
HAL Id: lirmm-00196676
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00196676

Submitted on 13 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-driven Engineering for Requirements Analysis
Benoit Baudry, Clémentine Nebut, Yves Le Traon

To cite this version:
Benoit Baudry, Clémentine Nebut, Yves Le Traon. Model-driven Engineering for Requirements Anal-
ysis. 11th International Enterprise Distributed Object Computing Conference (EDOC), Oct 2007,
Annapolis, MD, United States. pp.459-466, �10.1109/EDOC.2007.15�. �lirmm-00196676�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00196676
https://hal.archives-ouvertes.fr

Model-driven Engineering for Requirements Analysis

Benoit Baudry

IRISA & INRIA

Campus universitaire de Beaulieu

35042 Rennes cedex, France

bbaudry@irisa.fr

Clémentine Nebut

LIRMM, CNRS & univ. Montpellier 2

161, rue Ada

34392 Montpellier cedex 5, France

nebut@lirmm.fr

Yves Le Traon

ENSTB & IRISA

2, rue de la Châtaigneraie

35576 Cesson Sévigné, France

Yves.LETRAON@enst-bretagne.fr

Abstract

Requirements engineering (RE) encompasses a set of

activities for eliciting, modelling, agreeing, communicat-

ing and validating requirements that precisely define the

problem domain for a software system. Several tools and

methods exist to perform each of these activities, but they

mainly remain separate, making it difficult to capture the

global consistency of large requirement documents. In this

paper we introduce model-driven engineering (MDE) as a

possible technical solution to integrate these activities in a

common framework. First, we dicuss how RE can lever-

age the two main techniques for MDE: metamodelling and

model transformation. Then, we introduce a metamodel for

requirements and present how we have implemented this

metamodel to make it executable and usable through a con-

strained natural language for requirements definition.

1 Introduction

A crucial issue when starting a new software develop-

ment project consists in eliciting, defining, modelling and

agreeing on the requirements for the system. This requires a

lot of effort, involving all stakeholders related to the project

and managing a large amount of information. All these ac-

tivities have been intensively investigated by the require-

ments engineering (RE) academic and industrial commu-

nity. Today, a number of tools, environments and solid the-

oretical knowledge have been produced for RE. However, it

remains a composite activity and sub-activities are still very

much disconnected from each others. This makes it very

difficult to check the consistency between numerous docu-

ments, impact local changes on a large set of requirements

or have a global understanding of the requirements.

Model-driven engineering (MDE) offers a technical

framework that can relate software developement activities

around metamodels and model transformations, and we be-

lieve that it can be similarly used to relate RE activities.

MDE advocates the use of models as first-class entities for

software development. This means first that models have to

be more than drawings and must be formally defined and

automatically computable by programs. This first step is

achieved through the definition of metamodels that formally

and completely define models. The metamodel describes

the structure of models and can be extended with opera-

tions that specify the operational semantics of models. Sec-

ond, this means that it is necessary to define, specify and

implement programs that process these models. This type

of program is called a model transformation. This is a pow-

erful mechanism to automate a number of development ac-

tivities: refinement, refactoring, translation in another mod-

elling language, code generation, etc.

The core contribution of this paper is the definition of

a metamodelling environment for requirements modelling

and simulation. This work has been initiated in two collab-

orations with industrial partners (THALES [11] and France

Telecom). In order to produce efficient test cases from the

requirements, we had to disambiguate the functional re-

quirements and perform requirements analysis. To design

a flexible test environment, we use MDE and define a meta-

model for the concepts we need at requirement level. This

metamodel captures functional requirements as use cases

with pre and post conditions that constrain the activation of

the use cases. Thanks to executable metamodelling, we can

add operations in this metamodel in order to simulate the

1

requirements model. Simulation is very useful to validate

the completeness, the consistency of requirements as well

as the business logic.

As we will discuss it in this paper, a major benefit of

this MDE-based approach for requirement analysis is to al-

low interoperability between the several RE tasks like mod-

elling, understandability and elicitation. Another benefit of

MDE for requirements engineering is to improve the inte-

gration of RE with subsequent model-driven software de-

velopement steps. As Sommerville points out in [18], RE

and software engineering are still two very disctinct pro-

cesses. The integration of these activities is a major issue to

deal with continuous requirements changes and to integrate

RE in a spiral development cycle.

