
HAL Id: lirmm-00199027
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00199027v1

Submitted on 18 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building the Presentation-Tier of Rich Web
Applications with Hierarchical Components

Reda Kadri, Chouki Tibermacine, Vincent Le Gloahec

To cite this version:
Reda Kadri, Chouki Tibermacine, Vincent Le Gloahec. Building the Presentation-Tier of Rich Web
Applications with Hierarchical Components. The 8th International Conference on Web Information
Systems Engineering, Dec 2007, Nancy, France. pp.001-012. �lirmm-00199027�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00199027v1
https://hal.archives-ouvertes.fr

Building the Presentation-Tier of Rich Web

Applications with Hierarchical Components

Reda Kadri1,2, Chouki Tibermacine3 and Vincent Le Gloahec1

1 Alkante SAS, Cesson-Sévigné, France
2 VALORIA, University of South Brittany, Vannes, France
3 LIRMM, University of Montpellier II, Montpellier, France
r.kadri@alkante.com, Chouki.Tibermacine@lirmm.fr and

v.legloahec@alkante.com

Abstract. Nowadays information systems are increasingly distributed
and deployed within the Internet platform. Without any doubt, the
World Wide Web represents the de facto standard platform for host-
ing such distributed systems. The use of a multi-tiered architecture to
develop such systems is often the best design decision to reach scalability,
maintainability and reliability quality goals. Software in the presentation-
tier of this architecture needs in practice to be designed with structured
and reusable library modules. In this paper, we present a hierarchical
component model which allows developers to build (model, generate
code and then reuse) this software level of rich Web applications. In this
model, components can be connected via their interfaces to build more
complex components. These architecture design models can be reused
together with their corresponding code using an association mechanism.
As shown in this paper this is a valuable feature in assisting developers
to position their developed documents within the overall software design
and thus enable maintaining the consistency between artifacts of these
two stages of the development process.

1 Introduction & Background

There are already a few years that the debate exists about rich Web applications.
However it is the article published by Jesse James Garrett4, co-founder of Active

Path, on his blog on February 2005, which seems to have started the awakening of
developers. From Google (Gmail and Google Sugest) to Yahoo (Flickr), a dozen
of general public Web sites already adopted Ajax [1] which becomes a frightening
competitor for existing rich client technologies like Flash or those emerging such
as XUL and Eclipse RCP. Indeed Ajax provides the same advantages as its
competitors (advanced ergonomy, etc.) but it does not impose the installation
of a plugin in the Web browser.

In our research, we are interested in the development of such rich Web ap-
plications in a context of multi-tiered architectures of Web information systems.
Our work aims at introducing new high-level languages, methods and tools in

4 http://www.adaptivepath.com/publications/essays/archives/000385.php

this field. In that context we propose in this paper a hierarchical reusable compo-
nent model to design the architecture of these applications. The proposed model
is hierarchical because rich Web applications are by definition pieces of software
based on elements that are organized hierarchically. A simple HTML page can
include a form, which can be composed of many input, select or text area

components. All of these components are reusable assets that can be used in
order to compose other client applications. For instance, an existing component
representing an e-mail user interface can be reused, customized and composed
with other components to build a more complex client application, such as a user
agenda. In the following section, we present the proposed component model. An
example defined using this model is then illustrated in section 3. The components
that we deal with vary from simple HTML elements (forms, frames, hypertext
links, etc) to more complex components such as authentication, e-mail, editorial
management components. We make use of reusable software modules because
we argue that functional requirements evolution of these components is rare, as
discussed in [9]. Starting from applications designed with this component model,
we can then generate PHP and Ajax code.

Existing composition techniques of Web-based components address only the
static and structural aspect to generate interfaces of applications, and much work
remains to do for developers in order to implement collaborations between com-
ponents. The challenge that we raise in our work is to allow developers to define
compositions of interactive components in order to build straightforwardly and
hierarchically rich Web applications. In section 4, we present the tools developed
for implementing our proposals. Before concluding this paper and presenting the
future work, we provide a comparison between the proposed work and the related
one.

