
unsupervised machine learning problem. We represent each example by a labeled
graph. We use a new generality relation named AC-projection based on the arc
consistency algorithm [12] and we prove that the search space, for a relational
machine learning classification problem, is a concept lattice [13].

2 A New Projection: AC-Projection

Any constraint satisfaction problem can be viewed as a “network” of variables
and constraints. In this network each variable is connected to the constraints that
involve it and each constraint is connected to the variables it involves. Among
backtracking based algorithms for constraint satisfaction problems, algorithm
employing constraint propagation, like forward checking and arc consistency [12],
have had the most practical impact. These algorithms use constraint propagation
(arc consistency) during a search to prune inconsistent values from the domains
of the uninstantiated variables.

2.1 AC-Projection and Arc Consistency

In this paragraph we present the arc consistency using a graph notation. For
other presentations see the books [3,12].

Notation. For a labelled directed graph, named digraph in this paper, G, we
note V (G) the set of vertices of G, A(G) the set of arcs of G, L(G) the set of
labels of G. For a vertex x ∈ V (G) we note l(x ) ∈ L(G) the label of x, N(x)
the set of all the neighbors of x, P (x) ⊆ N(x) the predecessors of x and S(x) ⊆
N(x) the successors of x.

For a finite set S we note 2S the set of all subsets of S (power set). In this
paragraph we study some important properties of the arc consistency.

Definition 1 (labeling). Let G1 and G2 be two digraphs. We named labeling
from G1 into G2 a mapping I:V(G1) → 2V (G2) | ∀ x ∈ V(G1), ∀ y ∈ I(x),
l(x)=l(y).

Thus for a vertex x ∈ V(G1), I(x) is a set of vertices of G2 with the same label
l(x). We can think of I(x) as the set of “possible images” of the vertex x in G2.
This first labeling is trivial but can be refined using the neighborhood relations
between vertices.

Definition 2 (∼�). Let G be a digraph, V1 ⊆ V(G), V2 ⊆ V(G).
We note V1 ∼� V2 iff
1) ∀xk ∈ V1 ∃yp ∈ V2 | (xk,yp) ∈ A(G)
2) ∀yq ∈ V2 ∃xm ∈ V1 | (xm,yq) ∈ A(G).

In this definition we give a direct relation between two sets of vertices V1 and
V2. So for each vertex xk of V1 there is at least one vertex yp of V2 which is a
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neighbor of xk:((xk, yp) ∈A(G)) and all vertices of V2 are a neighbor of, at least,
one vertex of V1 (oriented condition). This is not a one to one relation like the
subgraph isomorphism.

Definition 3 (Consistency for one arc). Let G1 and G2 be two digraphs. We
say that a labeling I:V(G1) → 2V (G2) is consistent with an arc (x, y) ∈A(G1),
iff I(x) ∼� I(y).

In the example of Figure 1, a vertex is designated by a letter and a number: the
letter is the label of the vertex and the number is only an identification number.
In this example the labeling I:I(a0)={a4, a10} and I(b1)={b5, b9}, is consistent
with the edge (a0,b1) since I(a0)∼�I(b1).

Definition 4 (AC-projection ⇁). Let G1 and G2 be two digraphs. A labeling
I from G1 into G2 is an AC-projection iff I is consistent with all the arcs e ∈
A(G1). We note it G1⇁G2

The name “AC-projection” comes from the classical AC (arc consistency) used
in [12].
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c
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G1 G2

Fig. 1. AC-Projection: Example

Consider the labelling I(a0):{a4,a10}, I(b1):{b5,b9}, I(c2):{c6, c7,c8},I(c3):
{c7,c8}. We verify I(a0)∼� I(b1), I(b1)∼�I(c2), I(b1)∼�I(c3), I(c3)∼�I(a0).
Then I is an AC-projection from G1 into G2 since I is a labelling consistent
with all arcs of G1.

2.2 AC-Projection Properties

We have defined a new mapping relation between graphs. In this paragraph we
study the properties of this relation (complexity, interpretation).

