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Branchwidth of graphic matroids.

Frédéric Mazoit and Stéphan Thomassé

Abstract
Answering a question of Thomas [5], also cited in Geelen, Gerards, Robert-
son and Whittle [1], we prove that the branchwidth of a bridgeless graph is
equal to the branchwidth of its cycle matroid. Our proof is based on branch-
decompositions of hypergraphs. By matroid duality, a direct corollary of this
result is that the branchwidth of a bridgeless planar graph is equal to the
branchwidth of its planar dual. This consequence was a direct corollary of a
result by Seymour and Thomas [4].

1 Introduction.

The notion of branchwidth was introduced by Robertson and Seymour in their
seminal paper Graph Minors X [3]. Very roughly speaking, the goal is to decompose
a structure S along a tree T in such a way that subsets of S corresponding to disjoint
branches of T are pairwise as disjoint as possible. One can define the branchwidth of
various structures like graphs, hypergraphs, matroids, submodular functions... Our
goal in this paper is to prove that the definitions of branchwidth for graphs and
matroids coincide in the sense that the branchwidth of a bridgeless graph is equal
to the branchwidth of its cycle matroid. Let us now define properly these notions.

Let H = (V,E) be a graph, or a hypergraph, and (E1, E2) be a partition of E.
The border of (E1, E2) is the set of vertices which belong to both an edge of E1 and
an edge of E2. We denote it by δ(E1, E2), or simply by δ(E1).

A branch-decomposition T of H is a ternary tree T and a bijection from the set
of leaves of T into the set of edges of H. Practically, we simply identify the leaves
of T with the edges of H. Observe that every edge e of T partitions T \ e into
two subtrees, and thus corresponds to a bipartition of E, called e-separation. More
generally, a T -separation is an e-separation for some edge e of T . We will often
identify the edge e of T with the e-separation, allowing us to write, for instance,
δ(e) instead of δ(E1, E2), where (E1, E2) is the e-separation. Let T be a branch-
decomposition of H. The width of T , denoted by w(T ), is the maximum value of
|δ(e)| for all edges e of T . The branchwidth of H, denoted by bw(H), is the minimum
width of a branch-decomposition of H. A branch-decomposition achieving bw(H)
is optimal.

Let us now turn to matroids. Let M be a matroid on base set E with rank
function r. The width of every non-trivial partition (E1, E2) of E is wm(E1, E2) :=
r(E1) + r(E2) − r(E) + 1. When T is a branch-decomposition of M , i.e. a ternary
tree whose leaves are labelled by E, the width wm(T ) of T is the maximum width of
a T -separation. Again, the branchwidth bwm(M) of M is the minimum width of a
branch-decomposition of M . One nice fact about branchwidth is that it is invariant
under matroid duality (recall that the bases of the dual matroid M∗ of M are the
complement of the bases of M). Indeed, since rM∗(U) = |U |+rM (E\U)−rM (E) for
all U ⊆ E, wm(E1, E2) is the same in M and in M∗. Remark that since branchwidth
is a measure of how complex the matroid is, it is a good fact that M and M∗ have
the same branchwidth.
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Having defined both the branchwidth of a graph and of a matroid, a very natural
question is to compare them when the matroid M is precisely the cycle matroid of
a graph G, i.e. the matroid MG which base set is the set of edges of G and which
independent sets are the acyclic subsets of edges. A first observation is that they
differ, for instance the branchwidth of the path of length three is 2 whereas the
branchwidth of its cycle matroid is 1. The inequality bw(MG) ≤ bw(G) always
holds, and simply comes from the fact that wm(E1, E2) ≤ |δ(E1, E2)| for every
partition of E which has a nonempty border. To see this, define, when H = (V,E)
is a hypergraph, a component of E to be a minimal - with respect to inclusion -
nonempty subset C ⊆ E such that δ(C) = ∅. Let F be a subset of E. We denote by
c(F ) the number of components of the subhypergraph of H spanned by F , i.e. the
hypergraph (V (F ), F ). The hypergraph H is connected if c(E) = 1 and is moreover
bridgeless if c(E \e) = 1 for all e ∈ E (since our definition is based on edges, we may
have vertices with degree 0 or 1 in a connected bridgeless hypergraph). Observe now
that when (E1, E2) is a separation of the edges of a graph, we have

wm(E1, E2) = r(E1) + r(E2)− r(E) + 1 = n1 − c(E1) + n2 − c(E2)− n + c(E) + 1,

where n1, n2, n are the number of vertices respectively spanned by E1, E2, E. In
particular,

wm(E1, E2) = |δ(E1, E2)|+ c(E) + 1− c(E1)− c(E2) ≤ |δ(E1, E2)|,

since c(E) + 1− c(E1)− c(E2) ≤ 0 when δ(E1, E2) is not empty.
Let us define a new branchwidth, the matroid branchwidth bwm(H) of a hy-

pergraph H in which the separations (E1, E2) are evaluated with the function
wm(E1, E2) = |δ(E1, E2)|+1+c(E)−c(E1)−c(E2) instead of the function |δ(E1, E2)|.
We also write wm(E1) instead of wm(E1, E2). In particular, when G is a graph, we
have bwm(G) = bwm(MG).

