
HAL Id: lirmm-00197166
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00197166

Submitted on 20 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a new approach for mining frequent itemsets on
data stream

Chedy Raïssi, Pascal Poncelet, Maguelonne Teisseire

To cite this version:
Chedy Raïssi, Pascal Poncelet, Maguelonne Teisseire. Towards a new approach for mining fre-
quent itemsets on data stream. Journal of Intelligent Information Systems, 2007, 28 (1), pp.23-36.
�10.1007/s10844-006-0002-3�. �lirmm-00197166�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00197166
https://hal.archives-ouvertes.fr

J Intell Inf Syst (2007) 28:23–36
DOI 10.1007/s10844-006-0002-3

Towards a new approach for mining frequent itemsets
on data stream

Chedy Raïssi · Pascal Poncelet · Maguelonne Teisseire

Published online: 28 December 2006
© Springer Science + Business Media, LLC 2006

Abstract Mining frequent patterns on streaming data is a new challenging problem
for the data mining community since data arrives sequentially in the form of
continuous rapid streams. In this paper we propose a new approach for mining
itemsets. Our approach has the following advantages: an efficient representation
of items and a novel data structure to maintain frequent patterns coupled with a
fast pruning strategy. At any time, users can issue requests for frequent itemsets
over an arbitrary time interval. Furthermore our approach produces an approximate
answer with an assurance that it will not bypass user-defined frequency and temporal
thresholds. Finally the proposed method is analyzed by a series of experiments on
different datasets.

Keywords Data streams · Frequent itemsets · Approximate answer.

1 Introduction

Recently, the data mining community has focused on a new challenging model where
data arrives sequentially in the form of continuous rapid streams. It is often referred
to as data streams or streaming data. Many real-world applications data are more
appropriately handled by the data stream model than by traditional static databases.
Such applications can be: stock tickers, network traffic measurements, transaction

C. Raïssi (B) · P. Poncelet
EMA/LGI2P, Parc Scientifique Georges Besse, 30035 Nîmes Cedex, France
e-mail: raissi@lirmm.fr

P. Poncelet
e-mail: Pascal.Poncelet@ema.fr

C. Raïssi · M. Teisseire
LIRMM UMR CNRS 5506, 161, Rue Ada, 34392 Montpellier Cedex 5, France
e-mail: teisseire@lirmm.fr

24 J Intell Inf Syst (2007) 28:23–36

flows in retail chains, click streams, sensor networks and telecommunications call
records. In the same way, as the data distribution are usually changing with time, very
often end-users are much more interested in the most recent patterns (Chi, Wang,
Yu, & Muntz, 2004). For example, in network monitoring, changes in the past several
minutes of the frequent patterns are useful to detect network intrusions (Dokas
et al., 2002).

Due to the large volume of data, data streams can hardly be stored in main
memory for on-line processing. A crucial issue in data streaming that has recently
attracted significant attention is thus to maintain the most frequent items encoun-
tered (Jin, Qian, Sha, Yu, & Zhou, 2003; Karp, Shenker, & Papadimitriou, 2003). For
example, algorithms concerned with applications such as answering iceberg query,
computing iceberg cubes or identifying large network flows are mainly interested in
maintaining frequent items. Furthermore, since data-streams are continuous, high-
speed and unbounded, it is impossible to mine frequent itemsets by using algorithms
that require multiple scans. As a consequence new approaches were proposed to
maintain itemsets rather than items (Chen, Dong, Han, Wah, & Wang, 2002; Chi,
Wang, Yu, & Muntz, 2004; Giannella, Han, Pei, Yan, & Yu, 2003; Li, Lee, & Shan,
2004; Manku & Motwani, 2002; Teng, Chen, & Yu, 2003). In this paper, we propose
a new approach, called Fids (Frequent itemsets mining on data streams). The main
originality of our approach is that: (i) items are represented through a new represen-
tation; (ii) we use a novel data structure to maintain frequent itemsets coupled with
a fast pruning strategy. At any time, users can issue requests for frequent sequences
over an arbitrary time interval. Furthermore our approach produces an approximate
answer with an assurance that it will not bypass user-defined frequency and temporal
thresholds.

