
HAL Id: lirmm-00196964
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00196964

Submitted on 18 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Softening the Blow of Frequent Sequence Analysis: Soft
Constraints and Temporal Accuracy
Céline Fiot, Anne Laurent, Maguelonne Teisseire

To cite this version:
Céline Fiot, Anne Laurent, Maguelonne Teisseire. Softening the Blow of Frequent Sequence
Analysis: Soft Constraints and Temporal Accuracy. International Journal of Web Engineer-
ing and Technology, 2009, Web-based Knowledge Representation and Management, pp.24-47.
�10.1504/IJWET.2009.025012�. �lirmm-00196964�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00196964
https://hal.archives-ouvertes.fr

 24 Int. J. Web Engineering and Technology, Vol. 5, No. 1, 2009

 Copyright © 2009 Inderscience Enterprises Ltd.

Softening the blow of frequent sequence analysis:
soft constraints and temporal accuracy

Céline Fiot*, Anne Laurent
and Maguelonne Teisseire
LIRMM
161 rue Ada, 34080 Montpellier, France
E-mail: fiot@lirmm.fr
E-mail: laurent@lirmm.fr
E-mail: teisseire@lirmm.fr
*Corresponding author

Abstract: Mining temporal knowledge has many applications. Such knowledge
can be all the more interesting as some time constraints between events can be
integrated during the mining task. Both in data mining and machine learning,
some methods have been proposed to extract and manage such knowledge
using temporal constraints. In particular, some work has been done to mine
Generalised Sequential Patterns (GSPs). However, such constraints are often
too crisp or need a very precise assessment to avoid erroneous information.
Within this context, we propose an approach based on sequence graphs derived
from soft temporal constraints. These relaxed constraints enable us to find more
GSPs. We also propose a temporal accuracy measure to provide the user with a
tool for analysing the numerous extracted patterns.

Keywords: data mining; sequential patterns; time constraints; fuzzy set theory;
temporal accuracy; web mining.

Reference to this paper should be made as follows: Fiot, C., Laurent, A. and
Teisseire, M. (2009) ‘Softening the blow of frequent sequence analysis: soft
constraints and temporal accuracy’, Int. J. Web Engineering and Technology,
Vol. 5, No. 1, pp.24–47.

Biographical notes: Céline Fiot completed a Master’s programme in
Computer Engineering and Decision Support Systems at the Ecole des Mines
de Nantes, France. Since 2004, she has been working on mining approximative
frequent sequences from imprecise, uncertain or incomplete data as a PhD
student in the Data Mining Group at the Laboratory of Computer Science,
Robotics and Microelectronics (LIRMM) in Montpellier, France. She received
her PhD in September 2007.

Anne Laurent completed her PhD at the Computer Science Laboratory of the
Department of Learning and Knowledge Extraction, University of Paris VI,
France, under the supervision of Bernadette Bouchon-Meunier. She has been an
Assistant Professor at the Montpellier II University since September 2003, as a
member of the Data Mining Group at LIRMM. She is interested in fuzzy data
mining, multidimensional databases and sequential patterns, investigating and
proposing new methods to tackle the problem of remaining scalable when
dealing with fuzziness and complex data.

 Softening the blow of frequent sequence analysis 25

Maguelonne Teisseire received her PhD in Computing Science from the
Méditerrané University, France, in 1994. Her research interests are focused on
behavioural modelling and design. She is currently an Assistant Professor of
Computer Science and Engineering at Montpellier II University and Polytech’
Montpellier, France. She has been the Head of the Data Mining Group at
LIRMM since 2000. Her research is focused on advanced data mining
approaches involving time-ordered data.

1 Introduction

The quantity of data from the World Wide Web is growing dramatically: requested
Uniform Resource Locators (URLs), number of requests or connexion duration, etc., are
gathered automatically by web servers and stored in access log files. Analysing these data
can provide useful information for performance enhancement or customer targetting.
In this context, many research studies have been proposed to mine usage patterns and
user profiles (Spiliopoulou and Faulstich, 1998; Yan et al., 1996; Zaiane et al., 1998).
In particular, Masseglia et al. (1999) provided knowledge from the databases of visited
page sequences. Discovering such patterns can show, for example, that “60% of users
visiting the Disneyland website and Eiffel Tower pages visit later traveling websites”.

The information thus discovered can often be improved by looking for temporal
knowledge (e.g., detection of frauds, failures, behaviour analysis). Some data mining
techniques thus aim at extracting recurrent episodes from a long sequence (Mannila
et al., 1997) or from sequence bases (Agrawal and Srikant, 1995). Searching for such
information becomes all the more interesting that different constraints between events
can be taken into account, such as the minimal or maximal duration separating two events
(Srikant and Agrawal, 1996; Zaki, 2000; Meger and Rigotti, 2004) or constraints on
repetitions (Capelle et al., 2002; Leleu et al., 2003).

Within this framework, Generalised Sequential Pattern (GSP) mining was introduced
in Srikant and Agrawal (1996). This data mining technique extracts frequent sequences
that meet user-specified time constraints from a sequence database (e.g., successive
purchases of customers in a supermarket). The specification of such constraints between
events enables the user to select some typical sequences, e.g., repeated access to a
website at really close intervals.

However, although these methods are effective and robust, the user has to know
the exact constraint values to be specified. Then, there is a risk that erroneous or
useless knowledge may be gathered. Moreover, in some cases, these values are
somewhat uncertain. Time constraints, as they are defined, thus allow the user to find
new sequential patterns, but they are still too stiff. Consequently, it may become
necessary to make several attempts with various combinations of these parameters
before getting satisfactory results. Meger and Rigotti (2004) proposed to automatically
determine the optimal window of observation for repetitive episode mining in a
sequence, but this is hardly adaptable to sequential pattern mining. In this domain, to our
knowledge, no papers have proposed the automatic determination of the most appropriate
time constraints.

 26 C. Fiot, A. Laurent and M. Teisseire

Besides, for some applications, it could also be interesting to soften the constraints
specified by the experts of the domain to refine their knowledge: the expert knowledge is
used as a starting point and mining results complete it. For instance, nonhuman access to
webpages can be characterised by repeated requests at short intervals. The task is then to
formalise this expert knowledge with time constraints and especially to translate the
notion of short interval into a crisp duration. Softening time constraints could facilitate
this formalisation, such that an approximate value could be specified for a short period
(between one and three seconds, for instance). To make the constraint specification
easier, we propose a method that softens user-specified time constraints. We also propose
an efficient algorithm, i.e., Graph for Extended Time Constraints (GETC), to handle
these constraints.

Otherwise, the discovered sequential patterns, according to the specified time
constraints, can quickly become so numerous that their analysis becomes less effective.
In this regard, a measure that could facilitate the analysis of GSPs would be a valuable
tool. We thus propose to provide the end user with a time-satisfaction degree that will
indicate how well the user-specified initial constraints are fulfilled.