2 Component-based Web Application Architecture

Model

Instead of proposing a new component model and introducing another encum-
bering architecture modeling language, we chose to reuse an existing well-known
standard which is the UML notation. Indeed, UML is a modeling language
which has been adopted by many software development teams in industry and
academia. Proposing UML extensions, even standard ones (like UML profiles),
did not appear as a good solution, because we found in the version 2.0 of the
UML specification all abstractions needed in modeling rich Web applications
with hierarchical entities.

2.1 Architectural Elements

The component model proposed here (referred to as AlCoWeb) introduces a
set of architectural abstractions, such as components, interfaces, connectors and
ports.

– Components Components represent Web elements at different levels of ab-
straction. They can be either atomic or hierarchical. Atomic components
are black-boxes (which do not have an explicit internal structure) or ba-
sic components which do not have an internal structure at all. Hierarchical
components, however have an explicit internal structure. They are described
using component assemblies. Components or component assemblies are mod-
eled using UML 2 components. Examples of components include HTML text
fields, authentication forms, auto-complete text boxes and check box lists.

– Interfaces Interfaces represent public services defined by components. They
are modeled using UML interfaces and can be of different kinds. Syn-

chronous Interfaces are interfaces that contain traditional object-oriented
operations. They are decomposed into two kinds: Provided Interfaces

define provided services to other components. For instance, a component
HTMLTextField can define an interface which provides services like getFor-
mattedValue() which returns the formatted value of the text field, or get-
Page() which returns the page that contains the text field. Required Inter-

faces declare the dependencies of the component in terms of required ser-
vices, which should be provided by other components. A component Check-
Box can for example define a required interface that declares services like
setExternalValue(). This service allows a given component to set the value
of another component attribute (value of a text field component, for exam-
ple). Event-based Interfaces represent asynchronous operations which are
based on events. Each service is executed only if a particular event occurs.
The implementation of such operations is mainly defined using a client-
side scripting language such as JavaScript. Examples of these services in-
clude HTML button onClick, text onSelect, HTML form object onFocus, or
mouseOver operations. Checking Interfaces group some operations which
are invoked to validate contents of components. As for the previous inter-
faces, the implementation of these operations is frequently defined using
client-side scripting languages. For instance, in an HTML form component,
we could perform some checking to see whether all mandatory items in the
form are completed. We could also add a checking interface to a TextField
component so that we can make some format checking (well-formed dates,
valid URLs by querying a DNS server component, etc). In AlCoWeb, all kinds
of interfaces are modeled using UML interfaces. No extensions are needed
for this purpose. We argue this is sufficient to build components without
ambiguity and reuse them afterwards.

– Ports Ports represent a set of interfaces of the same kind and related to the
same functionality. They can represent provided, required, checking or event
interfaces. They are modeled with the traditional UML ports.

– Connectors Connectors are interaction-oriented architectural elements. They
link interfaces of different components and encapsulate interaction protocols.
Examples are provided in Section 3. These connectors are modeled using
UML connector abstractions and can be of different kinds. Hierarchical

Connectors are bindings between a hierarchical component and its sub-

components. Assembly Connectors are bindings between components at
the same level of hierarchy.

2.2 Assembling Architectural Elements

Configurations of the elements introduced above can be described using compo-
nent assemblies. These assemblies allow developers to build applications starting
from components by linking them through connectors. Additional architecture
constraints can be described to formalize design decisions.

Component Assemblies Assemblies represent configurations of whole appli-
cations. Components can be modeled from scratch or reused and customized
after checking them out from repositories. These components can then be bound
together, using newly modeled connectors. An illustrative example is presented
in Section 3.

Architecture Constraints In order to describe architecture constraints, we in-
troduced a constraint language which accompanies this component model. This
language is an ACL profile for Web development. As introduced in [13], ACL is a
multi-level language. It separates predicate-level from architecture-level expres-
sion. Predicate-level concepts, like quantifiers and set operations, are described
using an OCL (Object Constraint Language) [12] dialect, and the architecture-
level expression concepts are encapsulated in MOF [11] metamodels. The meta-
model defined for this ACL profile summarizes the concepts introduced in the
previous sections.