We recall the classical homomorphism definition for digraphs.
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Definition 5 (homomorphism 	→ ). A homomorphism of a digraph G1 to a
digraph G2 is a mapping of the vertex sets f:V(G1) → V(G2) which preserves
the arcs and labels, i.e such that (x,y) ∈ A(G1) ⇒ (f(x),f(y)) ∈ A(G2) and ∀x,
l(x)=l(f(x)).
Notation: G1 	→ G2

Note that for digraph (f(x),f(y))∈A(G2) implies that f(x) �= f(y), since each edge
of A(G2) consists of two distinct elements.

We have the following proposition which links the AC-projection to the Ho-
momorphism.

Proposition 1. For two digraphs G1 and G2, if G1 	→ G2 then G1 ⇁ G2.

Proof. See [3]

This proposition is the foundation of many CSP resolution methods. These meth-
ods are based on the classical arc consistency algorithm AC1 used in CSP,
which has been improved (AC2 ... AC5), the actual minimal complexity is:
O(ed2) where e is the number of arcs and d the size of the largest domain
[12].

In our case, the size of the largest domain is the size of the largest subset of
nodes with the same label. So an AC-projection between two digraphs can be
computed in polynomial time.

2.3 AC-Projection Algorithm

We give a simple AC-projection algorithm for digraphs (based on AC1 algorithm
[12]).

This algorithm Arc-Consistency takes two digraphs G1, G2 and tests if there
is an AC-projection from G1 into G2. It begins by the creation of a first rough
labeling I and reduces, for each vertex x, the given lists I(x) to consistent lists
using the procedure ReviseArc.

The consistency check fails if some I(x) becomes empty; otherwise the con-
sistency check succeeds and the algorithm gives the labeling I which is an AC-
projection G1⇁G2.

Procedure: ReviseArc

Data: An arc (x,y)∈ V(G1)
Data: A labeling I from G1 into G2

Data: A digraph G2

Result: A new labeling I′ from G1 into G2

I′:= I ;
I′(x):= I(x) - {x’ ∈ V(G2) | �∃ y’ ∈ I(y) with (x’,y’) ∈ A(G2)};
I′(y):=I(y) - {y’ ∈ V(G2) | �∃ x’ ∈ I(x) with (x’,y’) ∈ A(G2)};
return I′
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Procedure: Arc-Consistency
Data: Two digraphs G1 and G2

Result: An AC-projection I from G1 into G2 if there is one else an empty
set ∅

// Initialisation
for x ∈ V(G1) do

I(x) = {y ∈ V (G2) | l(x) = l(y))};
end
S := A(G1);
while S �= ∅ do

Choose an arc (x,y) from S; // In general the first element of S
I ′:=ReviseArc((x,y),I,G2);
//If for one vertex x ∈ V(G1) we have I ′(x)= ∅ then there is no arc
consistency
if (I ′(x) = ∅) or (I ′(y) = ∅) then

return ∅;
end
// I ′ is consistent now with the arc (x, y); but it can be non-consistent
with some other previously tested arcs so we have to verify and change
(if necessary), the consistency of all these arcs.
if I(x) �= I ′(x) then

S := S
⋃{(x′, y′) ∈ V (G1) | x′ = x or y′ = x};

end
if I(y) �= I ′(y) then

S := S
⋃{(x′, y′) ∈ V (G1) | x′ = y or y′ = y};

end
Remove (x,y) from S;
I:=I ′;

end
return I;

The Arc-Consistency algorithm has a polynomial time complexity [3,12] and
gives, if there is one, an AC-projection I from G1 into G2 verifying: for all
AC-projection I ′ from G1 into G2, we have ∀ x ∈ V(G1), I ′(x) ⊆ I(x) [3].

3 AC-Projection and Machine Learning

In [10], we have studied the construction of a concept lattice, where the extension
part is a subset of the set of example but where the intension part is described
by a digraph. In the context of machine learning, the automatic bottom up
construction of such a hierarchy can be viewed as an unsupervised conceptual
classification method. In this paper the generalization partial order was based
on homomorphism relation between digraph. To deal with the homomorphism
complexity, we proposed a class of digraph with a polynomial homomorphism
operation. This limit the generality of the description language.
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In that paper we propose to put the bias on the projection operator. Since
the complexity of the AC-projection is polynomial, our idea is to use the AC-
projection algorithm instead of the homomorphism projection.In doing so, we
need a structural interpretation of the results. In the case of the subgraph isomor-
phism relation between two graphs, there is no interpretation problem, because
it is an “inclusion” relationship. For the homomorphism relation the interpre-
tation is less natural since two vertices can get the same image. The structural
interpretation of the AC-projection seems unnatural. For example, see Figure 1
and seek for the substructures which are in G1 and G2.

