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Abstract: Mining temporal knowledge has many applications. Such knowledge 
can be all the more interesting as some time constraints between events can be 
integrated during the mining task. Both in data mining and machine learning, 
some methods have been proposed to extract and manage such knowledge 
using temporal constraints. In particular, some work has been done to mine 
Generalised Sequential Patterns (GSPs). However, such constraints are often 
too crisp or need a very precise assessment to avoid erroneous information. 
Within this context, we propose an approach based on sequence graphs derived 
from soft temporal constraints. These relaxed constraints enable us to find more 
GSPs. We also propose a temporal accuracy measure to provide the user with a 
tool for analysing the numerous extracted patterns. 
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1 Introduction 

The quantity of data from the World Wide Web is growing dramatically: requested 
Uniform Resource Locators (URLs), number of requests or connexion duration, etc., are 
gathered automatically by web servers and stored in access log files. Analysing these data 
can provide useful information for performance enhancement or customer targetting.  
In this context, many research studies have been proposed to mine usage patterns and 
user profiles (Spiliopoulou and Faulstich, 1998; Yan et al., 1996; Zaiane et al., 1998).  
In particular, Masseglia et al. (1999) provided knowledge from the databases of visited 
page sequences. Discovering such patterns can show, for example, that “60% of users 
visiting the Disneyland website and Eiffel Tower pages visit later traveling websites”. 

The information thus discovered can often be improved by looking for temporal 
knowledge (e.g., detection of frauds, failures, behaviour analysis). Some data mining 
techniques thus aim at extracting recurrent episodes from a long sequence (Mannila  
et al., 1997) or from sequence bases (Agrawal and Srikant, 1995). Searching for such 
information becomes all the more interesting that different constraints between events 
can be taken into account, such as the minimal or maximal duration separating two events 
(Srikant and Agrawal, 1996; Zaki, 2000; Meger and Rigotti, 2004) or constraints on 
repetitions (Capelle et al., 2002; Leleu et al., 2003). 

Within this framework, Generalised Sequential Pattern (GSP) mining was introduced 
in Srikant and Agrawal (1996). This data mining technique extracts frequent sequences 
that meet user-specified time constraints from a sequence database (e.g., successive 
purchases of customers in a supermarket). The specification of such constraints between 
events enables the user to select some typical sequences, e.g., repeated access to a 
website at really close intervals. 

However, although these methods are effective and robust, the user has to know  
the exact constraint values to be specified. Then, there is a risk that erroneous or  
useless knowledge may be gathered. Moreover, in some cases, these values are  
somewhat uncertain. Time constraints, as they are defined, thus allow the user to find 
new sequential patterns, but they are still too stiff. Consequently, it may become 
necessary to make several attempts with various combinations of these parameters  
before getting satisfactory results. Meger and Rigotti (2004) proposed to automatically 
determine the optimal window of observation for repetitive episode mining in a  
sequence, but this is hardly adaptable to sequential pattern mining. In this domain, to our 
knowledge, no papers have proposed the automatic determination of the most appropriate 
time constraints. 
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Besides, for some applications, it could also be interesting to soften the constraints 
specified by the experts of the domain to refine their knowledge: the expert knowledge is 
used as a starting point and mining results complete it. For instance, nonhuman access to 
webpages can be characterised by repeated requests at short intervals. The task is then to  
formalise this expert knowledge with time constraints and especially to translate the 
notion of short interval into a crisp duration. Softening time constraints could facilitate 
this formalisation, such that an approximate value could be specified for a short period 
(between one and three seconds, for instance). To make the constraint specification 
easier, we propose a method that softens user-specified time constraints. We also propose 
an efficient algorithm, i.e., Graph for Extended Time Constraints (GETC), to handle 
these constraints. 

Otherwise, the discovered sequential patterns, according to the specified time 
constraints, can quickly become so numerous that their analysis becomes less effective. 
In this regard, a measure that could facilitate the analysis of GSPs would be a valuable 
tool. We thus propose to provide the end user with a time-satisfaction degree that will 
indicate how well the user-specified initial constraints are fulfilled. 

To tackle several of these problems, here we describe our proposal including the 
following points. First, we define extended time constraints for GSPs. Secondly, we state 
a definition of time accuracy for frequent sequence analysis. Lastly, we focus on the 
algorithm we designed to handle soft time constraints and compute time accuracy. 

In the next section, we define the fundamental concepts associated with sequential 
patterns and GSPs. In Section 3, after briefly introducing the fuzzy set theory, we present 
the first part of our proposal, i.e., defining the soft time constraints and the temporal 
accuracy of a sequence. Then, Section 4 details the second part of our work, i.e., the 
algorithm that implements the handling of soft time constraints. Section 5 develops our 
proposal with an example. We then propose some experiments on both synthetical data 
and web access logs in Section 6, thus showing the benefits of these soft time constraints 
and measures. Finally, we conclude in Section 7 on the prospects opened by our work. 

2 Sequential patterns and time constraints 

This section defines the concepts used in the GSP mining task. It broadly summarises  
the formal description of the problem introduced in Agrawal and Srikant (1995) and 
Srikant and Agrawal (1996) and broadly summarises the various proposals of algorithms 
to handle such time constraints. 

2.1 Sequential patterns 

Sequential patterns were initially defined in Agrawal and Srikant (1995) as maximal 
frequent sequences, as follows. 

Let O be a set of objects. Each object o is described by a list of records r consisting of 
three information elements: an object ID, a record timestamp and a set of items in the 
record. Let I = {i1, i2, ..., iq} be a set of items. An itemset is a non-empty non-ordered set 
of items, denoted by (i1i2 … ik). A sequence s is a non-empty ordered list of itemsets, 
denoted by < s1s2...sp >. An n-sequence is a sequence of n items (or of size n). 
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Example 1 Let us consider an example of market basket analysis. The object is a 
customer and the records are the transactions made by this customer. 
The timestamps are the dates of transactions. If a customer purchases 
products 1, 2, 3, 4 and 5 according to the sequence s = < (1) (2 3) (4) 
(5) >, then all the items of the sequence were bought separately, except 
products 2 and 3, which were purchased at the same time. In this 
example, s is a 5-sequence. 