The main result of this paper, Theorem 1, is that when H is connected and
bridgeless, there exists a branch-decomposition T of H achieving bwm(H) such that
every T -separation (E1, E2) is such that c(E1) = c(E2) = 1.

Thus we have w(T ) = wm(T ), and since bwm(H) ≤ bw(H) and T is optimal,
we have bwm(H) = bw(H). This implies in particular that the branchwidth of a
bridgeless graph is equal to the branchwidth of its cycle matroid. Moreover, the case
bw(G) > bwm(MG) happens if and only if the graph G has a bridge, bwm(MG) = 1
and bw(G) = 2. In other words G is a tree which is not a star.

Another consequence of our result concerns planar graphs. The key-fact here is
that planar duality corresponds to matroid duality, i.e. when G is planar and G∗

is the planar dual of G, we have (MG)∗ = MG∗ . Therefore, when G is a planar
bridgeless graph, we derive:

bw(G) = bwm(MG) = bwm((MG)∗) = bwm(MG∗) = bw(G∗).

Which is a new proof of the fact that for bridgeless graphs, the branchwidth
is invariant under taking planar duality. The first proof of this result was a direct
corollary of a result from Seymour and Thomas in [4].

The paper is organized as follows. In Section 2 and 3, we analyze the properties
of a possible minimal counterexample H to our main theorem. We get more and
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more structure, step by step. At the end of Section 3, the hypergraph H is very
constrained, tripartite, triangle-free, etc..., but no further step seems to conclude.
The contradiction is achieved via a particular separation of H. The existence of
such a separation relies on a (technical) partition lemma on multigraphs, the proof
of which is postponed in Section 4.

Unless stated otherwise, we always assume that T is a branch-decomposition of
a hypergraph H = (V,E). Also, when speaking about width, branchwidth, etc, we
implicitely mean the matroid one.

2 Faithful branch-decompositions.

Let (E1, E2) be a T -separation. The decomposition T is faithful to E1 if for
every component C of E1, the partition (C,E \ C) is a T -separation. The border
graph GT has vertex set V and contains all edges xy for which there exists a T -
separation e such that {x, y} ⊆ δ(e). A branch-decomposition T ′ is tighter than T
if wm(T ′) < wm(T ) or if wm(T ) = wm(T ′) and GT ′ is a subgraph of GT . Moreover,
T ′ is strictly tighter than T if T ′ is tighter than T , and T is not tighter than T ′.
Finally, T is tight if no T ′ is strictly tighter than T .

Lemma 1 Let (E1, E2) be a partition of E. For any union E′
1 of connected compo-

nents of E1 and E2, we both have δ(E′
1) ⊆ δ(E1) and wm(E′

1) ≤ wm(E1).

Proof. Clearly, δ(E′
1) ⊆ δ(E1). Moreover, every vertex of δ(E1) belongs to one

component of E1 and one component of E2. Therefore, if C is a component of E′
1

which is the union of k components of E1 and E2, there are at least k − 1 vertices
of C \ δ(C) which belong to δ(E1), In all, the weight of the separation increased by
k − 1 since we merge k components into one, but it also decreased by at least k − 1
since we lose at least that many vertices on the border. Since this is the case for
every component of E′

1 and of E \ E′
1, we have wm(E′

1) ≤ wm(E1).

Lemma 2 Let (E1, E2) be an e-separation of T . Let T1 be the subtree of T \ e with
set of leaves E1. If T is not faithful to E1, we can rearrange T1 in T to form a
tighter branch-decomposition T ′ of H which is faithful to E1.

Proof. Fix the vertex e ∩ T1 as a root of T1. Our goal is to change the binary
rooted tree T1 into another binary rooted tree T ′

1 . For every connected component
C of E1, consider the subtree TC of T1 which contains the root of T1 and has set
of leaves C. Observe that TC is not necessarily binary since TC may contain paths
having internal vertices with only one descendant. We simply replace these paths by
edges to obtain our rooted tree T ′

C . Now, consider any rooted binary tree BT with
c(E1) leaves and identify these leaves to the roots of T ′

C , for all components C of
E1. This rooted binary tree is our T ′

1 . We denote by T ′ the branch-decomposition
we obtain from T by replacing T1 by T ′

1 . Roughly speaking, we merged all subtrees
of T1 induced by the components of E1 together with T \ T1 to form T ′. Let us
prove that T ′ is tighter than T . For this, consider an edge f ′ of T ′. If f ′ /∈ T ′

1 ,
the f ′-separations of T and T ′ are the same. If f ′ ∈ BT , by Lemma 1, we have
wm(f ′) ≤ wm(e) and δ(f ′) ⊆ δ(e), thus T ′ is tighter than T . So the only case we
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have to care of is when f ′ is an edge of some tree T ′
C , where C is a component of

E1. Recall that f ′ corresponds to a path P of TC . Let f be any edge of P . Let
(F,E \ F ) be the f -separation of T , where F ⊆ E1. Therefore, the f ′-separation of
T ′ is

(
F ∩C,E \ (F ∩C)

)
. Since F is a subset of E1, the connected components of F

are subsets of the connected components of E1. Thus F ∩C is a union of connected
components of F . By Lemma 1, we have δ(f ′) ⊆ δ(f) and wm(f ′) ≤ wm(f).