For instance, we may need to define a constraint which states that the com-
ponent of name TextField should not be connected to more than two different
components. This constraint could be defined using the ACL profile as follows:

context TextFie ld : Component inv :
TextFie ld . i n t e r f a c e . connectorEnd . connector . connectorEnd
. i n t e r f a c e . component−>asSet ()−> s i z e () <= 3

This constraint navigates to all connectors to which are attached the inter-
faces of TextField. It then gets all components whose interfaces are linked to
the connector ends of all obtained connectors. The resulting collection (Bag) is
then transformed into a set to remove duplicates. The obtained set contains even
the component TextField, this is the reason why its size should be less than or
equals 3 (instead of 2, as stated in the constraint of the previous paragraph).

2.3 Component Deployment

Once the development of an application is finished, we can proceed to its deploy-
ment. An application is characterized by the description file of the component
assembly. There are three possible kinds of deployment. The first is called Eval-

uation Deployment, whose purpose is the internal deployment of the application

within the development team. It serves for component testing. The second kind of
deployment is called Remote Qualification Deployment, which aims at deploying
the application in the customer environment. This is performed in order to test
the application by the customers before validation. The last kind of deployment
is said Production Deployment, which corresponds to the final product delivery.

2.4 Component Evolution and Reuse

The development process which is used with AlCoWeb introduces two profes-
sions. On the one hand, component developers model and code components, and
put them into the repository. On the other hand, component assemblers check-
out existing components from the repository in order to build larger applications.
The two professions work on separate environments and the repository consti-
tutes the bridge between the two professions. When component assemblers need
new components in order to satisfy a particular requirement, they ask compo-
nent developers to develop them and put them in the repository, or enhance
existing ones and add them as new component versions.

2.5 Association of Design Artifacts to Code

Every entity in the Web application model is associated to some implementation
elements in the code. When we navigate hierarchically in the model, we go
through the implementation code in the same manner. We thus introduce an
association link between design models and the code. These associations link a
given entity in the model to the code, which is marked by the entity identifier as
a comment. The associations can also reference files or directories. We argue that
this mechanism is a good practice in making relationships between views [2] of
the Web application architecture (relationships between structural and physical
views).

3 Illustrative Example

We developed using AlCoWeb a large set of components that implement a
plethora of technologies. Examples of these components include directory ac-
cess systems (Active Directory, OpenLdap, etc.), password-based cryptographic
system (MD5, DES, etc.), database access systems (MySQL, PostgreSQL/Post-
GIS, etc.), geographical web service access (WFS, WMS, etc.), AJAX widgets
based on Dojo, Scriptaculous, Rico, Google and Yahoo Ajax APIs. For reasons
of brevity and space limitation, we prefer not to detail some of these components
and present below a simple example.

The left side of Figure 1 depicts an example of a TextField component. This
component provides and requires a number of interfaces and defines some event
interfaces. Provided and required interfaces defined for this component are sep-
arated into PHP-specific (PhpTxtfPrdInterface and PhpTxtfReqInterface)

and JSP-specific (JspTxtfPrdInterface and JspTxtfReqInterface). Event in-
terfaces are decomposed into two kinds: events whose source is an application
user (ClientTxtfSideEvents) and events whose source is the server where the
application is hosted (ServerTxtfSideEvents).

Fig. 1. A simple example of a component assembly

The right side of the figure illustrates an HTML page of a Web applica-
tion. This page is represented by a component (HTMLPage) which defines mul-
tiple required, provided and event-based interfaces. This component contains
another component HTMLForm. Hierarchical connectors bind interfaces of the
super-component to the sub-component. The latter component contains four
sub-components. The first sub-component (at the right) represents architec-
turally the TextField component introduced previously, and functionally its
value represent the postal code of a city. The other sub-components are ListBox
components, and represent lists of countries, states and cities. Suppose that all
information about these geographic places is stored in a database, represented
by the two components SqlQuery and DbMysql. Components are bound together
through connectors defined by the developer by gluing interfaces (sockets and lol-
lipops). The component ListBox representing countries connects to the database
in order to get the list of available countries. As soon as this component receives
a change event from the user, it executes the operation onChange() which up-
dates the second ListBox component. The latter connects to the database using
XMLHttpRequest in order to get the states of the chosen country. The same
events occur for the last ListBox component. This Ajax-based functioning of
the application is illustrated here using hierarchical components.