One sequence 1 2< >ms s s! ! !"  is a subsequence of another one < s1 s2…sp > if there are 

integers l1 < l2 < … < lm such that 
1 21 2, , , .l l ms s s s s! ! !# # "  We should also mention that s' is 

included in s. 

Example 2 The sequence s' = < (2) (5) > is a subsequence of the s in Example 1, 
because (2) # (2 3) and (5) # (5). However, < (2) (3) > is not a 
subsequence of s. 

All records from the same object are grouped together and sorted in increasing order 
according to their timestamp. They are called a data sequence. In order to efficiently aid 
decision making, the aim is to discard nontypical behaviours according to the user’s 
viewpoint. Performing such a task requires allocating any data subsequence in O with a 
frequency value freq(s). The frequency of a sequence is defined as the percentage of 
objects supporting s with respect to the number of objects in the database. An object 
supports a sequence s if s is included within the data sequence of this object. 

In order to decide whether a sequence is frequent or not, a minimum frequency value 
minFreq is specified by the user and the sequence is said to be frequent if the condition 
freq(s) > minFreq holds. Given a database of object records, the goal of sequential pattern 
mining is to find all the maximal sequences whose frequency is greater than a specified 
threshold (minFreq) (Agrawal and Srikant, 1995). Each of these sequences represents a 
sequential pattern, also called a maximal frequent sequence. 

This sequence definition is rather strict and turns out to be inappropriate for  
many applications because time constraints are not handled. When verifying whether a 
candidate sequence is included within another one, record partitioning enforces a strong 
constraint since only pairs of itemsets are compared. However, if the interval between 
two records of an object is short enough, they could be considered simultaneous. On the 
contrary, two events that are too distant could have no link together. That is why GSPs 
were proposed in Srikant and Agrawal (1996), introducing time constraints in order to 
improve the subsequence definition. 

2.2 Generalised sequential patterns 

Time constraints restrict the time gap between sets of records that contain consecutive 
elements of the sequence. There are three different constraints. First, minGap is the 
minimal time gap that must separate two consecutive itemsets in a sequence. Then, 
maxGap is the maximal time gap within which two consecutive itemsets of a sequence 
must occur. Finally, windowSize is a sliding window during which several records may  
be grouped into one itemset. Handling time constraints, Srikant and Agrawal (1996) 
redefined when a data sequence supports a sequence. 
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Definition 1 Given user-specified windowSize, minGap and maxGap values, a data 
sequence d = < d1…dm

 > supports a sequence s = < s1 … sn
 > if there 

exist integers l1 ! u1 < l2 ! u2 <…<ln ! un such that: 

i ,i

i

u
i k l ks d$%! 1 ! i ! n 

ii ( ) ( ) ,  1
i iu ltimestamp d timestamp d windowSize i n& ' ' '  

iii 
1

( ) ( ) ,  2
i il utimestamp d timestamp d minGap i n

&
& ( ' '  

iv 
1

( ) ( ) ,  2 .
i iu ltimestamp d timestamp d maxGap i n

&
& ' ' '  

We will refer to timestamp( )
il

d  as start-time(si) and timestamp( )
iud  as end-time(si).  

In other words, start-time(si) and end-time(si) correspond to the first and last timestamps 
of the set of records that contains si. These time constraints, as well as the minimum 
frequency condition, are parameterised by the user. 

Time constraints allow a more flexible handling of records, insofar as the end user is 
then provided with the following advantages for mining sequences: 

)* to group together itemsets when their timestamps are sufficiently close via the 
windowSize constraint 

)* to regard itemsets as too close to appear in the same frequent sequence with the 
minGap constraint (i.e., to be considered related) 

)* to regard itemsets as too distant to appear in the same frequent sequence with the 
maxGap constraint (i.e., to be considered related). 

Example 3 Consider logs of a website requiring identification. Id1 and Id2 are two 
identified users and Table 1 describes their various browsing sessions. 
The session sequence of each user is a data sequence. 

Table 1 Browsing sessions of two web users 

User Id Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 

Id1 1     2 3 4  5 6 7 8 9 

Id2 1 2 3 4 5 6 7 8    

Let s = < (1 2 3 4) > be a sequence and the following time  
constraint parameters: 

)* minGap = 0, consecutive itemsets must have a distance of  
at least 1 h 

)* maxGap = 7, consecutive itemsets must have a maximum distance 
of 7 h 

)* windowSize = 1, accesses may be grouped together over at most 
two consecutive hours. 
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This means that when analysing profiles, two consecutive hours may be 
considered one and that two consecutive sessions must happen within a 
seven-hour period to be considered related. The numbers 1 to 9 
represent the website URLs. 

Then, Figure 1 shows how these time constraints are applied in 
order to determine whether data sequences Id1 and Id2 support the 
candidate sequence s = < (1 2 3 4) > or not. 

Figure 1 The description of time constraints, windowSize (ws), minGap (mg) and maxGap 
(MaxG), on data sequences Id1 and Id2 

 
Note: i (a b) denotes the itemset (a b) browsed at hour i. 

To make sequence s appear in data sequence Id1, the sessions  
of the first, second and third hour must be grouped together.  
However, this itemset does not meet constraint (ii), since  
end-time(s1) – start-time(s2) = 3 – 1 = 2 > windowSize. There are no 
other possibilities to find s in this data sequence. Thus, data sequence 
Id1 does not support sequence s. 

To make sequence s appear in data sequence Id2, the sessions of 
the first and second hour must be grouped together. This itemset meets 
the windowSize constraint, since it was built over two consecutive 
hours. The minimum gap between this first itemset and the next is  
then hour 3 – hour 2 = 1 > 0 = minGap, which meets the minGap 
constraint (iii). So does the maxGap constraint (iv). The data sequence 
Id2 supports sequence s. 

Note that if the specified values are minGap = 0, maxGap = " and windowSize = 0, we 
get back the notion of sequential patterns, as introduced in Section 2.1, where there are no 
time constraints and where the items in an itemset come from a single record. 