We have proved that w(T ′) ≤ w(T ) and that GT ′ is a subgraph of GT , thus T ′

is tighter than T .

3 Connected branch-decompositions.

Let F ⊆ E be a set of edges such that c(F ) = 1. The hypergraph on vertex
set V and edge set (E \ F ) ∪ {V (F )} is denoted by H ∗ F . In other words, H ∗ F
is obtained by merging the edges of F into one edge. A partition (E1, E2) of E is
connected if c(E1) = c(E2) = 1. A branch-decomposition T is connected if every
T -separation is connected.

Lemma 3 If T is a tight branch-decomposition of a connected hypergraph H, every
T -separation (E1, E2) is such that E1 or E2 is connected.

Proof. Suppose for contradiction that there exists a T -separation (E1, E2) such
that neither E1 nor E2 is connected. By Lemma 2, we can assume that T is faithful
to E1 and to E2. Let C1 and C2 be respectively the sets of components of E1 and
E2. Consider the graph on set of vertices C1 ∪ C2 where C1C2 is an edge whenever
C1 ∈ C1 and C2 ∈ C2 have nonempty intersection. This graph is connected since H
is connected and is not a star since both E1 and E2 are not connected. Thus, it has
a vertex-partition into two connected subgraphs, each having at least two vertices.
This vertex-partition corresponds to a partition (C′1, C′2) of C1 ∪ C2.

Consider any rooted binary tree BT with |C′1| leaves. Since every C ∈ C′1 is an
element of C1 ∪ C2 and T is faithful to E1 and to E2, (C,E \ C) is an e-separation
of T . We denote by TC the tree of T \ e with set of leaves C. Root TC with the
vertex e ∩ TC in order to get a binary rooted tree. Now identify the leaves of BT
with the roots of TC , for C ∈ C′1. This rooted tree is our T ′

1 . We construct similarly
T ′

2 . Adding an edge between the roots of T ′
1 and T ′

2 gives the branch-decomposition
T ′ of H. By Lemma 1, wm(T ′) ≤ wm(T ) and GT ′ is a subgraph of GT . Let us now
show that GT ′ is a strict subgraph of GT . Indeed, since C′1 is connected and has
at least two elements, it contains C1 ∈ C1 and C2 ∈ C2 such that V (C1) ∩ V (C2) is
nonempty. By construction, every vertex x of V (C1)∩ V (C2) is such that x /∈ δ(C′1)
and x ∈ δ(C1). Similarly, there is a vertex y spanned by C′2 such that y /∈ δ(C′2) and
y ∈ δ(C2). Thus xy is an edge of GT but not of GT ′ , contradicting the fact that T
is tight.

Theorem 1 For every branch-decomposition T of a connected hypergraph H, there
exists a tighter branch-decomposition T ′ such that for every T ′-separation (E1, E2)
with c(E1) > 1, E1 consists of components of H \ e, for some e ∈ E2. In particular,
if H is bridgeless, it has an optimal connected branch-decomposition.
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Proof. Let us prove the theorem by induction on |V | + |E|. The statement is
obvious if |E| ≤ 3, so we assume now that H has at least four edges. Call achieved a
branch-decomposition satisfying the conclusion of Theorem 1. If T is not tight, we
can replace it by a tight branch-decomposition tighter than T . So we may assume
that T is tight.

If there is an edge e ∈ E such that H \ e is not connected, we can assume by
Lemma 2 that T is faithful to E \ e. Let E1 be a connected component of E \ e.
Let T1 be the branch-decomposition induced by T on E1 ∪ e. Let also T2 be the
branch-decomposition induced by T on E \E1. Observe that both E1∪e and E \E1

are connected, so by the induction hypothesis, there exists two achieved branch-
decompositions T ′

1 and T ′
2 , respectively tighter than T1 and T2. Identify the leaf e

of the trees T ′
1 and T ′

2 , and attach a leaf labelled by e to the identified vertex. Call
T ′ this branch-decomposition of H. Observe that it T ′ is tighter than T . Moreover,
since both T ′

∞ and T ′
∈ are achieved, T ′ is also achieved.