The remainder of this paper is organized as follows. Section 2 goes deeper
into presenting the problems and gives an extensive statement of our problem. In
Section 3, we give an overview of the related work and present our motivation for a
new approach. Section 4 presents our solution. Experiments are reported Section 5,
and Section 6 concludes the paper with future avenues for research.

2 Problem statement

The problem of mining frequent itemsets was previously defined by Agrawal,
Imielinski, and Swami (1993): Let I = {i1, i2, . . . im} be a set of literals, called items.
Let database DB be a set of transactions, where each transaction T is a set of items
such that T ⊆ I. Associated with each transaction is a unique identifier, called its
T I D. A set X ⊆ I is also called an itemset, where items within are kept in lexico-
graphic order. A k-itemset is represented by (x1, x2, . . . xk) where x1 < x2 < . . . < xn.

Fig. 1 The set of batches B1
0,

B2
1 and B3

2

J Intell Inf Syst (2007) 28:23–36 25

Fig. 2 Natural tilted-time
window frames

The support of an itemset X, denoted support(X), is the number of transactions
in which that itemset occurs as a subset. An itemset is called a frequent itemset
if support(X) ≥ σ × |DB| where σ ∈ (0, 1) is a user-specified minimum support
threshold and |DB| stands for the size of the database. The problem of mining
frequent itemsets is to mine all itemsets whose support is greater or equal than
σ × |DB| in DB.

The previous definitions consider that the database is static. Let us now assume
that data arrives sequentially in the form of continuous rapid streams. Let data
stream DS = Bbi

ai
, Bbi+1

ai+1 , ..., Bb n
an

be an infinite sequence of batches, where each batch
is associated with a time period [ak,b k], i.e. Bb k

ak
, and let Bb n

an
be the most recent batch.

Each batch Bb k
ak

consists of a set of transactions; that is, each batch Bb k
ak

= [T1, T2, T3,
..., Tk]. We also assume that batches do not have necessarily the same size. Hence,
the length (L) of the data stream is defined as L = |Bbi

ai
| + |Bbi+1

ai+1 | + . . . + |Bb n
an

| where
|Bb k

ak
| stands for the cardinality of the set Bb k

ak
.

The support of an itemset X at a specific time interval [ai, bi] is now denoted by
the ratio of the number of customers having X in the current time window to the
total number of customers. Therefore, given a user-defined minimum support, the
problem of mining itemsets on a data stream is thus to find all frequent itemsets X
over an arbitrary time period [ai, bi], i.e. verifying:

bi∑

t=ai

supportt(X) ≥ σ × |Bbi
ai

|,

of the streaming data using as little main memory as possible.

Example 1 In the rest of the paper we will use this toy example as an illustration,
while assuming that the first batch B1

0 is merely reduced to two customers transac-
tions. Figure 1 illustrates the set of all batches. Let us now consider the following
batch, B2

1, which only contains one customer transaction. Finally we also assume that
two customer transactions are embedded in B3

2. Let us now assume that the minimum
support value is set to 50%.

If we look at B1
0, we obtain the two following maximal frequent itemsets: (1 2 3 4 5)

and (8 9). If we now consider the time interval [0–2], i.e. batches B1
0 and B2

1, maximal
itemsets are: (1 2). Finally when processing all batches, i.e. a [0–3] time interval, we
obtain the following set of itemsets: (1 2), (1) and (2). According to this example,

Fig. 3 Logarithmic tilted-time
windows table

26 J Intell Inf Syst (2007) 28:23–36

(a b c d)

a b c d

21

root

e f

(a b c) (a b d)

(a b)

(a c)

(a c e) (a e f)

(a f)(a e)

Items

Regions

LatticeReg

3

Fig. 4 The different data structures used in the Fids algorithm

one can notice that the support of the itemsets can vary greatly depending on the
time periods and so it is highly needed to have framework that enables us to store
these time-sensitive supports.

3 Related work

From the definition presented so far, different efficient approaches were proposed
to mine frequent itemsets when the whole database is available. Nevertheless they
are usually based on Generating Pruning techniques which are irrelevant when
considering streaming data since the generation is performed through a set of join
operations, a typical blocking operator (Giannella et al., 2003). Mining itemsets
in a data stream requires a one-pass algorithm and thus allow some counting
errors on the frequency of the outputs. Traditional algorithms are not defined to
cope with uncertainty they rather focus on exact results. As databases evolve, the
problem of maintaining frequent itemsets over a significantly long period of time was
also investigated by incremental approaches. Nevertheless, since they are generally
Generating–Pruning based, they suffer the same drawbacks.