In fact, in the paper [3], the author gives the following proposition:

Proposition 2. Let G1 and G2 be any labelled digraphs with G1 ⇁ G2. If an
directed labeled tree T satisfies T 	→ G1 then T 	→ G2.(recall 	→ is the homomor-
phism relation)

A limited interpretation of the proposition 2 is: every subtree of G1 has an
homomorphic image in G2. So all the covering trees of the digraph G1 of the
Figure 1, are homomorphic with G2.

3.1 AC-Projection and Generalization

The basic building blocks of concept learning is the notion of example and de-
scription language. In our framework, each example, of the set of example, is
described by one digraph. So we have a set of digraphs E . We want to find a set
of labeled digraphs which have an AC-projection with a subset of the labelled
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c

a b

c

c

a

a b

c

c

T

G1

G2

Fig. 2. AC-projection and interpretation
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digraphs in E . It is a classical unsupervised classification problem. A generaliza-
tion algorithm uses a generalization operator: from two graphs we search for the
more specific graph which generalizes two graphs (least general generalization
[14]). Our generalization order will use the AC-projection relation.

First, we have to specify the generalisation relation between digraphs.

Definition 6 (Generalisation relation)
For two digraphs G1,G2, we consider that G1 is more general than G2 iff G1 ⇁
G2.

This relation is only a pre-order because the antisymmetry property is not ful-
filled.

The same problem occurs in Inductive Logic Programming. To get rid of this
problem, Plotkin [14] defined equivalence classes of clauses, and showed that
there is a unique representative of each clause, which he named ’the reduced
clause’. For this purpose, we define the following equivalence relation between
two digraphs.

Definition 7 (AC-equivalence graphs)
Two digraphs G1 and G2 are AC-equivalent, denoted by G1 � G2, iff both G1

⇁ G2 and G2 ⇁ G1.

For example in the Figure 1 we have G1 ⇁ G2 but we also have G2 ⇁ G1 with
the labelling I: I(a4) = {a0}, I(a10) = {a0}, I(b5) = {b1}, I(b9) = {b1}, I(c7) =
{c3}, I(c8) = {c3},I(c6) = {c2, c3}.

Using this equivalence relation, we can define equivalence classes of digraph.

3.2 AC-Projection and Reduction

We have an equivalence relation between graphs using the AC-projection. In this
paragraph we study the properties of this operation and search for a reduced
element in an equivalence class of graphs. For this purpose, we define two reduc-
tion operators. Using these operators we construct an AC-equivalent digraph by
removing (first operator) or merging (second operator) vertices.

Definition 8 (AC-redundant vertex)
For a digraph G, for a vertex x ∈ V(G), if G � G-x then x is an AC-redundant
vertex. (With G-x = G’ s.t V(G’)=V(G) - {x} and A(G’)=A(G)-{(y,z) | y=x
or z=x}).

In the Figure 3 the node 1 labelled “c” is AC-redundant.

Definition 9 (AC-equivalent vertices)
For a digraph G, we say that x1,x2 ∈ V(G) are AC-equivalent iff for the AC-
projection I: G⇁G, I(x1)=I(x2).

In the Figure 3 the nodes with same label are, in this case, AC-equivalent.
These two definitions give a reduction operator.
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Procedure:R
Data: a labelled digraph G
Result: a labelled digraph G’ //with G’ � G
G’:=G;
next := true;
while next do

next:=false;
if (there is a AC-redundant vertex x ∈ V(G’)) then

G’:=G’-x;
next:=true;

end
if there is a set of AC-equivalent vertices E={x1,... xn }∈V(G’) with
|E| >1 then

// Merge of the AC-equivalent vertices of E
add a vertice x to V(G’) with P(x)=

⋃
P(xi) and S(x)=

⋃
S(xi);

// remove all xi ∈ E from G’
G’:=G’-E ;
next:=true;

end
end
return G’ ;

This R operation is polynomial because the AC-projection is polynomial.