So we assume now that H is bridgeless. We can also assume that all the vertices of
H have degree at least two, since we can simply delete the vertices of H with degree
0 or 1, and apply induction. The key-observation is that if there is a connected
T -separation (E1, E2) with |E1| ≥ 2 and |E2| ≥ 2, we can apply the induction
hypothesis on H ∗ E1 and H ∗ E2 and merge the two branch-decompositions to
obtain an optimal connected branch-decomposition of H. Therefore, we assume
that every T -separation (E1, E2) with |E1| ≥ 2 and |E2| ≥ 2 is such that E1 or E2

is not connected. We now orient the edges of T . If (E1, E2) is an e-separation such
that E2 is connected and |E2| > 1, we orient e from E1 to E2. Since H is bridgeless,
every edge of T incident to a leaf is oriented from the leaf. By Lemma 3, every
edge has at least one orientation. And by the key-observation, every edge of T has
exactly one orientation.

This orientation of T has no circuit, thus there is a vertex t ∈ T with outdegree
zero. Since every leaf has outdegree one, t has indegree three. Let us denote by
A,B, C the set of leaves of the three trees of T \ t. Observe that by construction,
A∪B, A∪C and B ∪C are connected. By Lemma 2, we can assume moreover that
T is faithful to A,B and C. We claim that A is a disjoint union of edges, i.e. the
connected components of A are edges of H. To see this, assume for contradiction
that a component CA of A is not an edge of H. Since T is faithful to A, (CA, E \CA)
is a T -separation. But this is simply impossible since B∪C being connected, E \CA

is also connected, against the fact that every edge of T has a unique orientation. So
the hypergraph H consists of three sets of disjoint edges A,B, C. Call this partition
the canonical partition of T . Call (A,E \ A), (B,E \ B) and (C,E \ C) the main
T -separations. Note that the width of every other T -separation is at most bwm(H).
Since every vertex of H belongs to two or three edges, it is spanned by at least two
of the sets δ(A), δ(B), δ(C). In particular GT is a complete graph, and thus every
optimal branch-decomposition of H is tighter than T . Therefore, every optimal
branch-decomposition of H has a canonical partition, otherwise we can conclude by
induction. Set δAB := |δ(A)∩ δ(B)|, δAC := |δ(A)∩ δ(C)|, δBC := |δ(B)∩ δ(C)| and
δABC := |δ(A) ∩ δ(B) ∩ δ(C)|. We now prove some properties of H.

1. Two of the sets A,B, C have at least two edges. Indeed, assume for contra-
diction that A = {a} and B = {b}. Since |E| ≥ 4, there are at least two edges
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in C. Let c ∈ C. Observe that c intersects both a and b since A ∪ C and
B ∪ C are connected. Assume without loss of generality that |a ∩ c| ≥ |b ∩ c|.
Now form a new branch-decomposition T ′ by moving c to A, i.e. T ′ has a
separation (A ∪ c,B ∪ (C \ c)) and then four branches with respective leaves
A, c, B, (C \ c). We have

wm(A∪ c,B∪ (C \ c)) ≤ |δ(A∪ c)| = |δ(A)|+ |b∩ c|− |a∩ c| ≤ |δ(A)| = wm(A).

In particular T ′ is tighter than T , and since the T ′-separation (A∪c,B∪(C\c))
is connected and both of its branches have at least two vertices, we can apply
induction to conclude.

2. Every set A,B, C have at least two edges. Indeed, assume for contradiction
that A consists of a single edge a. Let b be an edge of B. If |b∩δ(C)| ≤ |b∩a|, we
can as previously move b to A in order to form a tighter branch-decomposition
T ′. If moreover (B ∪ C) \ b is connected, we are done since we now have a
connected separation (A∪ b, (B ∪C) \ b), on which we can apply induction. If
(B∪C)\b is not connected, the canonical partition of T ′ must be A, b, (B∪C)\b
since all of these pair of branches are connected. But this is impossible since
(B ∪ C) \ b does not consist of disjoint edges, which should be the case in
a canonical partition. Call |b ∩ δ(C)| − |b ∩ a| the excess of an edge b of B.
Similarly, call |c ∩ δ(B)| − |c ∩ a| the excess of an edge c ∈ C. Let s be the
minimum excess of an edge es of B ∪ C. Observe that s ≥ 1 and that every
b ∈ B satisfies |b ∩ δ(C)| ≥ |b ∩ a| + s. Thus, summing for all edges of B,
we obtain δBC ≥ δAB + s|B|. Similarly, δBC ≥ δAC + s|C|. Note also that
bwm(H) ≥ wm(C) = δBC + δAC − δABC − |C| + 1 and bwm(H) ≥ wm(B) =
δBC + δAB − δABC − |B|+ 1. In all

2 bwm(H) ≥ 2δBC − 2δABC + δAC − |C|+ δAB − |B|+ 2.

Then 2 bwm(H) ≥ δAB +s|B|+δAC +s|C|−2δABC +δAC −|C|+δAB−|B|+2.
Finally, bwm(H) ≥ δAC + δAB − δABC + 1 + ((s− 1)|C|+ (s− 1)|B|)/2. Since
|δ(A)| = δAC + δAB − δABC , we have bwm(H) ≥ |δ(A)| + s. But then we can
move es to A to conclude since |δ(A∪ es)| ≤ bwm(H). Observe that canonical
partitions A,B, C now satisfy that A,B and C are disconnected.