To tackle several of these problems, here we describe our proposal including the
following points. First, we define extended time constraints for GSPs. Secondly, we state
a definition of time accuracy for frequent sequence analysis. Lastly, we focus on the
algorithm we designed to handle soft time constraints and compute time accuracy.

In the next section, we define the fundamental concepts associated with sequential
patterns and GSPs. In Section 3, after briefly introducing the fuzzy set theory, we present
the first part of our proposal, i.e., defining the soft time constraints and the temporal
accuracy of a sequence. Then, Section 4 details the second part of our work, i.e., the
algorithm that implements the handling of soft time constraints. Section 5 develops our
proposal with an example. We then propose some experiments on both synthetical data
and web access logs in Section 6, thus showing the benefits of these soft time constraints
and measures. Finally, we conclude in Section 7 on the prospects opened by our work.

2 Sequential patterns and time constraints

This section defines the concepts used in the GSP mining task. It broadly summarises
the formal description of the problem introduced in Agrawal and Srikant (1995) and
Srikant and Agrawal (1996) and broadly summarises the various proposals of algorithms
to handle such time constraints.

2.1 Sequential patterns

Sequential patterns were initially defined in Agrawal and Srikant (1995) as maximal
frequent sequences, as follows.

Let O be a set of objects. Each object o is described by a list of records r consisting of
three information elements: an object ID, a record timestamp and a set of items in the
record. Let I = {i1, i2, ..., iq} be a set of items. An itemset is a non-empty non-ordered set
of items, denoted by (i1i2 … ik). A sequence s is a non-empty ordered list of itemsets,
denoted by < s1s2...sp >. An n-sequence is a sequence of n items (or of size n).

 Softening the blow of frequent sequence analysis 27

Example 1 Let us consider an example of market basket analysis. The object is a
customer and the records are the transactions made by this customer.
The timestamps are the dates of transactions. If a customer purchases
products 1, 2, 3, 4 and 5 according to the sequence s = < (1) (2 3) (4)
(5) >, then all the items of the sequence were bought separately, except
products 2 and 3, which were purchased at the same time. In this
example, s is a 5-sequence.

One sequence 1 2< >ms s s! ! !" is a subsequence of another one < s1 s2…sp > if there are

integers l1 < l2 < … < lm such that
1 21 2, , , .l l ms s s s s! ! !# # " We should also mention that s' is

included in s.

Example 2 The sequence s' = < (2) (5) > is a subsequence of the s in Example 1,
because (2) # (2 3) and (5) # (5). However, < (2) (3) > is not a
subsequence of s.

All records from the same object are grouped together and sorted in increasing order
according to their timestamp. They are called a data sequence. In order to efficiently aid
decision making, the aim is to discard nontypical behaviours according to the user’s
viewpoint. Performing such a task requires allocating any data subsequence in O with a
frequency value freq(s). The frequency of a sequence is defined as the percentage of
objects supporting s with respect to the number of objects in the database. An object
supports a sequence s if s is included within the data sequence of this object.

In order to decide whether a sequence is frequent or not, a minimum frequency value
minFreq is specified by the user and the sequence is said to be frequent if the condition
freq(s) > minFreq holds. Given a database of object records, the goal of sequential pattern
mining is to find all the maximal sequences whose frequency is greater than a specified
threshold (minFreq) (Agrawal and Srikant, 1995). Each of these sequences represents a
sequential pattern, also called a maximal frequent sequence.

This sequence definition is rather strict and turns out to be inappropriate for
many applications because time constraints are not handled. When verifying whether a
candidate sequence is included within another one, record partitioning enforces a strong
constraint since only pairs of itemsets are compared. However, if the interval between
two records of an object is short enough, they could be considered simultaneous. On the
contrary, two events that are too distant could have no link together. That is why GSPs
were proposed in Srikant and Agrawal (1996), introducing time constraints in order to
improve the subsequence definition.

2.2 Generalised sequential patterns

Time constraints restrict the time gap between sets of records that contain consecutive
elements of the sequence. There are three different constraints. First, minGap is the
minimal time gap that must separate two consecutive itemsets in a sequence. Then,
maxGap is the maximal time gap within which two consecutive itemsets of a sequence
must occur. Finally, windowSize is a sliding window during which several records may
be grouped into one itemset. Handling time constraints, Srikant and Agrawal (1996)
redefined when a data sequence supports a sequence.

 28 C. Fiot, A. Laurent and M. Teisseire

Definition 1 Given user-specified windowSize, minGap and maxGap values, a data
sequence d = < d1…dm

 > supports a sequence s = < s1 … sn
 > if there

exist integers l1 ! u1 < l2 ! u2 <…<ln ! un such that:

i ,i

i

u
i k l ks d$%! 1 ! i ! n

ii () () , 1
i iu ltimestamp d timestamp d windowSize i n& ' ' '

iii
1

() () , 2
i il utimestamp d timestamp d minGap i n

&
& (' '

iv
1

() () , 2 .
i iu ltimestamp d timestamp d maxGap i n

&
& ' ' '

We will refer to timestamp()
il

d as start-time(si) and timestamp()
iud as end-time(si).

In other words, start-time(si) and end-time(si) correspond to the first and last timestamps
of the set of records that contains si. These time constraints, as well as the minimum
frequency condition, are parameterised by the user.

Time constraints allow a more flexible handling of records, insofar as the end user is
then provided with the following advantages for mining sequences:

)* to group together itemsets when their timestamps are sufficiently close via the
windowSize constraint

)* to regard itemsets as too close to appear in the same frequent sequence with the
minGap constraint (i.e., to be considered related)

)* to regard itemsets as too distant to appear in the same frequent sequence with the
maxGap constraint (i.e., to be considered related).

Example 3 Consider logs of a website requiring identification. Id1 and Id2 are two
identified users and Table 1 describes their various browsing sessions.
The session sequence of each user is a data sequence.

Table 1 Browsing sessions of two web users

User Id Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7

Id1 1 2 3 4 5 6 7 8 9

Id2 1 2 3 4 5 6 7 8

Let s = < (1 2 3 4) > be a sequence and the following time
constraint parameters:

)* minGap = 0, consecutive itemsets must have a distance of
at least 1 h

)* maxGap = 7, consecutive itemsets must have a maximum distance
of 7 h

)* windowSize = 1, accesses may be grouped together over at most
two consecutive hours.

 Softening the blow of frequent sequence analysis 29

This means that when analysing profiles, two consecutive hours may be
considered one and that two consecutive sessions must happen within a
seven-hour period to be considered related. The numbers 1 to 9
represent the website URLs.

Then, Figure 1 shows how these time constraints are applied in
order to determine whether data sequences Id1 and Id2 support the
candidate sequence s = < (1 2 3 4) > or not.

Figure 1 The description of time constraints, windowSize (ws), minGap (mg) and maxGap
(MaxG), on data sequences Id1 and Id2

Note: i (a b) denotes the itemset (a b) browsed at hour i.

To make sequence s appear in data sequence Id1, the sessions
of the first, second and third hour must be grouped together.
However, this itemset does not meet constraint (ii), since
end-time(s1) – start-time(s2) = 3 – 1 = 2 > windowSize. There are no
other possibilities to find s in this data sequence. Thus, data sequence
Id1 does not support sequence s.