Proposition 3 (R equivalence)
R(G) � G

Proof .
1) If we remove an AC-redundant vertex x ∈ V(G), by definition G � G-x.
2) if we merge a set of AC-equivalent vertices E={x1,... xn } with |E| >1 in a
vertex x, we obtain a new graph G’. We have to prove that G � G’
We have a AC-projection I from G into G
a) G ⇁ G’
We construct a labeling I ′ from G into G’ with
for xi ∈ E, I ′(xi)=x
for yj /∈ E, if I(yj)

⋂
E �= ∅ then

I ′(yj)= (I(yj) - E)
⋃

x
else
I ′(yj)=I(yj)
We know that ∀ xi ∈ E, and ∀ yj∈S(x),I(xi)∼� I(yj). Since S(x)=

⋃
S(xi) | xi

∈ E we have I ′(xi)={x} ∼�I′(yj) and reciprocally for the predecessors.
So I ′(yj) is an AC-projection.
b) G’ ⇁ G
We construct a labeling I ′′ from G’ into G with
for x ∈ V(G’), I ′′(x)=E
for y ∈ V(G’) and y �= x, I ′′(y)=I(y)
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We know that for all xi ∈ E and yj ∈ S(xi), I(xi)∼�I(yj) (and reciprocally for
the predecessors).

Since I ′′(x)=I(x) and I ′′(y)=I(y), we have I ′′(xi)∼�I′′(yj) then I ′′ is an
AC-projection.

The Figure:3 shows the application of the R reduction operator on a digraph.

a b c

c b a

c

G

a b c

c b a

R(G)

a b

c

Remove Merge

1

Fig. 3. R(G)

3.3 AC-Projection and Generalization Operator

There are some pairs, (representation languages and generality relations), which
have a least general generalization operator . For logic formula and θ-subsumption,
this operator is the classical lgg (or rlgg) introduced by plotkin [14]. For graph and
homomorphism this operator is the graph product [10]. In mathematics this kind
of operator is defined as a product operator [15].

Definition 10 (Product operator). A binary operator • is a product operator
iff for a pre order (or a partial order)� between element Ei

– E1 • E2 � E1

– E1 • E2 � E2

– if E � E1 and E � E2 then E � E1 • E2

For digraph we have the following product operator (⊗) for the homomorphism
pre-order [16,3,10].

Definition 11 (Product operator ⊗ for digraphs and homomorphism)
For two digraphs G1 and G2 We construct G=G1 ⊗ G2 with

– L(G) = L(G1)
⋂

L(G2)
– V (G) ⊆ V (G1) × V (G2)={x | x = (x1, x2) with l(x) = l(x1) = l(x2)}
– A(G)={(x,x’) | x=(x1,x2),x’=(x′

1,x
′
2) and (x1, x

′
1)∈V(G1), (x2,x′

2) ∈ V(G2)
} ⊆ A(G1) × A(G2)

For the AC-projection we have also a generalization operator.
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c
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d
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Fig. 4. Product � of two digraphs

Proposition 4 (Product operator � for digraphs and AC-projection)
For two digraphs G1, G2. The binary operator G1 � G2= R(G1 ⊗ G2) is a
product operator.
So for G=G1 � G2 we have:
1) G ⇁ G1, G⇁G2

2) for a digraph G′ if H⇁G1 and G’⇁G2 ⇒ G’⇁G

Proof
1) For two digraphs G1, G2, and G=G1 ⊗ G2 we have G 	→ G1 and G 	→ G2 (by
property of the digraph product operation [10]). And we know:

– R(G) � G (proposition 5).
– if G 	→ G1 ⇒ G ⇁ G1 (proposition 1 )

2) We know that G’ ⇁ G1 and G’ ⇁ G2. So there is two labelings I1 and I2

with for each x ∈ V(G’), I1(x)={x1
1, ..., x

n
1} ⊆ V(G1) and I2(x)={x1

2, ..., x
m
2 } ⊆

V(G2).
In G1⊗G2 we have all the couples (x1

1, x
1
2), (x

1
1, x

2
2), ...(x

n
1 , xm

2 ) by construction.
We define the following labelling I: G’ → G1 ⊗ G2 with I(x)= I1(x)×I2(x). If
(x,y) ∈ V(G’) we have to prove that I(x)∼�I(x).