The paper is organized as follows. Section 2 recalls the

MDE approach and introduces the techniques used for ex-

periments. The rest of the paper presents how we have ap-

plied these techniques for requirements analysis and simu-

lation. Section 3 presents the requirements metamodel that

captures the concepts of use cases with contracts and a data

model. Section 4 introduces the execution semantics of our

requirements metamodel and details how we have extended

the metamodel to implement this semantics in order to have

simulable models. At last, we present related works and

conclude.

2 Model-Driven Engineering

Model-Driven Engineering (MDE) is an approach to

software development that focuses on models as first class

entities for development (as opposed to programs). Models

can describe various concerns such as functionality, time

constraints, security, maintainability etc. MDE emphasizes

the need to have productive models that can be automati-

cally manipulated by programs. To make the models pro-

ductive, it is necessary to completely and formally define

them. In the MDE context, metamodels are used to build

this formal definition. Based on the definition of a meta-

model, it is possible to implement model transformations

that automatically refine, compose, refactor or reverse mod-

els.

Metamodels and automatic model transformations are

two crucial mechanisms for MDE. In this section we detail

metamodelling and discuss how operations can be added in

metamodels to enable the simulation of models. We also in-

troduce the Kermeta metamodelling language that is used in

our works to implement metamodels and transformations.

2.1 Executable Metamodelling

Metamodelling consists in building a metamodel for do-

main specific languages. These metamodels are defined

with metamodelling languages like MOF [15], EMOF [15]

Figure 1. Structure for the FSM metamodel

or Ecore [5]. These languages enable the definition of do-

main specific concepts and the relationships between theses

concepts (association, composition, specialization). There

exist tools that can then check that models, instances of a

metamodel, conform to the structure defined by the meta-

model. This consists in checking that the model is a set of

objects which super class is defined in the metamodel, and

the relationships between the objects conform to the rela-

tionships defined in the metamodel. Currently, most meta-

models are defined with these languages and thus define

only the structure of the models (what concepts they can

use and how they can be related). For example, Figure 1

describes the structure for finite state machines: a FSM is

composed of a set of states that have a set of outgoing and

incoming transitions. However, such a definition lacks in-

formation about the semantics of FSM.

It is possible to use constraint languages such like the

OCL [16] to add semantic constraints on the structure of the

metamodels. For example, in Figure 1, it would be possible

to use OCL to constrain the initial state to be included in the

set ownedStates of the FSM. However, the constraints

define static semantics and OCL is not meant to be used for

defining the operational semantics of the models.

In order to improve the definition of metamodels, it is

necessary to add actions. This is called executable meta-

modelling. The models that are instances of the metamodel

can be executed which enables the validation of the opera-

tional semantics through simulation. For example, Figure 2

defines operations in the FSM metamodel. With an action

language, it is possible to define the body of these opera-

tions. For example, write the sequence of actions that spec-

ifies the step() operation: if an input event matches the

input event of an outgoing transition for the current state,

then the transition can be triggered and the current state is

updated. It is then possible to create a FSM that conforms

to this metamodel and call the step run operation on the in-

stance of the FSM class to simulate the FSM.

The main benefit of executable modelling is that a model

that conforms to the metamodel is executable by construc-

tion. In other words, it is not necessary to translate/com-

pile the model into another executable language to simulate

its behaviour. This is a valuable mechanism both for the

modellers and the metamodellers. For the modellers, this

2

Figure 2. Executable FSM metamodel

provides a rapid feedback to validate the models. For the

metamodellers, this simplifies the fine-tuning of the opera-

tional semantics of a modelling language: when simulating

a model, if the behaviour does not conform to the expecta-

tions of the metamodellers, it is possible to modify the op-

eration in the metamodel and directly run the same model

again. This gives immediate feedback to the metamodellers

about the changes they made.

2.2 Kermeta Metamodelling Language

Kermeta [9] is an open source metamodelling environ-

ment that has been designed as an extension to the meta-

data language EMOF [15] with an action language for spec-

ifying semantics and behaviour of meta-models. The action

language is imperative and object-oriented and is used to

provide an implementation of operations defined in meta-

models. A more detailed description of the language is pre-

sented in [12].