The first approach for mining all frequent itemsets over the entire history of a
streaming data was proposed by Manku & Motwani (2002) where they define the
first single-pass algorithm based on the anti-monotonic property. They use an array-

J Intell Inf Syst (2007) 28:23–36 27

Fig. 5 Updated items after
the transaction Ta

based structure to represent the lexicographic order of itemsets. Li et al. (2004)
use an extended prefix-tree-based representation and a top-down frequent itemset
discovery scheme. In Teng et al. (2003) they propose a regression-based algorithm to
find frequent itemsets in sliding windows. Chi et al. (2004) consider closed frequent
itemsets and propose the closed enumeration tree (CET) to maintain a dynamically
selected set of itemsets. In Giannella et al. (2003), authors consider an FP-tree-based
algorithm (Han et al., 2000) to mine frequent itemsets at multiple time granularities
by a novel logarithmic tilted-time window technique. Figure 2 shows a natural tilted-
time windows table: the most recent four quarters of an hour, then, in another level
of granularity, the last 24 h, and 31 days. Based on this model, one can store and
compute data in the last hour with the precision of quarter of an hour, the last day
with the precision of hour, and so on. By matching for each sequence of a batch
a tilted-time window, we have the flexibility to mine a variety of frequent patterns
depending on different time intervals. In Giannella et al. (2003), the authors propose
to extend natural tilted-time windows table to logarithmic tilted-time windows table
by simply using a logarithmic time scale as shown in Fig. 3. The main advantage is that
with one year of data and a finest precision of quarter, this model needs only 17 units
of time instead of 35,136 units for the natural model. In order to maintain these
tables, the logarithmic tilted-time windows frame will be constructed using different
levels of granularity each of them containing a user-defined number of windows.

Let B2
1, B3

2, . . . , Bn
n−1 be an infinite sequence of batches where B2

1 is the oldest
batch. For i ≥ j, and for a given pattern X, let support j

i (X) denotes the frequency
of X in B j

i where Bi
j=

⋃i
k= j Bk. By using a logarithmic tilted-time window, the fol-

lowing frequencies of S are kept: supportn
n−1(X) ; supportn−1

n−2(X) ; supportn−2
n−4(X) ;

supportn−2
n−6(X) This table is updated as follows. Given a new batch B, we first

replace supportn
n−1(X), the frequency at the finest level of time granularity (level 0),

with support(B) and shift back to the next finest level of time granularity (level 1).
supportn

n−1(X) replaces supportn−1
n−2(X) at level 1. Before shifting supportn−1

n−2(X) back
to level 2, we check if the intermediate window for level 1 is full (in this example the
maximum windows for each level is 2). If yes, then supportn−1

n−2(X) + supportn
n−1(X)

is shifted back to level 2. Otherwise it is placed in the intermediate window and the
algorithm stops. The process continues until shifting stops. If we received N batches
from the stream, the logarithmic tilted-time windows table size will be bounded by
2 × ⌈

log2(N)
⌉ + 2 which makes this windows schema very space-efficient.

Fig. 6 Itemsets updated after
the transaction Tb

28 J Intell Inf Syst (2007) 28:23–36

Fig. 7 The valuation tree
after the first batch

According to the related work, it is clear that mining frequent itemsets on data
stream is far away from trivial since lot of constraints have to be managed in an
efficient way. Furthermore, in such a dynamic context, and whatever the structure
considered two problems remains:

(a) How to efficiently retrieve previous frequent itemsets in order to update their
tilted-time windows? Ideally we would like to avoid to navigate to all the stored
itemsets or in other words we would like to reduce the search space to only
“interesting” itemsets.

(b) How to efficiently verify if an itemset is a subset or not of an other one? More
precisely, could we find a new representation for itemsets allowing us to verify
the inclusion very quickly?

4 The FIDS approach

In this section we propose the Fids approach for mining itemsets in streaming data.
First we propose an overview. Second we address a new representation for efficiently
mining included itemsets. Finally we describe algorithms.