To make sequence s appear in data sequence Id2, the sessions of
the first and second hour must be grouped together. This itemset meets
the windowSize constraint, since it was built over two consecutive
hours. The minimum gap between this first itemset and the next is
then hour 3 – hour 2 = 1 > 0 = minGap, which meets the minGap
constraint (iii). So does the maxGap constraint (iv). The data sequence
Id2 supports sequence s.

Note that if the specified values are minGap = 0, maxGap = " and windowSize = 0, we
get back the notion of sequential patterns, as introduced in Section 2.1, where there are no
time constraints and where the items in an itemset come from a single record.

2.3 Related work

Various algorithms were proposed to handle these constraints. Some push them directly
into the mining process, like the GSP algorithm (Srikant and Agrawal, 1996) and the
DELISP algorithm (Lin et al., 2002). In contrast, some others propose a preprocess to
apply the constraints to the sequences, which are then analysed by some sequential
pattern tool. The Graph for Time Constraints (GTC) algorithm, proposed in Masseglia
et al. (2004), is based on this principle.

 30 C. Fiot, A. Laurent and M. Teisseire

The GSP algorithm proposed in Srikant and Agrawal (1996) aims to mine GSPs.
It extends previous proposals for sequence mining by handling time constraints
and taxonomies (is-a hierarchies). It uses a generate-and-prune approach that uses the
frequent sequences of size k to generate candidate sequences of size k + 1. Then,
the frequency of these (k + l) sequences is calculated. Time constraints are handled when
parsing a data sequence. For each candidate sequence, the GSP algorithm checks whether
it is contained in the data sequence. Because of the sliding windows and minimum
and maximum time gaps, it is necessary to switch between forward and backward
phases during examination. Forward phases are performed to deal progressively with
items and, while selecting items, windowSize is used for resizing records partitioning.
Backward phases are required as soon as the maxGap constraint is no longer fulfilled.
In such a case, it is necessary to discard all items for which the maxGap constraint is
violated and to resume parsing the sequence, starting with the earliest item meeting the
maxGap condition.

In Masseglia et al. (1998), another approach called Prefix Tree for Sequential Patterns
(PSP) was proposed. It again fully utilises the fundamental principles of GSP while
using a different structure for organising the candidate sequences, which thus improves
retrieval efficiency.

More recently, the DELISP algorithm (Lin et al., 2002) was proposed for mining
sequential patterns with time constraints. It is based on the mining scheme of PrefixSpan.
Actually, the original database is divided into multiple subsets for each prefix of a
potential sequential pattern. While writing the subsets, DELISP reduces the size of the
projected databases by bounded and windowed projection techniques. The experiments
proposed by the authors show a clear improvement of DELISP over GSP. However,
this technique is restricted to prefix-growth algorithms.

Therefore, the GTC algorithm (Masseglia et al., 2004) was developed. It improved
the PSP approach by its more efficient handling of time constraints. The GTC algorithm,
based on a data sequence, precalculates a relevant set of sequences to be tested.
By precalculating this set, the time spent analysing a data sequence when verifying
candidate sequences is reduced. The efficiency of this approach was demonstrated.

We need an efficient implementation to handle our extended time constraint.
Moreover, this implementation should not be restricted to one sequential pattern mining
approach. For these reasons, we decided to develop the implementation of our soft time
constraints introduced in Section 3 based on the GTC principle. This implementation is
detailed in Section 4, where we present our GETC algorithm.

3 Soft time constraints

The main drawback of the previously described time constraints is that they are
user-specified. They require the data and constraint values to be a priori well-known.
The results thus depend on the good knowledge of the end user. Misvalued time
constraints could indeed lead to erroneous or incomplete knowledge. However, to our
knowledge, no studies have been proposed to automatically determine the optimal time
constraints for sequential pattern mining. We propose extending the time constraints
above for GSPs using some fuzzy set theory principles.

 Softening the blow of frequent sequence analysis 31

Moreover, extracted patterns become increasingly numerous, particularly during
sequential pattern mining. It becomes necessary to provide the end user with tools to
analyse the obtained sequential patterns. In the case of GSPs, some useful information
could be derived from the duration of data sequences corresponding to time constraints.
This is the purpose of soft time constraints, which we define in this section.

These soft time constraints enable us to define a measure of temporal
accuracy expressing how well a sequence fulfils the initial user-specified values of
time constraints.

We thus provide the user with flexibility in time constraint specification and a tool to
help in analysing the extracted patterns.

3.1 Fuzzy set theory

The fuzzy set theory was introduced by Zadeh (1965). This theory generalises crisp set
theory and assumes intermediary situations between all and nothing. Whereas in the
classical theory, an element a belongs or not to a set A, in fuzzy set theory, a may
partially belong to A (then called a fuzzy set) and, thus, partially belong to its
complement. Besides enabling this partial membership, fuzzy set theory allows a gradual
transition of an object from one state to the next.

Example 4 Let X be the universe of all possible sizes for a human being. One fuzzy
set A (e.g., small, medium or big) is defined by a membership function
µA expressing for every x of X the degree with which x belongs to A.
This degree is in interval [0,1]. Examples of these three fuzzy sets is
graphically represented in Figure 2. Thus, a person of height x = 1m60
can be simultaneously small and medium-sized with, for example, a
degree of 0.7 for the fuzzy set small (µM(x) = 0.7) and a degree of 0.3
for the fuzzy set medium (µM(x) = 0.3).

Figure 2 Big and small fuzzy sets describing a person’s height (see online version for colours)

Fuzzy logic operators are a generalisation of crisp logic operators. In particular, we
consider negation, intersection and union. The operator ! or t-norm operator (triangular
norm) is the fuzzy equivalent of the binary intersection µA+B(x) = !(µA(x), µB(x)).
The operator , or t-conorm operator (triangular conorm) is similar to the binary union:

 32 C. Fiot, A. Laurent and M. Teisseire

µA-B(x) = ,(µA(x), µB(x)). We denote " (resp. ,) as operator ! (resp. ,) generalised to
the n-ary case. Different operators can be used as a t-norm (min, product, etc.). They are
associated with their dual operator for the t-conorm (e.g., max is the t-conorm for the min
t-norm). As the min operator is idempotent, we use it for the t-norm and, consequently,
the max operator will be our t-conorm.

3.2 Principles and notations

Our proposal of soft time constraints for sequential patterns is built by analogy with fuzzy
sets. Thus, a sequence will no longer meet a constraint in a binary way because the user
may relax these time constraints. Each constraint can then be regarded as a fuzzy set,
with its membership function giving a temporal satisfaction degree. This degree is thus
calculated for each possible value of that time constraint and tells the end user the extent
to which the initially specified constraint value has been fulfilled.

In order to fulfil the user’s needs and make our approach flexible, a minimum
temporal satisfaction degree .x can be specified for constraint " of initial value xinit.