2.3 Related work 

Various algorithms were proposed to handle these constraints. Some push them directly 
into the mining process, like the GSP algorithm (Srikant and Agrawal, 1996) and the 
DELISP algorithm (Lin et al., 2002). In contrast, some others propose a preprocess to 
apply the constraints to the sequences, which are then analysed by some sequential 
pattern tool. The Graph for Time Constraints (GTC) algorithm, proposed in Masseglia  
et al. (2004), is based on this principle. 
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The GSP algorithm proposed in Srikant and Agrawal (1996) aims to mine GSPs.  
It extends previous proposals for sequence mining by handling time constraints  
and taxonomies (is-a hierarchies). It uses a generate-and-prune approach that uses the 
frequent sequences of size k to generate candidate sequences of size k + 1. Then,  
the frequency of these (k + l) sequences is calculated. Time constraints are handled when 
parsing a data sequence. For each candidate sequence, the GSP algorithm checks whether  
it is contained in the data sequence. Because of the sliding windows and minimum  
and maximum time gaps, it is necessary to switch between forward and backward  
phases during examination. Forward phases are performed to deal progressively with 
items and, while selecting items, windowSize is used for resizing records partitioning. 
Backward phases are required as soon as the maxGap constraint is no longer fulfilled.  
In such a case, it is necessary to discard all items for which the maxGap constraint is 
violated and to resume parsing the sequence, starting with the earliest item meeting the 
maxGap condition. 

In Masseglia et al. (1998), another approach called Prefix Tree for Sequential Patterns 
(PSP) was proposed. It again fully utilises the fundamental principles of GSP while  
using a different structure for organising the candidate sequences, which thus improves 
retrieval efficiency. 

More recently, the DELISP algorithm (Lin et al., 2002) was proposed for mining 
sequential patterns with time constraints. It is based on the mining scheme of PrefixSpan. 
Actually, the original database is divided into multiple subsets for each prefix of a 
potential sequential pattern. While writing the subsets, DELISP reduces the size of the 
projected databases by bounded and windowed projection techniques. The experiments 
proposed by the authors show a clear improvement of DELISP over GSP. However,  
this technique is restricted to prefix-growth algorithms. 

Therefore, the GTC algorithm (Masseglia et al., 2004) was developed. It improved 
the PSP approach by its more efficient handling of time constraints. The GTC algorithm, 
based on a data sequence, precalculates a relevant set of sequences to be tested.  
By precalculating this set, the time spent analysing a data sequence when verifying 
candidate sequences is reduced. The efficiency of this approach was demonstrated. 

We need an efficient implementation to handle our extended time constraint. 
Moreover, this implementation should not be restricted to one sequential pattern mining 
approach. For these reasons, we decided to develop the implementation of our soft time 
constraints introduced in Section 3 based on the GTC principle. This implementation is 
detailed in Section 4, where we present our GETC algorithm. 

3 Soft time constraints 

The main drawback of the previously described time constraints is that they are  
user-specified. They require the data and constraint values to be a priori well-known.  
The results thus depend on the good knowledge of the end user. Misvalued time 
constraints could indeed lead to erroneous or incomplete knowledge. However, to our 
knowledge, no studies have been proposed to automatically determine the optimal time 
constraints for sequential pattern mining. We propose extending the time constraints 
above for GSPs using some fuzzy set theory principles. 
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Moreover, extracted patterns become increasingly numerous, particularly during 
sequential pattern mining. It becomes necessary to provide the end user with tools to 
analyse the obtained sequential patterns. In the case of GSPs, some useful information 
could be derived from the duration of data sequences corresponding to time constraints. 
This is the purpose of soft time constraints, which we define in this section. 

These soft time constraints enable us to define a measure of temporal  
accuracy expressing how well a sequence fulfils the initial user-specified values of  
time constraints. 

We thus provide the user with flexibility in time constraint specification and a tool to 
help in analysing the extracted patterns. 

3.1 Fuzzy set theory 

The fuzzy set theory was introduced by Zadeh (1965). This theory generalises crisp set 
theory and assumes intermediary situations between all and nothing. Whereas in the 
classical theory, an element a belongs or not to a set A, in fuzzy set theory, a may 
partially belong to A (then called a fuzzy set) and, thus, partially belong to its 
complement. Besides enabling this partial membership, fuzzy set theory allows a gradual 
transition of an object from one state to the next. 

Example 4 Let X be the universe of all possible sizes for a human being. One fuzzy 
set A (e.g., small, medium or big) is defined by a membership function 
µA expressing for every x of X the degree with which x belongs to A. 
This degree is in interval [0,1]. Examples of these three fuzzy sets is 
graphically represented in Figure 2. Thus, a person of height x = 1m60 
can be simultaneously small and medium-sized with, for example, a 
degree of 0.7 for the fuzzy set small (µM(x) = 0.7) and a degree of 0.3 
for the fuzzy set medium (µM(x) = 0.3). 

Figure 2 Big and small fuzzy sets describing a person’s height (see online version for colours) 

 

Fuzzy logic operators are a generalisation of crisp logic operators. In particular, we 
consider negation, intersection and union. The operator ! or t-norm operator (triangular 
norm) is the fuzzy equivalent of the binary intersection µA+B(x) = !( µA(x), µB(x)).  
The operator , or t-conorm operator (triangular conorm) is similar to the binary union: 
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µA-B(x) = ,( µA(x), µB(x)). We denote " (resp. ,) as operator ! (resp. ,) generalised to 
the n-ary case. Different operators can be used as a t-norm (min, product, etc.). They are 
associated with their dual operator for the t-conorm (e.g., max is the t-conorm for the min 
t-norm). As the min operator is idempotent, we use it for the t-norm and, consequently, 
the max operator will be our t-conorm. 

3.2 Principles and notations 

Our proposal of soft time constraints for sequential patterns is built by analogy with fuzzy 
sets. Thus, a sequence will no longer meet a constraint in a binary way because the user 
may relax these time constraints. Each constraint can then be regarded as a fuzzy set, 
with its membership function giving a temporal satisfaction degree. This degree is thus 
calculated for each possible value of that time constraint and tells the end user the extent 
to which the initially specified constraint value has been fulfilled. 

In order to fulfil the user’s needs and make our approach flexible, a minimum 
temporal satisfaction degree .x can be specified for constraint " of initial value xinit.  

As the satisfaction degree of constraints is based on the membership function of each 
constraint, specified coefficients are in the interval [0,1]. It is also possible to set a 
constraint with certainty: 

)* If .x = 0, the user wants constraint " to take each possible value; the temporal 
satisfaction degree will depend on the constraint value generating the sequence. 