3. We have bwm(H) = wm(A). If not, pick two edges a, a′ of A and merge them
together. The hypergraph we obtain is still connected and bridgeless, and
the branch-decomposition still has the same width. Apply induction to get
an achieved branch-decomposition. Then replace the merged edge by the two
original edges. This branch-decomposition T ′ is optimal but does not have
a disconnected canonical partition. Thus we can apply induction. Similarly,
bwm(H) = wm(B) = wm(C).

4. We have bwm(H) ≥ β + 1, where β is the maximum size of an edge of H.
Observe that H has no edge of size one. Indeed if such an edge e belongs to,
say, A, it is also included in another edge, say in B. But then moving e to B
would give our conclusion. So the size of an edge of H is at least two. Assume
for instance that e ∈ A has size β. Since A has at least one component of size
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β and one of size 2, we have bwm(H) = wm(A) = |δ(A)|−c(B∪C)−c(A)+2 =
|δ(A)| − |A|+ 1 ≥ β + 1.

5. We have δABC = 0. Indeed, suppose for contradiction that there exists a vertex
z in δ(A) ∩ δ(B) ∩ δ(C). Consider the hypergraph Hz obtained from H by
removing the vertex z from all its edges. Observe that Hz is connected since
z is incident to three edges and H is bridgeless. The branch-decomposition T
induces a branch-decomposition Tz of Hz having width at most wm(T ) − 1.
We apply induction on Tz to obtain an achieved branch-decomposition T ′

z of
Hz. Now add back the vertex z to the edges of Hz and call T ′ the branch-
decomposition obtained from T ′

z . Let us show that T ′ is optimal. Observe
that if a T ′

z -separation (E1, E2) is connected, adding z will raise by at most
one its width in T ′. Moreover if a T ′

z -separation (E1, E2) is not connected,
say c(E2) > 1, adding z can raise by at most two its width in T ′ (either by
merging three components of E2 into one, or by merging two and increasing
the border by one). Since T ′

z is achieved, E2 is a set of components of E \ e for
some edge e of Hz. But then in T ′

z , we have wm(E1, E2) ≤ |δ(E2)| − 3 + 2 ≤
|e|−1 ≤ β−1 ≤ bwm(H)−2, and thus wm(E1, E2) ≤ bwm(H) in T ′. Therefore
T ′ is optimal. Moreover every T ′-separation (E1, E2) is connected. Indeed,
if (E1, E2) is connected in T ′

z , we are done. If E1 is not connected in T ′
z ,

E1 consists of components of Hz \ e, for some edge e of Hz. But since H is
bridgeless, every component of E1 in H must contain z, otherwise they would
be components of H \ e. Consequently E1 is connected in H.

6. Every edge of H is incident to at least four other edges. Indeed, assume for
contradiction that an edge a of A is incident to only one edge b of B and at
most two edges of C (the case where a is only incident to edges of C is obvious,
we just move a to C). Moving a to B increases wm(B) by |a∩δ(C)|−|a∩b| and
does not increase wm(A) and wm(C). Therefore, if |a∩ δ(C)| ≤ |a∩ b|, we can
move a to B, and this new branch-decomposition T ′ is strictly tighter than T
since the vertices of a∩ b are no more joined to (δ(A) \ a)∩ δ(C) in the graph
GT ′ . Thus |a∩ δ(C)| ≥ |a∩ b|+ 1. Moreover, moving a to C increases wm(C)
by at most |a ∩ b| − |a ∩ δ(C)| + 1, since at most two components of C can
merge. So |a ∩ b| + 1 > |a ∩ δ(C)|, a contradiction. This implies in particular
that the size of any edge is at least four. In particular, wm(e) ≤ bwm(H) − 3
whenever e is not one of the main T -separations. Therefore β ≤ bwm(H)− 3.

7. The hypergraph H is triangle-free. Indeed, suppose that there exists three
edges a ∈ A, b ∈ B and c ∈ C and three vertices x ∈ a ∩ b, y ∈ b ∩ c and
z ∈ c ∩ a. Let H/xyz be the hypergraph obtained by contracting x, y, z to a
single vertex v. The branch-decomposition T induces a branch-decomposition
T /xyz of H/xyz. Note that H/xyz is still connected and bridgeless, and that
wm(T /xyz) = wm(T ) − 1 since we decrease by one the border of every main
separation. By induction, we can find an achieved branch-decomposition T ′

of H/xyz which is tighter than T /xyz. We claim that T ′ is also an achieved
branch-decomposition of H. Consider for this a T ′-separation (E1, E2) of E.
If a, b, c belong to the same part, say E1, the width of (E1, E2) is the same in
H/xyz and in H. If a, b belong to one part and c to the other, the width of
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(E1, E2) is one less in H/xyz than in H. Thus bwm(H) ≤ bwm(H/xyz) + 1,
and in particular T ′ is optimal. Finally, since (E1, E2) is connected in H/xyz,
it is also connected in H. Thus, T ′ is achieved.