As the satisfaction degree of constraints is based on the membership function of each
constraint, specified coefficients are in the interval [0,1]. It is also possible to set a
constraint with certainty:

)* If .x = 0, the user wants constraint " to take each possible value; the temporal
satisfaction degree will depend on the constraint value generating the sequence.

)* If .x = 1, the specified minimum temporal satisfaction degree is 1, i.e., the user does
not want the value of constraint " to vary. That constraint will be set at the initial
value and will not change; all generated sequences will have a temporal satisfaction
degree equal to 1.

)* In all other cases, .x /]0,1[and the value x of constraint " will vary from its
user-specified value xinit and a limit value x., for which the temporal satisfaction
degree is . (x) = .x.

Note that if the specified values for the minimum satisfaction degree of each time
constraint is 1, we get back crisp time constraints and, thus, the notion of GSPs as
introduced in Section 2.2.

The useful limit values of time constraints (extreme values) first have to be
determined. These values correspond to the variation on the whole search space (i.e., for
.x = 0) and are computed from crisp time constraints (ii), (iii) and (iv) in Section 2.2.
They are given by the limit value allowed by these definitions.

The windowSize and maxGap constraints define the maximal gap between two
itemsets. For any given object, the maximal value they can be set at is thus the duration
between the first and last record. For the whole database, this common extreme value will
thus be the maximal gap, over all objects, between the minimal and maximal record
timestamp for the same object:

M = max(() ()).
max mino o

o
timestamp r timestamp r

/
&

O

The minGap constraint defines the minimal gap between two consecutive itemsets.
We have defined the limit value of this constraint by taking the crisp inequality it implies
into account. As explained in Fiot et al. (2006a), the limit value for minGap is given by:

 Softening the blow of frequent sequence analysis 33

max(min(min((1) ())) 1,0).
oo r R

m timestamp r timestamp r
/ /

$ 0 & &
O

In the remainder of this section, we use the following notations to distinguish the
three time constraints. Parameters wsinit, mginit and MGinit are the initial user-specified
values for the constraints windowSize, minGap and maxGap and .ws, .mg and .MG are the
minimum temporal satisfaction degrees associated with them. These coefficients enable
the user to limit the time constraint variation according to his/her own requirements.
The identifier ws (resp. mg or MG) denotes the variable associated with the windowSize
(resp. minGap or maxGap) constraint and . (ws) (resp. . (mg) or . (MG)) denotes the
satisfaction degree obtained by the value ws (resp. mg or MG values) of this variable.

3.3 Extending time constraints to soft time constraints
3.3.1 Soft windowSize

The value ws of the windowSize constraint may vary from its user-specified value wsinit
to its limit value M. This soft constraint is described with a fuzzy set for which the
membership function (Equation 1) gives the accuracy for a specific value ws:

1 if

1
() if .

0 else

init

init
init init

ws ws

M
ws ws ws ws M

ws M ws M
.

1 '
2
2$ & 3 '4 & &2
25

 (1)

The user can then choose to allow the temporal satisfaction degree of the windowSize
constraint to be somewhere between 1 and the lowest acceptable value .ws. This lowest
degree will be attained for a value ws. > wsinit of ws.

More specifically, this largest acceptable window size is given by:

ws. = 6(wsinit – M) .ws + M7. (2)

Example 5 Consider the two data sequences shown in Example 3 and the sequence
s = < (l 2 3 4) >. We have M = max((7 – 1), (4 – 1)) = 6. Suppose that
the user-specified time constraint parameters are:

)* wsinit = 1 with .ws = 0.7, windowSize varies; applying Equation (2),
we get ws. = 6(1 – 6) * 0.7 + 67 = 2. The value ws of windowSize
will successively be 1 and 2

)* mginit = 0 with .mg = 1, then mg does not vary

)* MGinit = 7 with .MG = 1, then MG does not vary.

For ws = 1, grouping the sessions of the first to third hour of data
sequence Id1 in order to accept the candidate sequence s would violate
the windowSize constraint. However, with ws = 2, we can indeed group
them and this ws value, by Equation (1), yields a temporal satisfaction
degree . (ws) = . (2) = 0.8. The other constraints are fulfilled as well,
then data sequence Id1 supports candidate sequence s. For data
sequence Id2, the sessions of the first and second hour are grouped

 34 C. Fiot, A. Laurent and M. Teisseire

together. Note that the windowSize constraint is satisfied with
ws = wsinit = 1 and the corresponding satisfaction degree is. (ws) = 1.
The other constraints are also respected and data sequence Id2
supports sequence s.

3.3.2 Soft maxGap

Like the windowSize constraint, the maxGap constraint value MG may vary from its
user-specified value MGinit and its limit value M.

This soft constraint is described with a fuzzy set whose membership function
(Equation 3) gives the accuracy for a specific value MG:

1 if

1
() if .

0 else

init

init
init init

MG MG

M
MG MG MG MG M

MG M MG M
.

1 '
2
2$ & 3 '4 & &2
25

 (3)

The user can then choose to allow the temporal satisfaction degree of the maxGap
constraint to be somewhere between 1 and a lowest acceptable value .MG. This lowest
degree will be attained for a value MG. > MGinit of MG.

More specifically, this largest acceptable gap is given by:

MG. = 6(MGinit – M) .MG + M7. (4)

Example 6 Consider the two data sequences shown in Example 3 and the
candidate sequence s = < (l 2 3 4) (7 8) >. Suppose that the
user-specified time constraint parameters are:

)* wsinit = 2 with .ws = 1, then ws does not vary.

)* mginit = 0 with .mg = l, then mg does not vary.

)* MGinit = 3 with .MG = 0.3, then maxGap is the only varying
constraint. Applying Equation (4) to M = 6, we get MG. = 5.
The value MG will successively be 3, 4 and 5.

For data sequence Id1, sessions of the first to third hour, as well as the
fifth and sixth hour, are grouped together in order to accept candidate
sequence s. However, with MG = 3, the maxGap constraint is violated,
as with MG = 4. With MG = 5, this constraint is satisfied and the
temporal satisfaction degree is then . (MG) = . (5) = 0.3 (3). The other
constraints are also fulfilled, then the data sequence Id1 supports
candidate sequence s. For data sequence Id2, the records of the first
and second hour are grouped together, meeting the maxGap constraint
with MG = MGinit = 3 and the corresponding satisfaction degree is
. (MG = 3) = 1. The other constraints are also fulfilled and data
sequence Id2 supports sequence s.

 Softening the blow of frequent sequence analysis 35

3.3.3 Soft minGap

The value mg of the minGap constraint may vary from its limit value m to its
user-specified value mginit. This soft constraint is described with a fuzzy set whose
membership function (Equation 5) gives the accuracy for a specific value mg:

1 if

1
() if .

0 else

init

init
init init

mg mg

m
mg mg mg mg m

mg m mg m
.

1 8
2
2$ & (84 & &2
25

 (5)

The user can then choose to allow the temporal satisfaction degree of the minGap
constraint to be somewhere between the lowest acceptable value .mg and 1. This lowest
degree will be attained for a value mg. < mginit of mg.