4.1 An overview

Our main goal is to mine all maximal frequent itemsets over an arbitrary time interval
of the stream. The algorithm runs in two steps:

(a) The insertion of each itemset of the studied batch in the data structure Latticereg

using a region principle (c.f. Fig. 4).
(b) The extraction of the maximal subsets.

We will now focus on how each new batch is processed then we will have a closer
look on the pruning of unfrequent itemsets.

From the batches from Example 1 our algorithm performs as follows: we process
the first transaction Ta in B1

0 by first storing Ta into our lattice (Latticereg). This lattice

Fig. 8 The region lattice after
the second batch

J Intell Inf Syst (2007) 28:23–36 29

Fig. 9 Updated itemsets
after B1

2

has the following characteristics: each path in Latticereg is provided with a region and
itemsets in a path are ordered according to the inclusion property. By construction,
all subsets of an itemset are in the same region. This lattice is used in order to
reduce the search space when comparing and pruning itemsets. Furthermore, only
maximal itemsets are stored into Latticereg. These itemsets are either itemsets directly
extracted from batches or their maximal subsets such as all these items are in the
same region. By storing only maximal itemsets we aims at storing a minimal number
of itemsets such that we are able to answer a user query. When the processing of Ta

completes, we are provided with a set of items {1,2,3,4,5}, one itemset (1 2 3 4 5) and
Latticereg updated. Items are stored as illustrated in Fig. 5. The Tilted-T W attribute
is the number of occurrences of the corresponding item in the batch. The Rootreg

attribute stands for the root of the corresponding region in Latticereg. Of course, for
one region we only have one Rootreg and we also can have several regions for one
item. For itemsets (c.f. Fig. 6), we store both the size of the itemset and the associated
tilted-time window. This information will be useful during the pruning phase. The left
part of the Fig. 7 illustrates how the Latticereg lattice is updated when considering Ta.

Let us now process the second transaction Tb of B1
0. Since Tb is not included in

Ta, it is inserted in Latticereg in a new region (c.f. subtree (8 9) in Fig. 7).
Let us now consider the batch B2

1 merely reduced to Tc. Since items 1 and 2 already
exist in the set of itemsets, their tilted-time windows must be updated (c.f. Fig. 9).
Furthermore, items 1 and 2 are in the same region: 1 and the longest itemset for these
items is (1 2 3 4 5), i.e. Tc is included in Ta. We thus have to insert Tc in Latticereg in
the region 1 (c.f. Fig. 8). Nevertheless as Tc is a subset of Ta that means that when Ta

occurs in previous batch it also occurs for Tc. So the tilted-time windows of Tc must
also be updated (Fig. 9).

The transaction Td is considered in the same way as Tc (c.f. Figs. 10 and 11). Let
us now have a closer look on the transaction Te. We can notice that items 1 and 2 are
in region 1 while items 8 and 9 are in region 2. We can believe that we are provided
with a new region. Nevertheless, we can notice that the itemset (8 9) already exist in
Latticereg and is a subset of Te. The longest itemset of Te in the region 1 is {1, 2}. In
the same way, the longest subset of Te for region 2 is {8, 9}. As we are provided with
two different regions and {8, 9} is the root of the region 2, we do not create a new
region but we insert Te as a root of region for 2 and we insert the subset {1, 2} both
on lattice for region 1 and 2. Of course, tilted-time windows tables are updated (c.f.
Figs. 12 and 13).

Fig. 10 Updated itemsets
after Td of B3

2

30 J Intell Inf Syst (2007) 28:23–36

Root
1 2

(1 2)

(1 2 3)

(1 2 3 4 5) (8 9)

1

Root

(1 2 3 4 5)

(1 2 3)

(1 2)

(1 2 8 9)

2

(8 9)(1 2)

(Third Batch – Te)(Third Batch – Td)

Fig. 11 The region lattice after batches processing

To only store frequent maximal itemsets, let us now discuss how unfrequent
itemsets are pruned. While pruning in Giannella et al. (2003) is done in two distinct
operations, our algorithm prunes unfrequent itemsets in a single operation which
is in fact a dropping of the tail itemsets of tilted-time windows supportk+1

k (X),
supportk+2

k+1(X) . . . supportn
n−1(X) when the following condition holds:

∀i, k ≤ i ≤ n, supportbi
ai

(X) < ε f |Bbi
ai

|.
By navigating into Latticereg, and by using the region indexes, we can directly

and rapidly prune irrelevant itemsets without further computations. This process is
repeated after each new batch in order to use as little main memory as possible.
During the pruning phase, titled-time windows are merged in the same way as in
Giannella et al. (2003).