)* If .x = 1, the specified minimum temporal satisfaction degree is 1, i.e., the user does 
not want the value of constraint " to vary. That constraint will be set at the initial 
value and will not change; all generated sequences will have a temporal satisfaction 
degree equal to 1. 

)* In all other cases, .x / ]0,1[ and the value x of constraint " will vary from its  
user-specified value xinit and a limit value x., for which the temporal satisfaction 
degree is . (x) = .x. 

Note that if the specified values for the minimum satisfaction degree of each time 
constraint is 1, we get back crisp time constraints and, thus, the notion of GSPs as 
introduced in Section 2.2. 

The useful limit values of time constraints (extreme values) first have to be 
determined. These values correspond to the variation on the whole search space (i.e., for 
.x = 0) and are computed from crisp time constraints (ii), (iii) and (iv) in Section 2.2. 
They are given by the limit value allowed by these definitions. 

The windowSize and maxGap constraints define the maximal gap between two 
itemsets. For any given object, the maximal value they can be set at is thus the duration 
between the first and last record. For the whole database, this common extreme value will 
thus be the maximal gap, over all objects, between the minimal and maximal record 
timestamp for the same object:  

M = max( ( ) ( )).
max mino o

o
timestamp r timestamp r

/
&

O
 

The minGap constraint defines the minimal gap between two consecutive itemsets.  
We have defined the limit value of this constraint by taking the crisp inequality it implies 
into account. As explained in Fiot et al. (2006a), the limit value for minGap is given by: 



   

 

   

   
 

   

   

 

   

    Softening the blow of frequent sequence analysis 33    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

max(min(min( ( 1) ( ))) 1,0).
oo r R

m timestamp r timestamp r
/ /

$ 0 & &
O

 

In the remainder of this section, we use the following notations to distinguish the  
three time constraints. Parameters wsinit, mginit and MGinit are the initial user-specified 
values for the constraints windowSize, minGap and maxGap and .ws, .mg and .MG are the 
minimum temporal satisfaction degrees associated with them. These coefficients enable 
the user to limit the time constraint variation according to his/her own requirements.  
The identifier ws (resp. mg or MG) denotes the variable associated with the windowSize 
(resp. minGap or maxGap) constraint and . (ws) (resp. . (mg) or . (MG)) denotes the 
satisfaction degree obtained by the value ws (resp. mg or MG values) of this variable. 

3.3 Extending time constraints to soft time constraints 
3.3.1 Soft windowSize 

The value ws of the windowSize constraint may vary from its user-specified value wsinit  
to its limit value M. This soft constraint is described with a fuzzy set for which the 
membership function (Equation 1) gives the accuracy for a specific value ws: 

1 if

1
( ) if .

0 else

init

init
init init

ws ws

M
ws ws ws ws M

ws M ws M
.

1 '
2
2$ & 3 '4 & &2
25

 (1) 

The user can then choose to allow the temporal satisfaction degree of the windowSize 
constraint to be somewhere between 1 and the lowest acceptable value .ws. This lowest 
degree will be attained for a value ws. > wsinit of ws.  

More specifically, this largest acceptable window size is given by: 

ws. = 6(wsinit – M) .ws + M7. (2) 

Example 5 Consider the two data sequences shown in Example 3 and the sequence 
s = < (l 2 3 4) >. We have M = max((7 – 1), (4 – 1)) = 6. Suppose that 
the user-specified time constraint parameters are: 

)* wsinit = 1 with .ws = 0.7, windowSize varies; applying Equation (2), 
we get ws. = 6(1 – 6) * 0.7 + 67 = 2. The value ws of windowSize 
will successively be 1 and 2 

)* mginit = 0 with .mg = 1, then mg does not vary 

)* MGinit = 7 with .MG = 1, then MG does not vary. 

For ws = 1, grouping the sessions of the first to third hour of data 
sequence Id1 in order to accept the candidate sequence s would violate 
the windowSize constraint. However, with ws = 2, we can indeed group 
them and this ws value, by Equation (1), yields a temporal satisfaction 
degree . (ws) = . (2) = 0.8. The other constraints are fulfilled as well, 
then data sequence Id1 supports candidate sequence s. For data 
sequence Id2, the sessions of the first and second hour are grouped 
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together. Note that the windowSize constraint is satisfied with  
ws = wsinit = 1 and the corresponding satisfaction degree is. (ws) = 1. 
The other constraints are also respected and data sequence Id2 
supports sequence s. 

3.3.2 Soft maxGap 

Like the windowSize constraint, the maxGap constraint value MG may vary from its  
user-specified value MGinit and its limit value M. 

This soft constraint is described with a fuzzy set whose membership function 
(Equation 3) gives the accuracy for a specific value MG: 

1 if 

1
( ) if .

0 else

init

init
init init

MG MG

M
MG MG MG MG M

MG M MG M
.

1 '
2
2$ & 3 '4 & &2
25

 (3) 

The user can then choose to allow the temporal satisfaction degree of the maxGap 
constraint to be somewhere between 1 and a lowest acceptable value .MG. This lowest 
degree will be attained for a value MG. > MGinit of MG. 

More specifically, this largest acceptable gap is given by: 

MG. = 6(MGinit – M) .MG + M7. (4) 

Example 6 Consider the two data sequences shown in Example 3 and the 
candidate sequence s = < (l 2 3 4) (7 8) >. Suppose that the  
user-specified time constraint parameters are: 

)* wsinit = 2 with .ws = 1, then ws does not vary. 

)* mginit = 0 with .mg = l, then mg does not vary. 

)* MGinit = 3 with .MG = 0.3, then maxGap is the only varying 
constraint. Applying Equation (4) to M = 6, we get MG. = 5.  
The value MG will successively be 3, 4 and 5. 