More specifically, this smallest acceptable gap is given by:

mg. = 9(mginit – m) .mg + m:. (6)

Example 7 Consider the two data sequences shown in Example 3 and the
candidate sequence s = < (l 2 3 4) (5 6) >. Suppose that the
user-specified time constraint parameters are:

)* wsinit = 2 with .ws = 1, then ws does not vary.

)* mginit = 2 with .mg = 0, then minGap is the only varying constraint.
Applying Equation (6) to m = 0, we get mg. = 0. The value mg will
successively be 2, 1 and 0.

)* MGinit = 7 with .MG = 1, then MG does not vary.

For data sequence Id1, the sessions of hours 1, 2 and 3. The minGap
constraint is not fulfilled with mg = 2, but it is with mg = 1. In this case,
the satisfaction degree for minGap is . (mg) = . (1) = 0.5 (Equation 5).
The other constraints are fulfilled, so data sequence Id1 supports
sequence s. For the second data sequence, the sessions of hours 1
and 2. The minGap constraint is not fulfilled while mg is greater
than 0. mg = 0 yields, by Equation (5), a temporal satisfaction degree
. (mg) = . (0) = 0. The other constraints are also satisfied and data
sequence Id2 supports s.

Note that these soft constraints are defined in Sections 3.3.1, 3.3.2 and 3.3.3 by
using fuzzy sets where the temporal satisfaction degree is described by a linear
membership function between the initial constraint value and its extreme value M or m.
However, these functions could also be defined in a different way, e.g., by a step function
or by a function representing the proportion of objects in the dataset meeting each
constraint value.

 36 C. Fiot, A. Laurent and M. Teisseire

3.4 Temporal accuracy of a sequence

We now define the level of time constraint satisfaction for a sequence considering
constraints (ii), (iii) and (iv) together. At the end of the mining task, we get a list of
frequent sequences. For each object, each frequent sequence has been generated using
specific time constraint values ws, mg and MG. These values are used to compute the
satisfaction degree of each constraint. These satisfaction degrees are then combined into a
global measure associated with the sequence.

For an object o, the temporal accuracy of a sequence s is defined as the satisfaction
degree yielded by the three time constraints considered simultaneously. It is calculated
using a t-norm operator (!). For each object, several occurrences of s may appear.
The occurrence satisfying the most the initial values (i.e., with the highest temporal
satisfaction degree) is searched through the set ;o of subsequences of o using a t-conorm
operator (,).

We define the temporal accuracy of a sequence s = < s1…sn
 > for object o by the

following equation:

!(s, o) = ,s/;o("i/1,n(.ws(end-time(si) – start-time(si))),
"i/2,n(.mg(end-time(si) – start-time(si – 1)), (7)

.MG(end-time(si) – start-time(si – 1)))).

For the whole dataset, the temporal accuracy of a sequence s is given by the average
aggregation of each object accuracy, i.e.:

1
() (,).

o

s s o
/

$ <
OO

! ! (8)

Example 8 Consider the two data sequences from Example 3 and the frequent
sequence s = < (1 2 3 4) (5 6) > with the following parameters for soft
constraints: wsinit = 1, mginit = 2, MGinit = 4 and .ws = 0.6, .mg = 0.4 and
.MG = 0.5. We still have M = 6 and m = 0. We use the min and max
operators for the generalised t-norm (") and the generalised t-conorm
(,), respectively. For data sequence Id1, s appears by grouping
together the first to third hour on the one hand and the fifth and
sixth hour on the other. Then, start-time(s1)= 1, end-time(s1) = 3,
start-time(s2) = 5 and end-time(s2) = 6. It is the single occurrence of s
in this data sequence. Thus, for Id1, the temporal accuracy of s is
(details omitted):

!(s, Id1) = min(.ws(2), .ws(l), min(.mg(l), .MG(5)))
 = min(0.8, 1, min(0.5, 0.5))
 = 0.5.

Then, the same computation is done for data sequence Id2. Similarly,
we get !(s, Id2) = 0.5. The temporal accuracy of sequence s for the
whole database is thus given by:

(, 1) (, 2)
() 0.5.

2
s Id s Id

s
0

$ $! ! !

 Softening the blow of frequent sequence analysis 37

4 Graph for extended time constraints

As we wanted our implementation of soft time constraints to be efficient and fully
compatible with any sequential pattern mining approach, we developed our GETC
algorithm using the same kind of data structure as the GTC algorithm proposed in
Masseglia et al. (2004) and detailed in Section 2.3. The main idea is to transform the data
sequence of an object into a sequence graph in which each path is a subsequence that
fulfils the time constraints. The sequence graphs of the data sequences are then used to
determine the frequent sequences by a sequential pattern mining algorithm.

Since the handling of time constraints is done prior to and separate from the counting
frequency step of a data sequence, we propose to use this method to implement the soft
time constraints. The graph structure will thus be used both for sequential pattern mining
and for computing the temporal accuracy of sequential patterns in a second step.

4.1 General strategy of the algorithm

Our approach includes all the fundamental principles of GTC. It contains a number of
iterations. Each iteration finds all the frequent sequences of the same size. GETC is used
as a preprocess for handling soft time constraints. Once a data sequence has been
transformed into a sequence graph that fulfils the soft time constraints, frequent
sequences are searched within the subsequence set of the sequence graph. As a result,
using the sequence graph, checking the time constraints becomes useless during
candidate parsing, i.e., only inclusion must be verified. Once the sequential patterns are
extracted, the sequence graphs are weighted, then explored one last time to calculate the
temporal accuracy of each GSP.

4.2 Sequence graph building

From an input data sequence d, the GETC algorithm (Algorithm 2) builds a sequence
graph Gd(V, E) in which vertices are itemsets and paths represent the subsequences
fulfilling the time constraints. First, each itemset of the input sequence is associated
with a vertex. Then, the subfunction addWindowSize combines records in an attempt to
meet the soft windowSize constraint. It adds to the graph any satisfactory combination as
a new vertex. Vertices are allocated to ‘levels’ according to their end-time in order to
reduce the time spent in checking gap constraints. The next step consists of building
the edges that fulfil both the minGap and maxGap soft constraints. For each vertex, the
first ‘level’ of vertices meeting the soft minGap constraint is thus retrieved. For each
vertex of this set, the minGap constraint is fulfilled and the maxGap constraint is
checked. If it is fulfilled, a new edge is built between both vertices. Some optimisation is
done by the addEdge and propagate subfunctions to reduce the number of sequence
inclusions. Finally, the remaining included subpaths are deleted from the graph by the
subfunctions pruneMarked and convertEdges. All of these subfunctions are detailed in
Fiot et al. (2006a).

We have proven in Fiot et al. (2006a) that at the end of this process, GETC has
built exactly all the longest sequences, fulfilling the soft time constraints windowSize,
minGap and maxGap generated from the input data sequence. The GETC algorithm can

 38 C. Fiot, A. Laurent and M. Teisseire

thus be used as a preprocessing phase to handle soft time constraints before sequential
patterns are mined. After this step, the candidate sequence support is computed on these
sequence graphs.