The Kermeta action language has been specially de-

signed to process models. It includes both OO features and

model specific features. Convenient constructions of the

Object Constraint Language (OCL) such as closures (e.g.

each, collect, select) are also available in Kermeta. The ac-

tion language offered by Kermeta is well adapted to model-

oriented activities such as:

• specification of abstract syntax, static semantics (with

the support for OCL) and dynamic semantics,

• model and metamodel simulation and prototyping,

• model transformation,

• aspect weaving.

For example, Figure 3 displays the definition of the step

operation with the Kermeta language in the FSM meta-

model.

In this work, we use Kermeta both to add operations in

our requirements metamodel and to define a sequence of

model transformations from an input textual language to-

wards this metamodel.

o p e r a t i o n s t e p (c : S t r i n g) : S t r i n g

v a r v a l i d T r a n s i t i o n s : C o l l e c t i o n <

T r a n s i t i o n >

v a l i d T r a n s i t i o n s := o u t g o i n g T r a n s i t i o n .

s e l e c t { t |

t . i n p u t . e q u a l s (c)

}

i f v a l i d T r a n s i t i o n s . s i z e > 1 t h e n

r a i s e NonDeterminism . new

end

r e s u l t := v a l i d T r a n s i t i o n s . one . f i r e

Figure 3. Kermeta definition of the step op-

eration

3 A metamodelling environment for require-

ments analysis

To experiment the application of MDE techniques for

requirements engineering, we have developed a prototype

around an executable requirements metamodel. This meta-

model is the core element for our experiments. It is de-

fined from the experience we had with modelling require-

ments for THALES and France Telecom. The metamodel

specifically targets the definition, analysis and validation of

functional requirements that define sequences of service ac-

tivations. These requirements are expressed as use cases

associated with pre and post conditions. The pre-condition

defines the conditions in which a use case can be executed

and the post condition expresses the effect the use case has

on the state of the system. The requirements also manipu-

late data (the business concepts) that have to be part of the

model. The metamodel presented here captures the differ-

ent concepts needed to model these requirements.

We illustrate the metamodel using examples from a Li-

brary Management System(LMS) which requirements are

described below:

• A library is maintained by a librarian.

• The librarian can register new books in the LMS and

can also register books that have been fixed.

• The librarian can register customers.

• A customer must register in the library to avail the fa-

cility of borrowing the books.

• Books must be registered before they are available to

the customers.

3

• The customer can borrow books if they are available

and not damaged.

• When a customer returns the book, the book is not

available for any customer to borrow again, till the li-

brarian performs an inventory check.

Figure 4. Requirement metamodel overview

Figure 4 displays a general view of the metamodel.

UCSystem is the root class for the metamodel and is com-

posed of the two main parts of the model i.e. the FUNC-

TIONALMODEL and the AnalysisModel. The first one

specifies use cases with contracts and the latter the static

analysis data model for the requirements. This metamodel

captures the dynamic part of the requirements, but is not

sufficient to capture the static part and in particular the han-

dled data. We are aware that the metamodel should be ex-

tended for a better support of requirements, however the

work presented here yet provides significant benefits, in par-

ticular using the simulation process explained in the next

section.

The UseCase class represents a use case in our model

and each use case has exactly one pre-condition and one

post-condition. Contracts allow the system designer to

specify both when a use case is applicable (precondi-

tion), and the effect of a use case execution on the sys-

tem’s state (post-condition). Contracts, represented by the

Expression class in our metamodel, are expressed as

first order logical expressions having a set of typed parame-

ters, combined with different logical operators. All the nec-

essary concepts are present in the metamodel as sub-classes

of Expression, but are not represented here to limit the

size of the figure. These expressions are used to describe

the properties of the system (an actor state, a business con-

cept state etc) at any state during the simulation. These ex-

pressions are Boolean expression, thus can be either true

or false. Logical operator includes conjunction (and), dis-

junction (or), negation (not) and implication. In order to

increase the expressiveness, exists and forall quantifiers are

also included.