For data sequence Id1, sessions of the first to third hour, as well as the 
fifth and sixth hour, are grouped together in order to accept candidate 
sequence s. However, with MG = 3, the maxGap constraint is violated, 
as with MG = 4. With MG = 5, this constraint is satisfied and the 
temporal satisfaction degree is then . (MG) = . (5) = 0.3 (3). The other 
constraints are also fulfilled, then the data sequence Id1 supports 
candidate sequence s. For data sequence Id2, the records of the first 
and second hour are grouped together, meeting the maxGap constraint 
with MG = MGinit = 3 and the corresponding satisfaction degree is  
. (MG = 3) = 1. The other constraints are also fulfilled and data 
sequence Id2 supports sequence s. 
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3.3.3 Soft minGap 

The value mg of the minGap constraint may vary from its limit value m to its  
user-specified value mginit. This soft constraint is described with a fuzzy set whose 
membership function (Equation 5) gives the accuracy for a specific value mg: 

1 if

1
( ) if .

0 else

init

init
init init

mg mg

m
mg mg mg mg m

mg m mg m
.

1 8
2
2$ & ( 84 & &2
25

 (5) 

The user can then choose to allow the temporal satisfaction degree of the minGap 
constraint to be somewhere between the lowest acceptable value .mg and 1. This lowest 
degree will be attained for a value mg. < mginit of mg. 

More specifically, this smallest acceptable gap is given by: 

mg. = 9(mginit – m) .mg + m:. (6) 

Example 7 Consider the two data sequences shown in Example 3 and the 
candidate sequence s = < (l 2 3 4) (5 6) >. Suppose that the  
user-specified time constraint parameters are: 

)* wsinit = 2 with .ws = 1, then ws does not vary. 

)* mginit = 2 with .mg = 0, then minGap is the only varying constraint. 
Applying Equation (6) to m = 0, we get mg. = 0. The value mg will 
successively be 2, 1 and 0. 

)* MGinit = 7 with .MG = 1, then MG does not vary. 

For data sequence Id1, the sessions of hours 1, 2 and 3. The minGap 
constraint is not fulfilled with mg = 2, but it is with mg = 1. In this case, 
the satisfaction degree for minGap is . (mg) = . (1) = 0.5 (Equation 5). 
The other constraints are fulfilled, so data sequence Id1 supports 
sequence s. For the second data sequence, the sessions of hours 1  
and 2. The minGap constraint is not fulfilled while mg is greater  
than 0. mg = 0 yields, by Equation (5), a temporal satisfaction degree  
. (mg) = . (0) = 0. The other constraints are also satisfied and data 
sequence Id2 supports s. 

Note that these soft constraints are defined in Sections 3.3.1, 3.3.2 and 3.3.3 by  
using fuzzy sets where the temporal satisfaction degree is described by a linear 
membership function between the initial constraint value and its extreme value M or m. 
However, these functions could also be defined in a different way, e.g., by a step function 
or by a function representing the proportion of objects in the dataset meeting each 
constraint value. 
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3.4 Temporal accuracy of a sequence 

We now define the level of time constraint satisfaction for a sequence considering 
constraints (ii), (iii) and (iv) together. At the end of the mining task, we get a list of 
frequent sequences. For each object, each frequent sequence has been generated using 
specific time constraint values ws, mg and MG. These values are used to compute the 
satisfaction degree of each constraint. These satisfaction degrees are then combined into a 
global measure associated with the sequence. 

For an object o, the temporal accuracy of a sequence s is defined as the satisfaction 
degree yielded by the three time constraints considered simultaneously. It is calculated 
using a t-norm operator (!). For each object, several occurrences of s may appear.  
The occurrence satisfying the most the initial values (i.e., with the highest temporal 
satisfaction degree) is searched through the set ;o of subsequences of o using a t-conorm 
operator (,). 

We define the temporal accuracy of a sequence s = < s1…sn
 > for object o by the 

following equation: 

!(s, o) = ,s/;o("i/1,n(.ws(end-time(si) – start-time(si))), 
"i/2,n(.mg(end-time(si) – start-time(si – 1)), (7) 

.MG(end-time(si) – start-time(si – 1)))). 

For the whole dataset, the temporal accuracy of a sequence s is given by the average 
aggregation of each object accuracy, i.e.: 

1
( ) ( , ).

o

s s o
/

$ <
OO

! !  (8) 

Example 8 Consider the two data sequences from Example 3 and the frequent 
sequence s = < (1 2 3 4) (5 6) > with the following parameters for soft 
constraints: wsinit = 1, mginit = 2, MGinit = 4 and .ws = 0.6, .mg = 0.4 and 
.MG = 0.5. We still have M = 6 and m = 0. We use the min and max 
operators for the generalised t-norm (") and the generalised t-conorm 
(,), respectively. For data sequence Id1, s appears by grouping 
together the first to third hour on the one hand and the fifth and  
sixth hour on the other. Then, start-time(s1)= 1, end-time(s1) = 3,  
start-time(s2) = 5 and end-time(s2) = 6. It is the single occurrence of s 
in this data sequence. Thus, for Id1, the temporal accuracy of s is 
(details omitted): 

!(s, Id1) = min(.ws(2), .ws(l), min(.mg(l), .MG(5))) 
  = min(0.8, 1, min(0.5, 0.5)) 
  = 0.5. 

Then, the same computation is done for data sequence Id2. Similarly, 
we get !(s, Id2) = 0.5. The temporal accuracy of sequence s for the 
whole database is thus given by: 

( , 1) ( , 2)
( ) 0.5.

2
s Id s Id

s
0

$ $! ! !
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4 Graph for extended time constraints 

As we wanted our implementation of soft time constraints to be efficient and fully 
compatible with any sequential pattern mining approach, we developed our GETC 
algorithm using the same kind of data structure as the GTC algorithm proposed in  
Masseglia et al. (2004) and detailed in Section 2.3. The main idea is to transform the data 
sequence of an object into a sequence graph in which each path is a subsequence that 
fulfils the time constraints. The sequence graphs of the data sequences are then used to 
determine the frequent sequences by a sequential pattern mining algorithm. 

Since the handling of time constraints is done prior to and separate from the counting 
frequency step of a data sequence, we propose to use this method to implement the soft 
time constraints. The graph structure will thus be used both for sequential pattern mining 
and for computing the temporal accuracy of sequential patterns in a second step. 