Now we are ready to finish the proof. Note that bwm(H) = (wm(A) + wm(B) +
wm(C))/3 = (2|V | − |E|)/3 + 1. Consider the line multigraph L(H) of H, i.e. the
multigraph on vertex set A ∪ B ∪ C and edge set V such that v ∈ V is the edge
which joins the two edges e, f of H such that v ∈ e and v ∈ f . The multigraph L(H)
satisfies the hypothesis of Lemma 4 (proved in the next section), thus it admits a
vertex-partition as in the conclusion of Lemma 4. This corresponds to a partition
of A ∪ B ∪ C into two subsets E1 := A1 ∪ B1 ∪ C1 and E2 := A2 ∪ B2 ∪ C2 such
that |δ(E1, E2)| ≤ (2|V | − |E|)/3 + 1 and both E1 and E2 have at least b|E|/2c − 1
internal vertices. In particular, the separation (E1, E2) has width at most bwm(H).
Let us show that one of wm(A1 ∪ B1), wm(B1 ∪ C1), and wm(C1 ∪ A1) is also at
most bwm(H). For this, observe that the set δ(A1 ∪B1) ∪ δ(B1 ∪ C1) ∪ δ(C1 ∪ A1)
covers twice every vertex of V which is not an internal vertex of E2. Thus

|δ(A1 ∪B1)|+ |δ(B1 ∪ C1)|+ |δ(C1 ∪A1)| ≤ 2|V | − 2b|E|/2c+ 2 ≤ 2|V | − |E|+ 3.

Without loss of generality, we can assume that δ(A1 ∪ B1) ≤ (2|V | − |E|)/3 + 1 =
bwm(H), and thus we split E1 into two branches A1∪B1 and C1. We similarly split
E2 to obtain an optimal branch-decomposition T ′ of H. Observe that in the graph
GT ′ , there is no edge between the internal vertices of E1 and E2. This contradicts
the fact that T is tight.

4 The partition Lemma.

Let G be a multigraph on vertex set V and X, Y two subsets of V . We denote
by e(X, Y ) the number of edges of G between X and Y . We also denote by e(X) the
number of edges in X. The degree of a vertex x in a subset Y of G is dY (x) := e(x, Y ).
When Y = V , we simply note d(x). The underlying degree of x in Y is the number of
neighbors of x in Y , i.e. we forget the multiplicity of edges. A graph is 2-connected
if it is connected and the removal of any vertex leaves it connected.

Lemma 4 Let G be a 2-connected triangle-free multigraph on n ≥ 5 vertices and
m edges. Assume that its minimum underlying degree is at least four and that its
maximum degree is at most (2m − n)/3 + 1. There exists a partition (X, Y ) of the
vertex set of G such that e(X) ≥ bn/2c − 1, e(Y ) ≥ bn/2c − 1 and e(X, Y ) ≤
(2m− n)/3 + 1.

Proof. Call good a partition which satisfies the conclusion of Lemma 4. Assume
first that there are vertices x, y such that e(x, y) ≥ bn/2c− 1. The minimum degree
in V \ {x, y} is at least two, so e(V \ {x, y}) is at least n − 2 and hence at least
bn/2c − 1. Thus, if the partition (V \ {x, y}, {x, y}) is not good, we necessarily
have d(x) + d(y)− 2e(x, y) > (2m− n)/3 + 1. By the maximum degree hypothesis,
both d(x) and d(y) are greater than 2e(x, y). Since G is triangle-free, there exists a
partition (X, Y ) where (N(x) ∪ x) \ y ⊆ X and (N(y) ∪ y) \ x ⊆ Y . Observe that
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e(X) ≥ d(x)− e(x, y) > e(x, y) ≥ bn/2c− 1. Similarly e(Y ) ≥ bn/2c− 1. Moreover,
since m ≥ 2n by the minimum degree four hypothesis, we have

e(X, Y ) ≤ m− (d(x) + d(y)− 2e(x, y)) < m− (2m− n)/3− 1 ≤ (m + n)/3− 1.

Thus e(X, Y ) ≤ (2m − n)/3 + 1 and (X, Y ) is a good partition. We assume from
now on that the multiplicity of an edge is less than bn/2c − 1.

Let a + b = n, where a ≤ b. A partition (X, Y ) of V is an a-partition if |X| ≤ a,
e(X) ≥ a−1, e(Y ) ≥ b−1, e(X, Y ) ≤ (2m−n)/3+1, and the additional requirement
that X contains a vertex of G with maximum degree.

Note that there exists a 1-partition, just consider for this X := {x}, where x
has maximum degree in G (the minimum degree in Y is at least three, insuring that
e(Y ) ≥ n−2). We consider now an a-partition (X, Y ) with maximum a. If a ≥ b−1,
this partition is good and we are done. So we assume that a < b − 1. In particular
e(X) = a− 1.