At requirements level, a use case mainly depends on the

actors involved and business concepts which it has to han-

dle. In our metamodel we treat actors and business concepts

as data that can be passed as parameters to the use case.

The Parameter class in the analysis package repre-

sents this concept. For example, let us consider the use case

borrow of the Library Management System.

Use Case borrow(c: customer, b: book)

The parameters of this use case are the customer who wants

to borrow the book, and the book to be borrowed. Here

customer is an actor and book is a business concept.

The analysis package models a high-level analysis

data model of the system. It defines the concept of class

with operations and attributes. This package is close to

the UML class diagram metamodel. A Class represents

an actor or a business concept. It is composed of a set of

Attributes and Operations. Boolean represented

by BooleanType class and enumeration represented by

Enumeration class are supported as primitive data types.

There is not support for handling complex data types.

The Borrow use case for a Library Management System

requires that a customer who wants to borrow the book must

be registered and the book she/he wants to borrow must be

available and not marked as damaged. After performing the

use case Borrow, the book is not available and the cus-

tomer has borrowed the book.

Use Case Borrow (b : Book , c : Customer)

Pre : r e g i s t e r e d (c) and a v a i l a b l e (b) and

n o t damaged (b)

P o s t : r e g i s t e r e d (c) and n o t a v a i l a b l e (b)

and borrowed (c , b)

The model for the above use case can be captured in a

model that conforms to the metamodel defined here (and

given in Figure 4). However, it might be difficult to express

4

requirements directly in the form of use cases. It is espe-

cially difficult to define all the contracts at once. Moreover,

it is difficult to estimate if the use cases globally express the

expected requirements. In order to validate the global set

of requirements, we have added a simulation capability in

the metamodel (section 4). To facilitate the definition of re-

quirements, we have defined a constrained natural language

that enables the definition of requirements as sentences, but

that is not presented here.

4 Simulation of the requirements model

Interactive simulation of use cases is a useful way to

determine the behavior and correctness of requirements

at an early stage of software development process. The

requirement analyst can verify whether the requirements

model conforms to the system specification. Using a sim-

ulation tool allows inconsistencies in contracts and under-

specification errors in the requirements to be detected.

Properties of the system like invariants can also be verified

using model checking techniques.

The simulation technique has been proposed in [13] for test

generation purpose and was implemented in Java. For the

sake of remembrance we summarize the principles for sim-

ulation in section 4.1. Then, section 4.2 details how we now

leverage executable metamodelling to simulate the require-

ments model. We explain how we extend the metamodel of

figure 4 to add execution semantics.

4.1 Principles of the simulation

The intuition behind the simulation is to instantiate the

use cases, replacing the formal parameters with actual val-

ues defined in an initial configuration. We thus need to

know all the business entities present in the system for one

particular simulation. For example, to deal with two books

and two customers, it is necessary to declare (in a RDL file):

b1, b2: book

c1, c2: customer

The possible instantiations of the use case borrow (b:

book, c: customer) are then borrow(b1,c1),

borrow(b1,c2), borrow(b2,c1) and

borrow(b2,c2). The instantiated use cases are in-

teractively executed, if their preconditions are satisfied.

More formally, the simulation consists in on-the-fly build-

ing of a transition system named Use Case Transition

System (UCTS). A UCTS is defined by a quadruple (Q, q0,

A, →֒) where:

• Q is a finite non-empty set of states, each state being

defined as a set of instantiated expressions,

• q0 is the initial state,

Figure 5. Transition example in the UCTS

• A is the alphabet of actions, an action being an instan-

tiated use case,

• →֒⊆ Q × A × Q is the transition function.

A state of the UCTS represents the system’s state at a

given stage of execution, in terms of values of the defined

logical expressions. Each transition is labeled with an in-

stantiated use case, and represents the execution of this in-

stantiated use case. A transition labeled with an instanti-

ated use case iuc exists between two states A and B iff

the precondition of iuc is satisfied by State A, i.e. if A

logically implies the precondition of iuc. The execution

of iuc leads to State B, which corresponds to the state A

modified according to the post-condition of iuc.