4.3 Temporal accuracy computation

Once the sequence graphs have been built, we know which sequences are allowed
by the time constraints and which are forbidden. However, some sequences fulfil crisp
constraints while others are built only by applying soft constraints. Thus, their ‘quality’ is
not the same. Therefore, we propose to calculate the temporal accuracy level of each
longest path of the sequence graph (each maximal sequence) and to allocate it to each
subsequence composing it.

Algorithm 1 GETC

In order to determine the time constraint values satisfied by the paths in the graph, each
edge (x,y) is weighted by !(µmg(y.begin()-x.end()),µMG(y.end()-x.begin())) depending on
the mg and MG values used to build this edge; each vertex is similarly weighted by µws.
These weights are computed by the valueGraph function detailed in Fiot et al. (2006a).
The temporal accuracy of a sequence is then given by Equation (5) in Section 3.4.
This computation requires an additional iteration after sequential pattern mining to return
each of them with its temporal accuracy.

5 A short example

Consider the dataset in Table 2 (from the data, M = 17 and m = 0) and the following
parameters for soft time constraints:

 Softening the blow of frequent sequence analysis 39

)* for windowSize, wsinit = 2 and .ws = 0.86, then ws. = 4

)* for maxGap, MGinit = 4 and .MG = 0.84, then MG. = 6

)* for minGap, mginit = 2 and .mg = 0.5, then mg. = 1.

Table 2 The dataset

Timestamp 1 3 4 5 6 8 9 10 12 17 18

Id1 1 – 2 3 3 4 4 4 – 5 6 7 8

Id2 2 3 4 – – 5 6 – – – – –

Id3 1 2 – 3 3 4 4 – 5 6 – – – –

5.1 Sequence graph building

The first step consists of building the sequence graph for data sequence Id1. First, the
vertex set is initialised: each record is associated with one vertex. This is the first line
of the graph in Figure 3. Then, the windowSize constraint is applied on each possible
combination of vertices using addWindowSize. Only the combinations fulfilling the soft
windowSize constraint (i.e., end-time(O1i)-start-time(O1i) ! ws. = 4) are kept.

Figure 3 The sequence graph for Ol at the end of vertex set creation by addWindowSize

Notes: denotes the building order.

 VI denotes the sixth end-time ‘level’.

Then, the edges fulfilling both the minGap and maxGap soft constraints are added
to the graph using the main function and the propagate and addEdge subfunctions.
The building of edges starts with the last vertex (7 8). The first level that can access (7 8)
that fulfils minGap is Level VII, then we build an edge for each vertex in this level if
maxGap is fulfilled. The first edge is then from (6) to (7 8).

When a level cannot attain a vertex v because of minGap, we need to check if the
vertices of this level can access the vertices that are successors of v. This is done by the
function propagate.

After this step, every subsequence of the initial data sequence meeting the three soft
constraints is in the graph in Figure 4.1

 40 C. Fiot, A. Laurent and M. Teisseire

Figure 4 The sequence graph for O1 after edge creation, showing the GETC edge creation order

However, some inclusions2 may remain. The last step consists of deleting these
inclusions using the pruneMarked subfunction. Once valued, the final sequence graph
obtained from data sequence O1 is described by Figure 5.

5.2 Temporal accuracy of extracted patterns

The sequence graph of each data sequence is built from the database in Table 2 and
the soft time constraints specified in the example statement. Then, sequential patterns
are mined for. The GSPs obtained with minFreq = 70% are: < (3)(4 5) >, < (2 3 4) >,
< (2 3)(4)(5 6) >, < (2)(4 5) >, < (3 4)(5) > and < (3 4)(6) >, each having a 100%
frequency. To analyse their relevance according to the user’s needs, their temporal
accuracy is computed. To do so, the sequence graphs are weighted, as described
in Section 4.3. The vertices built with ws = 0,1 or 2 have a weight of 1, while those
built with ws = 3 have a weight of 0.93 and those built with ws = 4, a weight of 0.86.
For minGap, the edges built with mg = 1 have a weight of 0.5 and a weight of 1 if
mg = 2. For maxGap, the weight is 1 if MG ! 4, 0.92 if MG = 5 and 0.84 if MG = 6.
The resulting weighted sequence graph for O1 is shown in Figure 5.

Finally, these weights are used to compute the temporal accuracy of extracted
patterns. For instance, the temporal accuracy for sequential pattern < (3 4) (5) > is given
by the average temporal accuracy of supporting sequences in the graph of each Id: !Id1 =
0.84, !Id2 = 1 and !Id3 = 1, then = = 0.95.

Once patterns have been obtained with their temporal precision, we can more
accurately analyse the constraints used to generate them. The closer the precision is to 1,
the more the initial user-specified values correspond to the timestamps in the database.
On the contrary, a low precision value indicates that the constraints are not well suited to
this dataset.

 Softening the blow of frequent sequence analysis 41

Figure 5 The weighted sequence graphs for data sequence Id1

6 Experiments

In this section, we compare the performances of the GETC algorithm for soft constraints
with those of the GTC algorithm for crisp constraints. In Section 6.1, we compare the
behaviours of these algorithms, while also using an implementation of PSP handling time
constraints. In a second phase, we compare the patterns extracted using either soft or
crisp constraints, first with a synthetical dataset then with web access logs (Section 6.2).
All of these experiments were carried out on a PC with a Linux 2.6.7 OS, CPU 2,8 GHz
and 2 GB of DDR memory. All the algorithms were implemented in C++ and use the
PSP principle and structure to search for sequential patterns.

6.1 Synthetical datasets: GETC overall behaviour

The results presented here were obtained through processing several synthetical
randomly generated datasets, with each containing approximately 1000 data sequences of
20 records on average. Each of these records contains an average of 15 items chosen
among 1000 possible ones.

The first phase involved comparing runtimes without time constraints
(windowSize = 0, minGap = 0 and maxGap = ") for GTC and GETC, with a minimum
accuracy equal to 1 for each soft constraint. We thus compared the runtime of our
algorithm with those of PSP and GTC and showed that the GETC behaviour is similar to
that of GTC, i.e., while extracting the same set of patterns with GTC or GETC, runtime
performances are quite the same.

We then repeated these measures by processing crisp time constraints (with an
accuracy of 1 for GETC) to compare the behaviours of GETC and GTC. Figure 6(a)
shows the runtime pattern as a function of the windowSize value. GETC has a linear
behaviour close to that of the GTC. The difference is due to the temporal accuracy
calculation step, by which the time increases slightly with windowSize because the
number of vertices in the sequence graphs increases accordingly. Finally, Figure 6(b)
shows (for GETC alone) the runtime pattern according to the accuracy, for a minimum
frequency of 0.37. Note that the runtime reaches a maximum value which corresponds to
the extreme values of the soft time constraints M and m.