For each (xi
1, x

j
2) ∈ I(x) there is (ya

1 , yb
2) ∈ I(x) with (xi

1, y
a
1 ) ∈ V(G1) and

(xj
2, y

b
2) ∈ V(G2). Because xi

1 ∈ I1(x) there is, at least, one ya
1 ∈ I1(y) with

(xi
1, y

a
1 ) ∈ V(G1). Since xj

2 ∈ I2(x) there is, at least, one yb
2 ∈ I2(y) with (xj

2, y
b
2)

∈ V(G2). Since, the graph product G1 ⊗ G2 builds all the couple (xi
1, x

j
2) and
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(ya
1 , yb

2) (with same labels). ((xi
1, x

j
2), (y

a
1 , yb

2)) ∈ V(G) iff (xi
1, y

a
1 ) ∈V(G1) and

(xj
2, y

b
2) ∈V(G2). So for (xi

1, x
j
2) ∈ I(x) there is, by definition of I, (ya

1 , yb
2) ∈

I(y) then I(x)∼�I(y). I is an AC-projection from G’ ⇁ G1 ⊗ G2. Since R(G)
� G (by construction) then � is a product operator.

In Figure:4 G is the product of G1 and G2. It represents all the different1 subtrees
common at G1 and G2.

4 Concept Lattice and AC-Projection

We have a generalization operator and a pre-order between digraphs. With this
knowledge, we can define the notion of concept [13].

Definition 12 (concept, ∨, ≥)
For a set of examples E, each example e ∈ E is described by a digraph d(e) ∈ D
(description space).

For a digraph G, we note α(G)={ei ∈ E | G ⇁ d(ei)}.
For E1 ⊆ E, we note β(E1)=�e∈Hd().
A concept is a couple (E1,G1) with E1 ⊆ E, G1 a digraph with α(G1)= E1

and β(E1) � G1.
For two concepts (E1,G1), (E2,G2):
(E1,G1) ∨ (E2,G2)=(α(G),G=G1�G2 )(E1,G1) ≥ (E2,G2) iff G1⇁G2

Proposition 5 (AC concept lattice)
For a set of examples E, each example e ∈ E is described by a digraph d(e) ∈ D.
The correspondance α,β defines a Galois connection between 2E and D.

Proof. see [10]

This proposition gives the structure of the search space (a concept semilattice).
The size of the concept lattice is limited by the minimum of SD and SP where
SD is the size of the description space and SP the size of the partition space.
The size SD is very large for relational description but SP is limited by 2n where
n is the number of examples.

If we use our method on the set of examples of [10] we obtain the following join-
semilattice Figure:5. In this concept semilattice, each node represent a concept
with an extension part: a subset of the set of examples and an intension part
:a digraph. The partial order between the elements of the lattice is based on
AC-projection, then the digraph, intension part of a concept, can be interpreted
as a compact description of a very large (potentially infinite) set of trees. But,
thanks to AC-projection, we don’t have to explore all the elements of this set
as in classical tree mining method [8]. Using this example, we obtain a lattice
which is isomorphic with the one given by Graal [10] but it is not always the
case. This comes from the fact that, for this set of graphs, the set of included
paths is enough to obtain this lattice.
1 For the homomorphism relation.
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Fig. 5. A set of examples and the concept semilattice for AC-projection

5 Conclusion

This study has attempted to merge ideas from different communities: Graph,
ILP, CSP. In these communities, the same problem is examined from different
points of view: graph and homomorphism, logic and θ-subsumption, and con-
straint satisfaction problems and resolution.
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Merging these knowledges we have obtained:

– the definition of a new generality relation between graphs with polynomial
complexity.

– the definition of a least general generalization operator.

These results can be used for the construction of a concept lattice where the
intention part of a concept is described by a digraph. The advantages of this
approach compare with the approach [10] are:

– We use general digraph for the description of the examples. In the paper [10]
we have a polynomial complexity only for a specific class of graphs.

– All the operations are polynomial (equivalence, reduction, product and con-
cept order).

– We find graphs which express a large set of trees in a compact form.
– The size of the concept lattice is smaller.

But, since the AC projection is less precise, the classifications obtained are also
less precise. However, we have a generalization operator, between two digraphs,
which gives a digraph which represents all the homomorphic trees belonging at
this two digraphs. So, a large part of their common structure is caught.
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