To illustrate this simulation, let us focus on the UCTS ex-

cerpt given in Figure 5. From the current state S, when

we apply the instantiated use case borrow (b1, c1),

the new current state is S’. To be able to compute the new

current state, we have restricted the usage of the postcon-

ditions: the postconditions must be deterministic. This re-

striction is a limitation, however conditional postconditions

can still be expressed, making the condition explicit. As

an example, let us consider a use case U(x:X) resulting in

the predicate p1 or the predicate p2, depending on a given

condition c(x). We do not accept the postcondition “p1 or

p2” since it is not deterministic: the condition c(x) does

not appear in the post- condition. However, the postcondi-

tion can be expressed as follows: “c(x)@pre implies p1 and

not c(x)@pre implies p2”1 We have made explicit in this

latter postcondition the condition c(x), the postcondition is

thus valid. Simulating the system interactively builds part

of the corresponding UCTS. For that purpose, we also need

an initial state defining the values of the logical expressions

defined in the requirements at the initial stage of the simu-

lation.

4.2 The executable requirements meta-
model

In this section we detail how we use executable meta-

modelling to implement simulation directly in the require-

ments metamodel. This allows us to simulate the require-

1The suffix @pre positionned after a predicate in a post-condition

means : the value of the predicate before the execution of the use case,

this principle with this syntax is taken from the OCL and Eiffel.

5

Figure 6. Instantiation issue for use cases

ments and thus to validate the consistency, the complete-

ness and the business logic described in the textual doc-

uments. These extensions consist mainly in adding the

simulation and instances packages. First, we detail

the need for the instances package, then we explain the

operations defined in simulation. In addition to these

packages, we also add several operations in existing classes.

When building a model that conforms to the require-

ments metamodel (fig. 4), it is possible to define use cases

(as instances of the UseCase metaclass). For example,

figure 6 displays an excerpt of an instance of the require-

ments metamodel that corresponds to the definition of a use

case with two parameters. The right part of the figure gives

the concrete syntax for this example. As stated earlier, the

simulation manipulates use cases instances. Figure 6 dis-

plays the concrete syntax representation of an instance of

the borrow use case that we would like to manipulated for

simulation. However, EMOF defines only three levels for

metamodelling: EMOF, a metamodel and an instance of the

metamodel. Thus, it is not possible, in this technological

context, to instantiate a use case. As it is shown in Figure

6, the use case definition cannot be instantiated because this

definition is an instance of the requirements metamodel. As

such, a use case definition is the lowest meta-level that is

allowed by MOF.

Since it is not possible to build use case instances,

it is necessary to extend the requirements metamod-

els with this concept in order to implement simulation.

That is introduced in the instances package in Fig-

ure 7. It contains classes that define instances of all el-

ements necessary to define a use case instance (all sub-

classes of ObservableInstance). It also defines a

SystemState class that is composed of a set of class in-

stances. This means that the state of the system at one mo-

ment in the simulation is characterized by the set of values

for all objects defined in the requirements. The clone op-

eration is used when running one simulation step: to build

the new system state, the current state is cloned and mod-

ified according to the use case’s post-condition. An initial

system state has to be provided by the user in order to initi-

ate the simulation.

The second package that is added for simulation is

simulation (figure 7) that contains the three classes

UCSImulator, Scenario and ExecutionStep

that implement the simulation mechanism. The

UCSimulator defines seven operations used to ini-

tialize and run the simulation. The simulation can be

initialized either with one system state provided by

the user (initializeFromState) or with a sce-

nario that has been saved from a previous simulation

(initializeFromScenario). In the latter case,

the simulator runs the sequence of use cases specified

by the scenario. The current state reached at the end

of the sequence is the initial state for the new simula-

tion. The three operations run, runUCInstance, and

getUCInstances implement the simulation. The op-

eration getUCInstances computes the set of use case

instances that can be executed according to the current state

of the system (the current state implies the pre-condition for

the use case). The operation runUCInstance computes

the new system state resulting from the execution of a

given use case instance. Then it updates the current state

with this new state. At last, run is the main operation for

the simulation. At each step, it calls getUCInstances,

waits for a user input who chooses the use case to execute

among the set of possible use case instances, and calls

runUCInstance with the chosen instance.