The key-observation is that there exists at most one vertex y of Y such that
e(Y \ y) < b − 2. Indeed, if there is a vertex of Y with degree one in Y , we simply
move it to X, and we obtain an (a+1)-partition (e(X) increases, e(Y ) decreases by
one, and e(X, Y ) decreases). Thus the minimum degree in Y is at least two, and
hence e(Y ) ≥ |Y |. Moreover, if there is a vertex z of Y with degree two in Y , we can
still move it to X: indeed e(X) increases, e(Y \ z) ≥ |Y | − 2 and e(X, Y ) does not
increase. So the minimum degree in Y is at least three (but the minimum underlying
degree may be one). This implies that e(Y ) ≥ 3|Y |/2. Let Y := {y1, . . . , y|Y |} where
the vertices are indexed in the increasing order according to their degree in Y . For
every i 6= |Y |, we have e(Y ) ≥ (3(|Y | − 2) + dY (yi) + dY (y|Y |))/2. Furthermore,

e(Y \yi) ≥ (3(|Y |−2)+dY (yi)+dY (y|Y |))/2−dY (yi) ≥ 3(|Y |−2)/2 ≥ |Y |−2 ≥ b−2.

We now discuss the two different cases depending if there exists y ∈ Y such
that e(Y \ y) < b − 2 or not. In the following, the excess of a vertex y ∈ Y is
exc(y) := dY (y)− dX(y).

• Assume that e(Y \y) ≥ b−2 for every y ∈ Y . We denote by Y ′ the (nonempty)
set of vertices of Y with at least one neighbour in X. We let Y ′′ := Y \ Y ′, by
definition every vertex of Y ′′ has underlying degree at least four in Y . Note that
we can move a vertex of Y ′ to X if it does not have positive excess. Denote by
c the minimum excess of a vertex of Y ′, we have c > 0. The sum of the degrees
of the vertices of Y ′ is at least 2e(X, Y ) + c|Y ′|. Now, summing the degrees of
all the vertices of Y , we get 2e(Y ) + e(X, Y ) ≥ 4|Y ′′| + 2e(X, Y ) + c|Y ′|, and
hence:

2e(Y ) ≥ e(X, Y ) + 4|Y ′′|+ c|Y ′| (4.1)

Let y ∈ Y ′ such that exc(y) = c. Since the partition (X ∪ y, Y \ y) is not
an (a + 1)-partition, we have e(X, Y ) + c > (2m − n)/3 + 1. Since m =
e(X, Y ) + e(X) + e(Y ), this implies

e(X, Y ) + 3c > 2e(X) + 2e(Y )− n + 3 (4.2)
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Equations (4.1) and (4.2) give:

3c > 2e(X) + 4|Y ′′|+ c|Y ′| − n + 3 (4.3)

Since e(X) ≥ a − 1 ≥ n − |Y | − 1, we get 3c > n − 2|Y | + 4|Y ′′| + c|Y ′| + 1.
From |Y | = |Y ′| + |Y ′′|, we get 3c > n + 2|Y | + (c − 4)|Y ′| + 1, and finally
n + 2|Y | < (c − 4)(3 − |Y ′|) + 11. If c = 4, we get n + 2|Y | ≤ 10, which is
impossible since n ≥ 5 and |Y | > n/2. If c = 3, we get n + 2|Y | − |Y ′| ≤ 7,
again impossible. If c = 2, we get n + 2|Y | − 2|Y ′| ≤ 4, again impossible. If
c = 1, we get n + 2|Y | − 3|Y ′| ≤ 1, which can only hold if |Y | = |Y ′| = n− 1.
Thus, X consists of a single vertex, completely joined to Y , against the fact
that G is triangle-free and has minimum underlying degree 4. Finally c > 4,
and consequently |Y ′| < 3. Observe that |Y ′| > 1 since G is 2-connected.
Thus |Y ′| = 2. Let y1, y2 be the vertices of Y ′, indexed in such a way that
e(y1, X)+e(y2, Y

′′) ≥ e(y2, X)+e(y1, Y
′′). Let X1 := X ∪y1 and Y1 := Y \y1.

Since y1 ∈ Y ′, we have that e(X1) ≥ a. Moreover e(Y1) ≥ b − 2. We claim
that e(y1, y2) ≤ e(Y \ {y1, y2}): this is obvious if e(y1, y2) = 0, and if there is
an edge between y1 and y2, since G has minimum underlying degree four, the
minimum degree in Y \ {y1, y2} is at least two. So

e(Y ′′) = e(Y \ {y1, y2}) ≥ |Y | − 2 ≥ bn/2c − 1 ≥ e(y1, y2).

Thus

e(X1, Y1) = e(y1, y2) + e(y1, Y
′′) + e(y2, X) ≤ e(Y ′′) + e(y2, Y

′′) + e(y1, X).