4.1 General strategy of the algorithm 

Our approach includes all the fundamental principles of GTC. It contains a number of 
iterations. Each iteration finds all the frequent sequences of the same size. GETC is used 
as a preprocess for handling soft time constraints. Once a data sequence has been 
transformed into a sequence graph that fulfils the soft time constraints, frequent 
sequences are searched within the subsequence set of the sequence graph. As a result, 
using the sequence graph, checking the time constraints becomes useless during 
candidate parsing, i.e., only inclusion must be verified. Once the sequential patterns are 
extracted, the sequence graphs are weighted, then explored one last time to calculate the 
temporal accuracy of each GSP. 

4.2 Sequence graph building 

From an input data sequence d, the GETC algorithm (Algorithm 2) builds a sequence 
graph Gd(V, E) in which vertices are itemsets and paths represent the subsequences 
fulfilling the time constraints. First, each itemset of the input sequence is associated  
with a vertex. Then, the subfunction addWindowSize combines records in an attempt to 
meet the soft windowSize constraint. It adds to the graph any satisfactory combination as 
a new vertex. Vertices are allocated to ‘levels’ according to their end-time in order to 
reduce the time spent in checking gap constraints. The next step consists of building  
the edges that fulfil both the minGap and maxGap soft constraints. For each vertex, the 
first ‘level’ of vertices meeting the soft minGap constraint is thus retrieved. For each 
vertex of this set, the minGap constraint is fulfilled and the maxGap constraint is 
checked. If it is fulfilled, a new edge is built between both vertices. Some optimisation is 
done by the addEdge and propagate subfunctions to reduce the number of sequence 
inclusions. Finally, the remaining included subpaths are deleted from the graph by the 
subfunctions pruneMarked and convertEdges. All of these subfunctions are detailed in 
Fiot et al. (2006a). 

We have proven in Fiot et al. (2006a) that at the end of this process, GETC has  
built exactly all the longest sequences, fulfilling the soft time constraints windowSize, 
minGap and maxGap generated from the input data sequence. The GETC algorithm can  
 



   

 

   

   
 

   

   

 

   

   38 C. Fiot, A. Laurent and M. Teisseire    
 

    
 
 

   

   
 

   

   

 

   

       
 

thus be used as a preprocessing phase to handle soft time constraints before sequential 
patterns are mined. After this step, the candidate sequence support is computed on these 
sequence graphs. 

4.3 Temporal accuracy computation 

Once the sequence graphs have been built, we know which sequences are allowed  
by the time constraints and which are forbidden. However, some sequences fulfil crisp 
constraints while others are built only by applying soft constraints. Thus, their ‘quality’ is 
not the same. Therefore, we propose to calculate the temporal accuracy level of each 
longest path of the sequence graph (each maximal sequence) and to allocate it to each 
subsequence composing it. 

Algorithm 1 GETC 

 

In order to determine the time constraint values satisfied by the paths in the graph, each 
edge (x,y) is weighted by !(µmg(y.begin()-x.end()),µMG(y.end()-x.begin())) depending on 
the mg and MG values used to build this edge; each vertex is similarly weighted by µws. 
These weights are computed by the valueGraph function detailed in Fiot et al. (2006a). 
The temporal accuracy of a sequence is then given by Equation (5) in Section 3.4.  
This computation requires an additional iteration after sequential pattern mining to return 
each of them with its temporal accuracy. 

5 A short example 

Consider the dataset in Table 2 (from the data, M = 17 and m = 0) and the following 
parameters for soft time constraints: 
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)* for windowSize, wsinit = 2 and .ws = 0.86, then ws. = 4 

)* for maxGap, MGinit = 4 and .MG = 0.84, then MG. = 6 

)* for minGap, mginit = 2 and .mg = 0.5, then mg. = 1. 

Table 2 The dataset 

Timestamp 1 3 4 5 6 8 9 10 12 17 18 

Id1   1 – 2 3 3 4 4 4 – 5 6 7 8 

Id2 2 3 4 – – 5 6 – – – – – 

Id3 1 2 –   3 3 4 4 – 5 6 – – – – 

5.1 Sequence graph building 

The first step consists of building the sequence graph for data sequence Id1. First, the 
vertex set is initialised: each record is associated with one vertex. This is the first line  
of the graph in Figure 3. Then, the windowSize constraint is applied on each possible 
combination of vertices using addWindowSize. Only the combinations fulfilling the soft 
windowSize constraint (i.e., end-time(O1i)-start-time(O1i) ! ws. = 4) are kept. 

Figure 3 The sequence graph for Ol at the end of vertex set creation by addWindowSize 

 
Notes: denotes the building order. 

  VI denotes the sixth end-time ‘level’. 

Then, the edges fulfilling both the minGap and maxGap soft constraints are added  
to the graph using the main function and the propagate and addEdge subfunctions.  
The building of edges starts with the last vertex (7 8). The first level that can access (7 8) 
that fulfils minGap is Level VII, then we build an edge for each vertex in this level if 
maxGap is fulfilled. The first edge is then from (6) to (7 8). 

When a level cannot attain a vertex v because of minGap, we need to check if the 
vertices of this level can access the vertices that are successors of v. This is done by the 
function propagate. 

After this step, every subsequence of the initial data sequence meeting the three soft 
constraints is in the graph in Figure 4.1 
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Figure 4 The sequence graph for O1 after edge creation, showing the GETC edge creation order 

 

However, some inclusions2 may remain. The last step consists of deleting these 
inclusions using the pruneMarked subfunction. Once valued, the final sequence graph 
obtained from data sequence O1 is described by Figure 5. 

5.2 Temporal accuracy of extracted patterns 

The sequence graph of each data sequence is built from the database in Table 2 and  
the soft time constraints specified in the example statement. Then, sequential patterns  
are mined for. The GSPs obtained with minFreq = 70% are: < (3)(4 5) >, < (2 3 4) >,  
< (2 3)(4)(5 6) >, < (2)(4 5) >, < (3 4)(5) > and < (3 4)(6) >, each having a 100% 
frequency. To analyse their relevance according to the user’s needs, their temporal 
accuracy is computed. To do so, the sequence graphs are weighted, as described  
in Section 4.3. The vertices built with ws = 0,1 or 2 have a weight of 1, while those  
built with ws = 3 have a weight of 0.93 and those built with ws = 4, a weight of 0.86.  
For minGap, the edges built with mg = 1 have a weight of 0.5 and a weight of 1 if  
mg = 2. For maxGap, the weight is 1 if MG ! 4, 0.92 if MG = 5 and 0.84 if MG = 6.  
The resulting weighted sequence graph for O1 is shown in Figure 5. 