In addition to these two packages, we defined opera-

tions in the Expression class. The evaluate opera-

tion checks whether the expression evaluates to true in the

context of the system state it receives as a parameter. The

update operation updates the provided state in order for

the expression to evaluate to true. All the packages, classes

and operations added into the requirements metamodel have

been implemented with Kermeta [9].

5 Related work

Recent tools for requirements analysis tend to define a

core model that represents the captured information. Sev-

eral inputs are used to populate the core model, like con-

strained natural languages and graphical languages (UML

etc.). The core model is then transformed into one or several

output models suitable for properties checking tool.(like

SPIN [8] used in [10], FMONA [3] used in [2]). The Dwyer

patterns [7] are a good example of the need for a unified ap-

proach. The intuition behind these patterns is that, there

exists a lot of different formalisms (often one formalism

for one tool), while the concepts manipulated by these for-

malisms are restricted. These patterns thus provide a core

model for analysis of requirements using temporal logic. In

the same way, we have defined our own core metamodel for

functional requirements.

Although the implementation of these tools deal with

different types of models, they do not use the MDE tech-

6

Figure 7. Extended metamodel for requirements simulation

niques. In [6], a metamodel is proposed to capture require-

ments of real-time system. The models are obtained using

syntactical patterns: textual requirements are written, that

strictly respect the syntactical patterns. The benefits of such

an approach is that the sentence structures that have been

chosen for the syntactical patterns impose to disambiguate

the requirements (our approach also benefits from this dis-

ambiguation). However, the classes of the metamodel are

manily composed of attributes of type String. In other

words, when the requirements are parsed using the syntacti-

cal patterns, all the word groups that are not part of a pattern

(for example : the subject of an action, or the condition to

perform an action) are not interpreted and treated as Strings.

That means that the obtained model cannot possibly be pro-

grammatically handled for example for a simmulation. Of

course the requirements are more easily written than with

our approach, but in the other hand they can hardly be val-

idated with automated process, and they cannot either be

used for test generation purpose.

Concerning requirements analysis, authors of [10]

present an integrated tool suite called SPIDER. It allows

users to specify UML Models for analysing temporal be-

havioural properties of the model. The tool is especially

dedicated to analyse systems whose implementation fol-

lows the MDA principles. MDA [14] advocates the use of

models and model transformations in order to separate busi-

ness and application logic from the underlying technologi-

cal platform. The properties are expressed in a constrained

natural language (like the DNL of [17]) whose accepted

sentences match well the Dwyer temporal logic patterns [7].

In the same way we define a constrained language called

RDL and a transformation towards a requirement model,

thanks to interpretation patterns. Besides analysis, other

works aim at generating test cases from requirements. In

particular, several approaches [4, 1, 13] use requirements

expressed with extended use cases to generate test cases

or at least test objectives. This kind of work shows the

benefits that are obtained when the requirements take the

form of use cases and emphasizes the need for validated

use cases, for example using the simulation mechanism we

propose. In the same vein of test generation from require-

ments, the authors of [2] propose a tool suite called RETNA,

which provides analysis and test case generation from re-

quirements expressed in terms of natural language. Simi-

lar to our approach, their internal model is based on state

machines. The implemented test criterion is robustness (re-

jection paths), while we implement more possibilities (ro-

bustness and nominal behavior). The test criteria we have

implemented are explained in [13].

7

6 Discussion and Conclusion

Model-driven engineering (MDE) offers a new approach

for software development, which considers models as first

class entities. The work presented here applies it to require-

ments engineering. We have proposed a metamodel for re-

quirements and extended it to add the semantics with Ker-

meta. This executable metamodel provides capabilities to

model and simulate requirements. We have also developed

a series of model transformations that generates a require-

ment model from a constrained natural language, which

is not presented here. The initial intent of this work is

to study whether MDE techniques offer good solutions to

unify RE activities (agreeing, modelling, simulating...). To

evaluate this intuition, the requirements metamodel and the

RDL have been experimented to model requirements with

THALES Airborne System (TAS) components and France

Telecom. The case studies for TAS concerned two sys-

tems components of last generation combat aircrafts, of

mid-complexity (around 5-15 C++ KLOC). France Telecom

studies concerned three services for the LiveBox modem.