4.2 An efficient representation for itemsets

According to the overview, one crucial problem is to efficiently compute the inclu-
sion between two itemsets. This costly operation could easily be performed when
considering a new representation for items in transactions. From now, each item is
represented by an unique prime number (c.f. Fig. 14).

A similar representation was also adopted in Sivanandam, Sumathi, Hamsapriya,
and Babu (2004) where they consider parallel mining. According to this definition,
each transaction could be represented by the product of the corresponding prime
numbers of individual items into the transaction. As the product of the prime
number is unique we can easily check the inclusion of two itemsets (e.g. X � Y)

Fig. 12 Updated items after
the transaction Te

J Intell Inf Syst (2007) 28:23–36 31

Fig. 13 Updated itemsets
after Te of B3

2

by performing a modulo division on itemsets (Y MOD X). If the remainder is 0 then
X � Y, otherwise X is not included in Y. For instance on Fig. 15, Tc ≺ Ta, since the
remainder of Ta MOD Tc is 0.

4.3 The Fids algorithm

Algorithm 1: The Fids algorithm

Data: an infinite set of batches B=B1
0, B2

1, ... Bm
n ...; a σ user-defined threshold;

an error rate ε.
Result: A set of frequent items and itemsets
// init phase
Latticereg ← ∅; IT EMS ← ∅; ISET S ← ∅;region ← 1;
repeat

foreach Bb
a ∈ B do

Update(Bb
a , Latticereg, IT EMS, ISET S, σ , ε);

Prune(Latticereg, IT EMS, ISET S, σ , ε);

until no more batches;

We describe in more detail the Fids algorithm (c.f. Algorithm 1). While batches
are available, we consider itemsets embedded into batches in order to update our
structures (Update). Then we prune unfrequent itemsets in order to maintain our
structures in main memory (Prune). In the following, we consider that we are
provided with the three next structures. Each value of IT EMS is a tuple (labelitem,
{time, occ}, {(regions, rootreg)}) where labelitem stands for the considered item,
{time, occ} is used in order to store the number of occurrences of the item for different
time of batches and for each region in {regions} we store its associated itemsets
(rootreg) in the Latticereg structure. The ISET S structure is used to store itemsets.
Each value of ISET S is a tuple (itemset, size(itemset), {time, occ}) where size(itemset)
stands for the number of items embedded in s. Finally, the Latticereg structure is a
lattice where each node is an itemset stored in ISET S and where vertices correspond
to the associated region (according to the previous overview).

Let us now examine the Update algorithm (c.f. Algorithm 2) which is the main
core of our approach. We consider each transaction embedded in the batch. From

Fig. 14 Prime number transformation

32 J Intell Inf Syst (2007) 28:23–36

a transaction T, we first get regions of all its items (GetRegions). If items were not
already considered we only have to insert T in a new region. Otherwise, we extract all
different regions associated on items of T. For each region, the GetRootreg function
returns the corresponding root of the region, FirstItemset, i.e. the maximal itemset
of the region reg. Since we represent items by prime numbers, we can then compute
the greatest common factor of T in FirstItemset by applying the GCF function. This
usual function was extended in order to return an empty set both when there are no
maximal itemsets or if itemsets are merely reduced to one item. If there is only one
itemset, i.e. cardinality of NewIts is 1, we know that the itemset is either a root of
region or T itself. We thus store it into a temporary array (LatticeMerge) in order to
avoid to create a new useless region.

Algorithm 2: The Update algorithm

Data: a batch Bb
a = [T1, T2, T3, ..., Tk]; σ a user-defined threshold; an error

rate ε. Three structures.
Result: Latticereg, IT EMS, ISET S updated.

foreach transaction T ∈ Bb
a do

LatticeMerge ← ∅; DelayedInsert ← ∅;
Candidates ← GetRegions(T);
if Candidates = ∅ then

Insert(T,New Region);

else
foreach region reg ∈ Candidates do

// Get Rootreg from region reg
FirstItemset ← GetRootreg(reg);
// Compute all the longest common subsets
NewIts ← GCF(T,FirstItemset);
if (NewIts == T) ‖ (NewIts == FirstItemset) then