In particular, e(X1, Y1) ≤ e(X1) + e(Y1) ≤ m/2 and since m ≥ 2n, we have
e(X1, Y1) ≤ (2m− n)/3 + 1. So the partition (X1, Y1) is good.

• Now assume that there exists a vertex y ∈ Y such that e(Y \y) ≤ b−3 ≤ |Y |−3.
We denote by Y ′ the set of vertices of Y \ y with at least one neighbour in X.
Set Y ′′ := Y \ (Y ′ ∪ y). Observe that since every vertex of Y ′′ has underlying
degree four in Y , we have e(Y \ y) ≥ 3|Y ′′|/2. Thus, |Y ′′| ≤ (2|Y | − 6)/3.
Since |Y | > 3, we have |Y ′′| < |Y | − 3, and finally |Y ′| ≥ 3. Denote by c the
minimum excess of a vertex of Y ′, again c > 0. Summing the degrees of the
vertices of Y gives 2e(Y ) ≥ e(X, Y ) + 4|Y ′′| + c|Y ′| + exc(y). Equation (4.2)
still holds, so

exc(y) < 3c+n−3−2e(X)−4|Y ′′|−c|Y ′| ≤ 3c−1−e(X)−3|Y ′′|− (c−1)|Y ′|

since e(X) + |Y ′′| + |Y ′| ≥ n − 2. Therefore exc(y) < −e(X) − 3|Y ′′| − (c −
1)(|Y ′|−3)+2. Since |Y ′| ≥ 3, |Y ′′| ≥ 0, and c ≥ 1, we have exc(y) ≤ 1−e(X).
Recall that the minimum degree in Y is at least three, hence summing the
degrees in Y of the vertices of Y \y gives that 3(|Y |−1) ≤ 2e(Y \y)+dY (y) ≤
2b−6+dY (y). Finally, dY (y) ≥ |Y |+3 and by the fact that exc(y) ≤ 1−e(X),
we have dX(y) ≥ |Y |+e(X)+2. In all, we have d(y) ≥ 2|Y |+e(X)+5. Recall
that X contains a vertex x with maximum degree in G. In particular both x
and y have degree at least 2|Y | + e(X) + 5. Observe that dX(x) is at most
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|e(X)|, and consequently dY (x) is at least 2|Y |+ 5. Now the end of the proof
is straightforward, it suffices to switch x and y to obtain the good partition
(X1, Y1) := ((X ∪ y)\x, (Y ∪x)\ y). The only fact to care of is e(x, y). Indeed
if e(x, y) is at most e(X), we have:

1. e(Y1) ≥ dY1(x) ≥ 2|Y |+ 5− e(x, y) ≥ 2|Y | − e(X) ≥ |Y | ≥ n/2.

2. e(X1) ≥ dX1(y) ≥ |Y |+ e(X) + 2− e(x, y) ≥ n/2.

3. Finally, since the excess of y is at most 1 − e(X), we have dX1(y) +
e(x, y) = dX(y) ≥ dY (y)+ e(X)−1, hence dX1(y) ≥ dY (y)−1. Moreover
dY1(x) ≥ 2|Y | + 5 − e(X) ≥ e(X) + 5 ≥ dX(x) + 5. Thus, e(X1, Y1) =
e(X, Y ) + dY (y) − dX1(y) + dX(x) − dY1(x) ≤ e(X, Y ) − 4. Therefore
e(X1, Y1) ≤ (2m− n)/3 + 1, since (X, Y ) is an a-partition.

To conclude, we just have to show that e(x, y) is at most e(X). Assume for
contradiction that e(x, y) ≥ a. We consider the partition into X2 := {x, y}
and Y2 := V \ {x, y}. Observe that the minimum underlying degree in Y2 is
at least two. Thus e(Y2) ≥ n− 2 ≥ b− 2. By the maximality of a, (X2, Y2) is
not an (a + 1)-partition, therefore e(X2, Y2) > (2m− n)/3 + 1, hence

d(x) + d(y)− 2e(x, y) > (2m− n)/3 + 1. (4.4)

We now claim that any partition (X3, Y3) such that (x ∪ N(x)) \ y ⊆ X3 and
(y ∪N(y)) \ x ⊆ Y3 is good. Indeed, we have e(X3) ≥ d(x)− e(x, y) ≥ 2|Y |+
e(X) + 5 − n/2 ≥ n/2. Similarly e(Y3) ≥ n/2. So, if (X3, Y3) is not good, we
must have e(X3, Y3) > (2m−n)/3+1. Therefore m−(d(x)+d(y)−2e(x, y)) >
(2m−n)/3+1, and by Equation (4.4), we have m > 2(2m−n)/3+2. Finally
m < 2n − 6 which is impossible since the minimum degree in G is at least
four.

An independent proof of the equality of branchwidth of cycle matroids and graphs
was also given by Hicks and McMurray [2]. Their method is based on matroid
tangles.
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Stéphan Thomassé, Université Montpellier II - LIRMM,
161 rue Ada, 34392 Montpellier Cedex, France.

thomasse@lirmm.fr