The goal was to simulate these services and validate func-

tional requirement documents. The following observations

were drawn:

• The current metamodel captured most of the concepts

needed to express the requirements we had to deal

with.

• Simulation is an efficient to reveal underspecifications

in requirements. For example, it easily revealed that

services that should have been available at one point in

the simulation were not available (revealing errors in

contracts).

These initial observations are very encouraging to consider

our prototype as a good solution to model requirements and

simulate the behaviour for validating and agreeing the re-

quirements. These results need to be confirmed with ad-

ditional case studies. Of course, our metamodel does not

allow to capture any requirement : it captures efficiently the

dynamic part of the requirements, but not the static part,

including the handled data. As future works, we plan to

enhance this metamodel (or create another dedicated meta-

model) to capture static aspects. We also want to add

model transformations that can extract particular views on

the model (such as a UML model) and that improve the

traceability between the requirements and the implementa-

tion.

References

[1] F. Basanieri, A. Bertolino, and E. Marchetti. The cow_suite

approach to planning and deriving test suites in UML

projects. In J.-M. Jézéquel, H. Hussmann, and S. Cook, ed-

itors, UML 2002 - The Unified Modeling Language. Model

Engineering, Languages, Concepts, and Tools. 5th Interna-

tional Conference, Dresden, Germany, September/October

2002, Proceedings, volume 2460 of LNCS, pages 383–397.

Springer, 2002.
[2] R. Boddu, L. Guo, S. Mukhopadhyay, and B. Cukic. Retna:

From requirements to testing in a natural way. In RE04

(Requirements Engineering), pages 262–271, Kyoto, Japan,

2004.
[3] J.-P. Bodeveix and M. Filali. Fmona: A tool for express-

ing validation techniques over infinite state systems. In

Springer-Verlag, editor, Proceedings of the 6th International

Conference on Tools and Algorithms for Construction and

Analysis of Systems: Held as Part of the European Joint

Conferences on the Theory and Practice of Software, ETAPS

2000, pages 204–219, 2000.
[4] L. Briand and Y. Labiche. A UML-based approach to system

testing. Journal of Software and Systems Modeling, pages

10–42, 2002.
[5] F. Budinsky, T. Grose, D. Steinberg, R. Ellersick, E. Merks,

and S. Brodsky. Eclipse Modeling Framework: a devel-

oper’s guide. Addison-Wesley Professional, 2003.
[6] C. Denger, D. M. Berry, and E. Kamsties. Higher qual-

ity requirements specifications through natural language pat-

terns. In SWSTE ’03: Proceedings of the IEEE International

Conference on Software-Science, Technology & Engineer-

ing, page 80, Washington, DC, USA, 2003. IEEE Computer

Society.
[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in

property specifications for finite-state verification. In I. C. S.

Press, editor, ICSE, pages 411–420, 1999.
[8] G. Holzmann. The model checker spin. In IEEE TSE, pages

279–294, 1997.
[9] Kermeta. The kermeta project home page, 2005.

[10] S. Konrad and B. H. C. Cheng. Automated analysis of

natural language properties for uml models. In MoD-

eVa’05 (Model Design and Validation Workshop associated

to MoDELS’05), Montego Bay, Jamaica, 2005.
[11] D. Lugato, F. Maraux, Y. Le Traon, C. Nebut, V. Normand,

H. Dubois, J.-Y. Pierron, and J.-P. Gallois. Automated func-

tionnal test case synthesis from thales industrial require-

ments. In RTAS’04, Toronto, Canada, 2004.
[12] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving ex-

ecutability into object-oriented meta-languages. In MoD-

ELS’05, pages 264 – 278, Montego Bay, Jamaica, 2005.

LNCS.
[13] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jézéquel. Au-

tomatic test generation: A use case driven approach. IEEE

Transactions on Software Engineering, 2006.
[14] OMG. Mda, 2003.
[15] OMG. Mof 2.0 core final adopted specification., 2004.
[16] OMG. Object constraint language specification, version 2.0,

2006.
[17] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil.

Propel: An approach supporting property elucidation. In

A. Press, editor, ICSE, pages 11–21, 2002.
[18] Sommerville. Integrated requirements engineering: A tuto-

rial. IEEE Software, 22(1):16 – 23, 2005.

8