LatticeMerge ← reg;

else
// A new itemset has to be considered
Insert(NewIts,reg); UpdateTTW (NewIts);
DelayedInsert ← NewIts;

// Create a new valuation
if |LatticeMerge| = 0 then

Insert(T, New Region); UpdateTTW(T);

else
if |LatticeMerge| = 1 then

Insert(T, LatticeMerge[0]); UpdateTTW(T);

else
// A Maximal itemset will merge two or more regions
Merge(LatticeMerge, T);

J Intell Inf Syst (2007) 28:23–36 33

Fig. 15 Transformed
transactions

Otherwise we know that we are provided with a subset and then we insert it into
Latticereg (Insert) and propagate the tilted-time window (UpdateTTW). Itemsets
are also stored into a temporary array (DelayedInsert). If there exist more than one
sub itemset (from GCF), then we insert all these subsets on the corresponding region.
We also store them with T on DelayedInsert in order to delay their insertion as a
new region. If LatticeMerge is empty we know that it does not exist any subset of
T already included on itemsets of Latticereg and then we can directly insert T into
Latticereg with a new region. If the cardinality of LatticeMerge is greater than one,
we are provided with an itemset which will be a new root of region and then we insert
it.

Maintaining all the data streams in the main memory requires too much space.
So we have to store only relevant itemsets and drop itemsets when the tail-dropping
condition holds. When all the tilted-time windows of the itemsets are dropped the
entire itemset is dropped from Latticereg. As the result of the tail-dropping we no
longer have an exact support over L, rather an approximate support. Now let us
denote supportL(X) the frequency of the itemset X in all batches and ˜supportL(X)

the approximate frequency. With ε � σ this approximation is assured to be less than
the actual frequency according to the following inequality (Giannella et al., 2003):

supportL(X) − ε|L| ≤ ˜supportL(X) ≤ supportL(X).

Due to lack of space we do not present the entire Prune algorithm we rather
explain how it performs. First all itemsets verifying the pruning constraint are stored
into a temporary set (ToPrune). We then consider items in IT EMS. If an item is
unfrequent, then we navigate through Latticereg in order:

1. To prune this item in itemsets;
2. To prune itemsets in Latticereg also appearing in ToPrune.

This function takes advantage of the anti-monotonic property as well as the order of
stored itemsets. It performs as follows, nodes in Latticereg, i.e. itemsets, are pruned
until a node occurring in the path and having siblings is found. Otherwise, each
itemset is updated by pruning the unfrequent item. When an item remains frequent,
we only have to prune itemsets in ToPrune by navigating into Latticereg.

5 Experiments

In this section, we report our experiments results. We describe our experimental
procedures and then our results.

34 J Intell Inf Syst (2007) 28:23–36

5.1 Experimental procedures

The stream data was generated from Web Server Log Data of the ECML/PKDD
Challenge 2005.1 These data comes from a Czech company running several internet
shops. The log data cover the traffic on the web server of about 3 weeks. This
represents about three million records. After a preprocessing step, the stream was
broken into batches of 30 s duration which enables the possibility for different batch
sizes depending on the distribution of the data. The number of items per batch was
nearly 5,000. We have fixed the error threshold (ε) at 0.1%. Furthermore, all the
transactions can be fed to our program through standard input. Finally, our algorithm
was written in Java. All the experiments were performed on a Pentium 3 (120 MHz)
running Linux with 512 MB of RAM.

5.2 Results

At each processing of a batch the following information were collected: the size of
the Latticereg structure in bytes and the total number of seconds required per batch.
The x axis represents the batch number.

Figures 16 show time results itemsets. Every two batches (maxL = 2 in our
experiments) the algorithm needs more time to process itemsets, this is in fact due

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
ne

ed
ed

 to
 p

ro
ce

ss
 a

 b
at

ch
h

(in
 M

s)

Batches

Epsilon=0.1

Fig. 16 Fids time requirements

1Available at http://lisp.vse.cz/challenge/CURRENT/.

http://lisp.vse.cz/challenge/CURRENT/

J Intell Inf Syst (2007) 28:23–36 35

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 2 4 6 8 10 12 14 16 18 20

U
se

d
m

em
or

ye
 (

in
 B

yt
es

)

Batches

Epsilon=0.1

Fig. 17 Fids memory requirements

to the merge operation of the tilted time windows which is done in our experiments
every two batches. The jump in the algorithm is thus the result of extra computation
cycles needed to merge the tilted time values for all the nodes in the Latticereg

structure. We can notice that the time requirements of the algorithm as the stream
progresses never excess the 30 s computation time limit for every batch.