Finally, these weights are used to compute the temporal accuracy of extracted 
patterns. For instance, the temporal accuracy for sequential pattern < (3 4) (5) > is given 
by the average temporal accuracy of supporting sequences in the graph of each Id: !Id1 = 
0.84, !Id2 = 1 and !Id3 = 1, then = = 0.95. 

Once patterns have been obtained with their temporal precision, we can more 
accurately analyse the constraints used to generate them. The closer the precision is to 1, 
the more the initial user-specified values correspond to the timestamps in the database. 
On the contrary, a low precision value indicates that the constraints are not well suited to 
this dataset. 
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Figure 5 The weighted sequence graphs for data sequence Id1 

 

6 Experiments 

In this section, we compare the performances of the GETC algorithm for soft constraints 
with those of the GTC algorithm for crisp constraints. In Section 6.1, we compare the 
behaviours of these algorithms, while also using an implementation of PSP handling time 
constraints. In a second phase, we compare the patterns extracted using either soft or 
crisp constraints, first with a synthetical dataset then with web access logs (Section 6.2). 
All of these experiments were carried out on a PC with a Linux 2.6.7 OS, CPU 2,8 GHz 
and 2 GB of DDR memory. All the algorithms were implemented in C++ and use the 
PSP principle and structure to search for sequential patterns. 

6.1 Synthetical datasets: GETC overall behaviour 

The results presented here were obtained through processing several synthetical  
randomly generated datasets, with each containing approximately 1000 data sequences of 
20 records on average. Each of these records contains an average of 15 items chosen 
among 1000 possible ones. 

The first phase involved comparing runtimes without time constraints  
(windowSize = 0, minGap = 0 and maxGap = ") for GTC and GETC, with a minimum 
accuracy equal to 1 for each soft constraint. We thus compared the runtime of our 
algorithm with those of PSP and GTC and showed that the GETC behaviour is similar to 
that of GTC, i.e., while extracting the same set of patterns with GTC or GETC, runtime 
performances are quite the same. 

We then repeated these measures by processing crisp time constraints (with an 
accuracy of 1 for GETC) to compare the behaviours of GETC and GTC. Figure 6(a) 
shows the runtime pattern as a function of the windowSize value. GETC has a linear 
behaviour close to that of the GTC. The difference is due to the temporal accuracy 
calculation step, by which the time increases slightly with windowSize because the 
number of vertices in the sequence graphs increases accordingly. Finally, Figure 6(b) 
shows (for GETC alone) the runtime pattern according to the accuracy, for a minimum 
frequency of 0.37. Note that the runtime reaches a maximum value which corresponds to 
the extreme values of the soft time constraints M and m. 
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Figure 6 The runtimes 

 
Notes: (a) as a function of windowSize with minGap = 2, maxGap = " and  

minFreq = 0.35 (for GETC, .ws = .MG = .mg =1); (b) as a function of accuracy 
depending on several time constraints (minFreq = 0.37); (c) as a function of 
minFreq regarding soft time constraints with accuracy equal to 1 or not. 

The second part of our experiments on synthetical datasets dealt with an analysis of the 
sequential patterns extracted by GETC compared to those extracted by GTC,3 according 
to the accuracy required for the various soft constraints. Figure 6(c) presents the runtimes 
for GTC and GETC according to the minimum frequency, depending on the sample 
values chosen for each parameter. These values were calculated so that the time 
constraints used for GTC (crisp constraints) and GETC with an accuracy of 1 (simulated 
crisp constraints) correspond to the GETC limit values (soft constraints) with a precision 
that differs from 1. These parameters are respectively: 

)* GTC with ws = 4, mg = 0 and MG = 10 

)* GETC with . = 1, with wsinit = 4, mginit = 0 and MGinit = 10 

)* GETC with . = 0.75, with wsinit = 0, mginit = 1 and MGinit = 5, yielding wsp = 4,  
mg. = 0 and MG. = 10. 

Note that under these conditions, GETC with soft time constraints is as fast as GTC with 
the same constraint limit values although, in addition to retrieving the same sequential 
patterns, it uncovers their temporal accuracy. 

Besides, if we ignore the optimal value of one or several time constraints, it could be 
interesting to use GETC with a minimum accuracy level different from 1 to extend the 
search space. An analysis of the retrieved patterns and their accuracy can inform us about 
a more adequate time constraint value. We compared the patterns extracted by GTC with 
the patterns extracted by GETC with the same initial time constraints. The number of 
detected patterns is then greater, as shown in Figure 7(a). By classifying them in 
decreasing order of accuracy, we got all the patterns extracted by GTC (which have an 
accuracy of 1), then a list of patterns of lower temporal accuracies corresponding to the 
soft constraints. This histogram also shows that for this synthetical dataset, the constraints 
allowing us to extract the largest number of patterns correspond to an accuracy of 
between 0.8 and 0.9. 
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Figure 7 Pattern distribution depending on their temporal accuracy on synthetical data (wsinit = 0, 
mginit = 1, MGinit = 5 and .ws = .mg = .MG = 0.5) (a); Pattern distribution depending on 
their temporal accuracy on web access logs (wsinit = 0, mginit = 0, MGinit = 0 and  
.ws = .mg = 1, .MG = 0.75, minFreq = 0.2 (b) 

  

6.2 Soft constraints to mine atypical web accesses 

The aim of these experiments was to show that the GSPs extracted under  
soft time constraints bring more precise information than those obtained with crisp  
time constraints. 

In these experiments, the access logs from a private photo gallery website have been 
mined to analyse atypical behaviours. This website runs on an Apache server and uses a 
mySQL database accessed through PHP. It is divided into two parts: one is accessible 
anonymously and the other requires identification via login and password. We analysed 
the error logs and isolated the access logs corresponding to these errors and also those 
corresponding to non-usual access (i.e., accesses not browsing pages or not identified by 
web browsers). These isolated access logs are globally called atypical access logs. 

These atypical access logs are preprocessed, with one log per record: the object ID  
is the requesting IP, the items are the connection request, request type, returned error  
and connecting software and the timestamp is the access date measured in seconds since 
1 January 1970 at 00:00:00. 