 42 C. Fiot, A. Laurent and M. Teisseire

Figure 6 The runtimes

Notes: (a) as a function of windowSize with minGap = 2, maxGap = " and

minFreq = 0.35 (for GETC, .ws = .MG = .mg =1); (b) as a function of accuracy
depending on several time constraints (minFreq = 0.37); (c) as a function of
minFreq regarding soft time constraints with accuracy equal to 1 or not.

The second part of our experiments on synthetical datasets dealt with an analysis of the
sequential patterns extracted by GETC compared to those extracted by GTC,3 according
to the accuracy required for the various soft constraints. Figure 6(c) presents the runtimes
for GTC and GETC according to the minimum frequency, depending on the sample
values chosen for each parameter. These values were calculated so that the time
constraints used for GTC (crisp constraints) and GETC with an accuracy of 1 (simulated
crisp constraints) correspond to the GETC limit values (soft constraints) with a precision
that differs from 1. These parameters are respectively:

)* GTC with ws = 4, mg = 0 and MG = 10

)* GETC with . = 1, with wsinit = 4, mginit = 0 and MGinit = 10

)* GETC with . = 0.75, with wsinit = 0, mginit = 1 and MGinit = 5, yielding wsp = 4,
mg. = 0 and MG. = 10.

Note that under these conditions, GETC with soft time constraints is as fast as GTC with
the same constraint limit values although, in addition to retrieving the same sequential
patterns, it uncovers their temporal accuracy.

Besides, if we ignore the optimal value of one or several time constraints, it could be
interesting to use GETC with a minimum accuracy level different from 1 to extend the
search space. An analysis of the retrieved patterns and their accuracy can inform us about
a more adequate time constraint value. We compared the patterns extracted by GTC with
the patterns extracted by GETC with the same initial time constraints. The number of
detected patterns is then greater, as shown in Figure 7(a). By classifying them in
decreasing order of accuracy, we got all the patterns extracted by GTC (which have an
accuracy of 1), then a list of patterns of lower temporal accuracies corresponding to the
soft constraints. This histogram also shows that for this synthetical dataset, the constraints
allowing us to extract the largest number of patterns correspond to an accuracy of
between 0.8 and 0.9.

 Softening the blow of frequent sequence analysis 43

Figure 7 Pattern distribution depending on their temporal accuracy on synthetical data (wsinit = 0,
mginit = 1, MGinit = 5 and .ws = .mg = .MG = 0.5) (a); Pattern distribution depending on
their temporal accuracy on web access logs (wsinit = 0, mginit = 0, MGinit = 0 and
.ws = .mg = 1, .MG = 0.75, minFreq = 0.2 (b)

6.2 Soft constraints to mine atypical web accesses

The aim of these experiments was to show that the GSPs extracted under
soft time constraints bring more precise information than those obtained with crisp
time constraints.

In these experiments, the access logs from a private photo gallery website have been
mined to analyse atypical behaviours. This website runs on an Apache server and uses a
mySQL database accessed through PHP. It is divided into two parts: one is accessible
anonymously and the other requires identification via login and password. We analysed
the error logs and isolated the access logs corresponding to these errors and also those
corresponding to non-usual access (i.e., accesses not browsing pages or not identified by
web browsers). These isolated access logs are globally called atypical access logs.

These atypical access logs are preprocessed, with one log per record: the object ID
is the requesting IP, the items are the connection request, request type, returned error
and connecting software and the timestamp is the access date measured in seconds since
1 January 1970 at 00:00:00.

Example 9 Table 3 represents the accesses attempted on 1 January 1970
at 00:00:05 AM from the IP encoded by 253 to URL
‘/PictureGallery/home.htm’ with a request ‘GET’ by the software
‘Mozilla/4.0’. The error returned was Error 404 (page does not exist).
This access is followed 6 sec later by the same request to URL
‘/PictureGallery/index.htm’. The software was not identified and no
error was returned.

 44 C. Fiot, A. Laurent and M. Teisseire

Table 3 Examples of access logs

IP id Time Request URL Error Software

253 5 GET ‘/PictureGallery/home.htm’ 404 ‘Mozilla/4.0’

253 11 GET ‘/PictureGallery/index.htm’ – –

Our atypical access log represents about 22 000 connection attempts over approximately
one year from 510 different IPs to 1181 different URLs. First, we compared the
performances of GETC with those of GTC. We found the same global runtime behaviour
for both algorithms, even though GETC still is a little slower than GTC because of the
temporal accuracy computation. The advantage of GETC shown by these experiments
is the additional information given by the temporal accuracy. In fact, as in the second
step of our experiments on synthetical datasets, we applied crisp constraints to GTC
that correspond to the initial value set for GETC and we compared the extracted
sequential patterns.

First, we had to choose the values to be specified as initial ones. Since our mining
goal was to describe atypical behaviours, we decided to identify nonhuman profiles,
i.e., program-generated profiles. This kind of profile can be characterised, for example,
by repeated requests over a short period. In this sense, a sequence should be composed
of itemsets that have been recorded over one second (wsinit = 0 and .ws = 1); no grouping
over records is allowed. Similarly, the minimum gap between two itemsets will take
its minimum possible value without varying (mginit = 0 and .mg = 1). The constraint
corresponding to the behaviour we want to highlight is maxGap. Automated requests can
be viewed as requests that are too close to be done by human beings, so the maximum
gap separating two itemsets should be the shortest possible one: maxGap=1 sec.
However, we wanted to be sure that we would not ignore other profiles, so we
softened this constraint by specifying a temporal accuracy of less than 1 for maxGap,
here .MG = 0.75. We thus used the flexibility of the maxGap soft constraint to more
precisely describe the atypical profiles.

Then, we compared the different results obtained by varying the temporal accuracy
of MG from 1 (the same results for GETC and GTC) to 0.75 (more patterns extracted
by GETC). As for synthetical data, we obtained more patterns thanks to our use of soft
constraints, with part of them being the same as those discovered with crisp constraints.
Figure 7(b) shows the number of patterns for each temporal accuracy extracted by GETC
and those extracted by GTC: every pattern extracted by GTC is also found by GETC
with a temporal accuracy of 1 and vice versa. Moreover, GETC uncovers some additional
patterns whose temporal accuracy is less than 1.

Regarding the sequential patterns that are found by both algorithms, the advantage of
using GETC instead of GTC is the additional information given by the temporal accuracy
of each sequence. We thus got more relevant information, since each descriptive pattern
for atypical behaviour is provided with its temporal accuracy. Here is the description of
some atypical behaviours we found with both algorithms:

)* The bot pxyscand sent five CONNECT requests to URL 1185. Each time, it received
Error 405 (unauthorised method) (<(“CONNECT”, URL 1185, 405 Error,
“pxyscand/2.1”)...(3 times)...(“CONNECT”, URL 1185, 405 Error,
“pxyscand/2.1”)>).