Figures 17 show memory needs for the processing of our itemsets. We can notice
that the space requirement is bounded by 4.5 M and thus can easily fit into main
memory. Experiments show that the FIDS algorithm can handle itemsets in data
streams without falling behind the stream as long as we choose correct batch duration
values.

6 Conclusion

In this paper we addressed the problem of mining itemsets in streaming data. Our
main contributions are the following. First, by using prime numbers for representing
items of the stream we improve the itemset inclusion checking and thus improve
the overall process. Second, by using a new region-based structure we propose to
efficiently find stored itemsets either for mining included itemsets or for pruning.
Last, by storing only a minimal number of itemsets (i.e. the longest maximal itemsets)
coupled with a tilted-time window, we can produce an approximate answer with an
assurance that it will not bypass user-defined frequency and temporal thresholds.

36 J Intell Inf Syst (2007) 28:23–36

With Fids, users can, at any time, issue requests for frequent itemsets over an
arbitrary time interval.

References

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in
large database. In Proceedings of the International Conference on Management of Data (ACM
SIGMOD 93)(pp. 207–216). New York: ACM.

Chen, Y., Dong, G., Han, J., Wah, B.W., & Wang, J. (2002). Multidimensional regression analysis of
time-series data streams. In VLDB Conference.

Chi, Y., Wang, H., Yu, P.S., & Muntz, R.R. (2004). Moment: Maintaining closed frequent itemsets
over a stream sliding window. In Proceedings of International Conference on Data Missing ’04
Conference (pp. 59–66).

Dokas, P., Ertoz, L., Kumar, V., Lazarevic, A., Srivastava, J., & Tan, P.-N. (2002). Data mining for
network intrusion detection. In Proceedings of the 2002 National Science Foundation Workshop
on Data Mining.

Giannella, G., Han, J., Pei, J., Yan, X., & Yu, P. (2003). Mining frequent patterns in data streams at
multiple time granularities. In Next generation data mining. New York: MIT.

Han, J., Pei, J., Mortazavi-asl, B., Chen, Q., Dayal, U., & Hsu, M. (2000). Freespan: Frequent
pattern-projected sequential pattern mining. In Proceedings of Knowledge Discovery and Data
’00 Conference (pp. 20–23).

Jin, C., Qian, W., Sha, C., Yu, J.-X., & Zhou, A. (2003). Dynamically maintaining frequent items
over a data stream. In Proceedings of International Conference on Information and Knowledge
Management ’04 Conference (pp. 287–294). Washington, District of Columbia.

Karp, R.-M., Shenker, S., & Papadimitriou, C.-H. (2003). A simple algorithm for finding frequent
elements in streams and bags. ACM Transactions on Database Systems, 28(1), 51–55.

Li, H.-F., Lee, S.Y., & Shan, M.-K. (2004). An efficient algorithm for mining frequent itemsets over
the entire history of data streams. In Proceedings of the 1st International Workshop on Knowledge
Discovery in Data streams.

Manku, G., & Motwani, R. (2002). Approximate frequency counts over data streams. In Proceedings
of very Large Databases ’02 Conference (pp. 346–357). Hong Kong, China.

Sivanandam, S.N., Sumathi, D., Hamsapriya, T., & Babu, K. (2004). In Parallel buddy prima—
A hybrid parallel frequent itemset mining algorithm for very large databases. Retrieved from
www.acadjournal.com.

Teng, W.-G., Chen, M.-S., & Yu, P.S. (2003). A regression-based temporal patterns mining schema
for data streams. In Proceedings of very Large Databases ’03 Conference (pp. 93–104). Berlin,
Germany.

file:www.acadjournal.com

	Towards a new approach for mining frequent itemsets on data stream
	Abstract
	Introduction
	Problem statement
	Related work
	The Fids approach
	An overview
	An efficient representation for itemsets
	The Fids algorithm

	Experiments
	Experimental procedures
	Results

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