Example 9 Table 3 represents the accesses attempted on 1 January 1970  
at 00:00:05 AM from the IP encoded by 253 to URL 
‘/PictureGallery/home.htm’ with a request ‘GET’ by the software 
‘Mozilla/4.0’. The error returned was Error 404 (page does not exist). 
This access is followed 6 sec later by the same request to URL 
‘/PictureGallery/index.htm’. The software was not identified and no 
error was returned.  
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Table 3 Examples of access logs 

IP id Time Request URL Error Software 

253  5 GET ‘/PictureGallery/home.htm’  404 ‘Mozilla/4.0’ 

253 11 GET ‘/PictureGallery/index.htm’ – – 

Our atypical access log represents about 22 000 connection attempts over approximately 
one year from 510 different IPs to 1181 different URLs. First, we compared the 
performances of GETC with those of GTC. We found the same global runtime behaviour 
for both algorithms, even though GETC still is a little slower than GTC because of the 
temporal accuracy computation. The advantage of GETC shown by these experiments  
is the additional information given by the temporal accuracy. In fact, as in the second  
step of our experiments on synthetical datasets, we applied crisp constraints to GTC  
that correspond to the initial value set for GETC and we compared the extracted 
sequential patterns. 

First, we had to choose the values to be specified as initial ones. Since our mining 
goal was to describe atypical behaviours, we decided to identify nonhuman profiles,  
i.e., program-generated profiles. This kind of profile can be characterised, for example, 
by repeated requests over a short period. In this sense, a sequence should be composed  
of itemsets that have been recorded over one second (wsinit = 0 and .ws = 1); no grouping 
over records is allowed. Similarly, the minimum gap between two itemsets will take  
its minimum possible value without varying (mginit = 0 and .mg = 1). The constraint 
corresponding to the behaviour we want to highlight is maxGap. Automated requests can 
be viewed as requests that are too close to be done by human beings, so the maximum 
gap separating two itemsets should be the shortest possible one: maxGap=1 sec. 
However, we wanted to be sure that we would not ignore other profiles, so we  
softened this constraint by specifying a temporal accuracy of less than 1 for maxGap, 
here .MG = 0.75. We thus used the flexibility of the maxGap soft constraint to more 
precisely describe the atypical profiles. 

Then, we compared the different results obtained by varying the temporal accuracy  
of MG from 1 (the same results for GETC and GTC) to 0.75 (more patterns extracted  
by GETC). As for synthetical data, we obtained more patterns thanks to our use of soft 
constraints, with part of them being the same as those discovered with crisp constraints. 
Figure 7(b) shows the number of patterns for each temporal accuracy extracted by GETC 
and those extracted by GTC: every pattern extracted by GTC is also found by GETC  
with a temporal accuracy of 1 and vice versa. Moreover, GETC uncovers some additional 
patterns whose temporal accuracy is less than 1. 

Regarding the sequential patterns that are found by both algorithms, the advantage of 
using GETC instead of GTC is the additional information given by the temporal accuracy 
of each sequence. We thus got more relevant information, since each descriptive pattern 
for atypical behaviour is provided with its temporal accuracy. Here is the description of 
some atypical behaviours we found with both algorithms: 

)* The bot pxyscand sent five CONNECT requests to URL 1185. Each time, it received 
Error 405 (unauthorised method) (<(“CONNECT”, URL 1185, 405 Error, 
“pxyscand/2.1”)...(3 times)...(“CONNECT”, URL 1185, 405 Error, 
“pxyscand/2.1”)>). 
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)* One sequential pattern observed with both GTC and GETC is the insistent access to 
the URL ‘/mambo...’, which does not exist. It thus seems to be a hacking attempt 
(<(“/cvs/mambo/index2.php?_REQUEST...”, 404 Error)(“/cvs/mambo/index2.php? 
_REQUEST...”, 404 Error)>). 

Regarding the additional patterns uncovered by GETC but not found by GTC, two 
examples are: 

)* The software Pompös tried to retrieve some non-existent pages: <(“cvs/index2.php? 
request...”,404 Error,Pompos)...once...(“cvs/index2.php?request...”,404 
Error,Pompos)>. This sequential pattern has a temporal accuracy of 0.95 and its 
frequency is 35%. 

)* One typical nonhuman access is bot scanning, in particular, from Google’s Image 
Bot. This bot does not appear when we use crisp constraints. When analysing the 
access logs, we see that the average gap between two requests is 2 sec 
<(“/PictureGallery/thumbnail.php3?...”,Googlebot-Image/1.0)...once... 
(“/PictureGallery/thumbnail.php3?...’,Googlebot-Image/1.0)...>. 

7 Conclusion and prospects 

The GSPs presented in Srikant and Agrawal (1996) redefine the inclusion of sequences in 
a broader way by introducing time constraints. These constraints, which allow the user to 
gather records or separate them into different sequences, can highlight less immediate 
knowledge and closer to his/her needs. However, this definition is still too rigid, 
particularly if the user has only a vague idea of the time constraints which bind his data. 
In this article, we thus proposed to soften these time constraints for GSPs, by using  
some fuzzy set theory principles. We thus give more flexibility to the specification  
of time constraint parameters. The implementation of our approach is based on the 
construction of sequence graphs to handle time constraints during the sequential pattern 
mining process. We showed the efficiency of our GETC algorithm to solve the  
problem of mining for generalised sequences under crisp or soft time constraints. We also 
highlighted the flexibility offered by our soft time constraints, as well as the advantages 
of the temporal accuracy measure to analyse sequential patterns by running experiments 
on both synthetical and real-life datasets. Finally, we intend to extend the fuzzy 
sequential patterns presented in Fiot et al. (2006b) to GSPs with time constraints (crisp or 
soft) in order to mine quantitative timestamped data under time constraints. 
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Notes 
1 To improve graph legibility, in Figure 4, some vertices have been moved up from where they 

were in Figure 3. 

2 The potentially included subsequences are shown with dashlines in Figure 4. The potentially 
included vertices are marked (*) during the edge creation step. 

3 The patterns discovered using GTC are the same as would be obtained by DELISP. The only 
difference comes from the way both algorithms run. 