 Softening the blow of frequent sequence analysis 45

)* One sequential pattern observed with both GTC and GETC is the insistent access to
the URL ‘/mambo...’, which does not exist. It thus seems to be a hacking attempt
(<(“/cvs/mambo/index2.php?_REQUEST...”, 404 Error)(“/cvs/mambo/index2.php?
_REQUEST...”, 404 Error)>).

Regarding the additional patterns uncovered by GETC but not found by GTC, two
examples are:

)* The software Pompös tried to retrieve some non-existent pages: <(“cvs/index2.php?
request...”,404 Error,Pompos)...once...(“cvs/index2.php?request...”,404
Error,Pompos)>. This sequential pattern has a temporal accuracy of 0.95 and its
frequency is 35%.

)* One typical nonhuman access is bot scanning, in particular, from Google’s Image
Bot. This bot does not appear when we use crisp constraints. When analysing the
access logs, we see that the average gap between two requests is 2 sec
<(“/PictureGallery/thumbnail.php3?...”,Googlebot-Image/1.0)...once...
(“/PictureGallery/thumbnail.php3?...’,Googlebot-Image/1.0)...>.

7 Conclusion and prospects

The GSPs presented in Srikant and Agrawal (1996) redefine the inclusion of sequences in
a broader way by introducing time constraints. These constraints, which allow the user to
gather records or separate them into different sequences, can highlight less immediate
knowledge and closer to his/her needs. However, this definition is still too rigid,
particularly if the user has only a vague idea of the time constraints which bind his data.
In this article, we thus proposed to soften these time constraints for GSPs, by using
some fuzzy set theory principles. We thus give more flexibility to the specification
of time constraint parameters. The implementation of our approach is based on the
construction of sequence graphs to handle time constraints during the sequential pattern
mining process. We showed the efficiency of our GETC algorithm to solve the
problem of mining for generalised sequences under crisp or soft time constraints. We also
highlighted the flexibility offered by our soft time constraints, as well as the advantages
of the temporal accuracy measure to analyse sequential patterns by running experiments
on both synthetical and real-life datasets. Finally, we intend to extend the fuzzy
sequential patterns presented in Fiot et al. (2006b) to GSPs with time constraints (crisp or
soft) in order to mine quantitative timestamped data under time constraints.

Acknowledgements

The authors would like to acknowledge the anonymous webmaster who made our
experiments possible by providing us with web access logs and, thus, helped us
demonstrate the relevance of our work.

 46 C. Fiot, A. Laurent and M. Teisseire

References
Agrawal, R. and Srikant, R. (1995) ‘Mining sequential patterns’, 11th Int. Conf. on Data

Engineering, Taipei, Taiwan, 6–10 March, pp.3–14.

Capelle, M., Masson, C. and Boulicaut, J-F. (2002) ‘Mining frequent sequential patterns under a
similarity constraint’, 3rd Int. Conf. on Intelligent Data Engineering and Automated Learning
(IDEAL ’02), Manchester, UK, 12–14 August, pp.1–6.

Fiot, C., Laurent, A. and Teisseire, M. (2006a) ‘Extended time constraints for generalized
sequential pattern mining’, Technical Report 06051, LIRMM.

Fiot, C., Laurent, A., Teisseire, M. and Laurent, B. (2006b) ‘Why fuzzy sequential patterns
can help data summarization: an application to the INPI trademark database’, 15th IEEE
International Conference on Fuzzy Systems (FuzzIEEE ’06), Vancouver, Canada, 16–21 July.

Leleu, M., Rigotti, C., Boulicaut, J-F. and Euvrard, G. (2003) ‘Constraint-based mining of
sequential patterns over datasets with consecutive repetitions’, 7th Eur. Conf. on Principles
and Practice of Knowledge Discovery in Databases (PKDD ’03), Cavtat – Dubrovnik,
Kroatia, 22–26 September, pp.303–314.

Lin, M-Y., Lee, S-Y. and Wang, S-S. (2002) ‘DELISP: efficient discovery of generalized
sequential patterns by delimited pattern-growth technology’, 6th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining (PAKDD ’02), Taipei, Taiwan, 6–8 May,
pp.198–209.

Mannila, H., Toivonen, H. and Verkamo, A.I. (1997) ‘Discovery of frequent episodes in event
sequences’, Data Mining and Knowledge Discovery, Vol. 1, No. 3, pp.259–289.

Masseglia, F., Cathala, F. and Poncelet, P. (1998) ‘The PSP approach for mining sequential
patterns’, in Principles of Data Mining and Knowledge Discovery, pp.176–184.

Masseglia, F., Poncelet, P. and Cicchetti, R. (1999) ‘An efficient algorithm for web usage mining’,
Networking and Information Systems Journal, Vol. 2, Nos. 5–6, pp.571–603.

Masseglia, F., Poncelet, P. and Teisseire, M. (2004) ‘Pre-processing time constraints for efficiently
mining generalized sequential patterns’, 11th Int. Symp. on Temporal Representation and
Reasoning (TIME ’04), Tahitou, France, 1–3 July, pp.87–95.

Meger, N. and Rigotti, C. (2004) ‘Constraint-based mining of episode rules and optimal window
sizes’, 8th Eur. Conf. on Principles and Practice of Knowledge Discovery in Databases
(PKDD ’04), Pisa, Italia, 20–24 September, pp.313–324.

Spiliopoulou, M. and Faulstich, L.C. (1998) ‘WUM: a tool for web utilization analysis’,
Proceedings of the World Wide Web and Databases International Workshop (WebDB ’98),
LNCS 1590, Valencia, Spain, 27–28 March, pp.184–2003.

Srikant, R. and Agrawal, R. (1996) ‘Mining sequential patterns: generalizations and performance
improvements’, 5th Int. Conf. on Extending Database Technology (EDBT ’96), Avignon,
France, 25–29 March, pp.3–17.

Yan, T-W., Jacobsen, M., Garcia-Molina, H. and Dayal, U. (1996) ‘From user access
patterns to dynamic hypertext linking’, Proceedings of the Fifth International World Wide
Web Conference on Computer Networks and ISDN Systems, Paris, France, 6–10 May,
pp.1007–1014.

Zadeh, L. (1965) ‘Fuzzy sets’, Information and Control, Vol. 3, No. 8, pp.338–353.

Zaiane, O-R., Xin, M. and Han, J. (1998) ‘Discovering web access patterns and trends by applying
OLAP and data mining technology on web logs’, Proceedings of the Advances in Digital
Libraries Conference (ADL ’98), IEEE Computer Society, p.19.

Zaki, M.J. (2000) ‘Sequence mining in categorical domains: incorporating constraints’,
9th Int. Conf. on Information and Knowledge Management (CIKM ’00), Washington, DC,
USA, 6–11 November, pp.422–429.

 Softening the blow of frequent sequence analysis 47

Notes
1 To improve graph legibility, in Figure 4, some vertices have been moved up from where they

were in Figure 3.

2 The potentially included subsequences are shown with dashlines in Figure 4. The potentially
included vertices are marked (*) during the edge creation step.

3 The patterns discovered using GTC are the same as would be obtained by DELISP. The only
difference comes from the way both algorithms run.