4 AlCoWeb-Builder: A tool for Component-based Web

development

The environment we developed rely on several frameworks offered by the Eclipse
platform. AlCoWeb-Builder has been designed as a set of plug-ins that allows to
separate the underlying component model from the graphical editor itself. The
following section presents which frameworks have been used to develop this tool,
and how they communicate to process from model design to code generation.

Fig. 2. Screen-shot of AlCoWeb-Builder

4.1 Underlying Technologies

Eclipse is now a mature and productive platform. It is composed of various
projects that provide frameworks for software development; such projects are
for example Eclipse RCP (Rich Client Platform), BIRT (Business Intelligence
& Reporting) or WST (Web Standard Tools), which provide support for EJB
and Ajax development. Three main frameworks have been used to implement
AlCoWeb-Builder:

– GMF (Graphical Modeling Framework [4]) offers a generative component
and runtime infrastructure to produce a full-feature graphical editor based

on EMF (Eclipse Modeling Framework) and GEF (Graphical Editing Frame-
work). On the one hand, the component model is designed using EMF func-
tionalities and provides a set of Java classes which represents that model. On
the other hand, GMF enriches GEF with purely graphical functionalities.

– MDT project (Model Development Tools [4]) provides two frameworks:
UML2 and OCL. The UML2 framework is used as an implementation of
the UMLTM 2.0 specification. In the same way, the OCL framework is the
implementation of the OMG’s OCL standard. It defines an API for parsing
and evaluating OCL constraints on EMF models.

– JET (Java Emitter Templates [4]) is part of the M2T [4] project (Model To
Text). JET is used as the code-generator for models. JSP-like templates can
be transformed in any kind of source artifacts (Java, PHP, Javascript . . .).

Fig. 3. Internal structure of the sub-component HTMLForm

4.2 Architecture and Functioning

The first prototype of AlCoWeb-Builder has been split into four main plug-ins :
modeling, editing, constraints and transforming. The modeling and editing plug-
ins represent the graphical editor itself, with all basic UML modeling features
to design, edit and save modeling artifacts (as shown in Figure 2). It represents
the generic part of the architecture which is mapped to the component model
described before. Constraints plug-in allow the validation of modeling diagrams.
For instance by ensuring that an HtmlTextField component cannot be added
into an HtmlForm component. Code generation is represented also as a separate
plug-in in order to allow multiple target languages (JSP, ASP, . . .).

In a first time, our component model has been designed using EMF facili-
ties. This model is an instance of the EMF metamodel (Ecore) which is a Java

Fig. 4. Overview of the example application interface

implementation of a core subset of the OMG MOF (Meta Object Facility). In
further releases, we plan to use directly the Java implementation of the UML2
meta-model, provided by the Eclipse MDT UML2 framework, as our component
model.

From this model definition described in XMI (XML Meta-data interchange),
EMF produces a set of Java classes. Thoses classes serve as a domain model in
the GMF architecture, mainly build upon the MVC (Model View Controller)
pattern. The GMF runtime offers a set of pre-integrated interesting features,
such as diagram persistence, validation and OCL. In AlCoWeb-Builder, the per-
sistence feature allows to save the diagram into two separated XMI resources : a
domain file – the component model instance – and a diagram file – the notation
model for graphical elements –.

EMF also adds support for constraint languages. In our tool, OCL constraints
are used to validate the diagram and ensure model integrity. An OCL editor has
been developed into a larger plug-in which implements evolution contracts and
a quality oriented evolution assistance of the designed component diagrams [14].
This OCL editor is based on the OCL framework proposed by the Eclipse plat-
form, but adds some auto-completion capabilities to make easier the edition of
constraints for developers.

Finally, the JET2 framework provides the code generation facility. It con-
sists of two sets of files : an input model and templates files. The input file,
given in XML, is in our case a component model instance previously modelled

with the GMF editor. Templates use the XPath language to refer to nodes and
attributes of the input model, and generate text of any kind. The first prototype
of AlCoWeb-Builder uses those templates to generate PHP code.

Figure 3 shows the detailed internal structure of the component HTMLForm
shown in the previous figure. Components are designed hierarchically and in-
crementally. A double click on a given component allows either to access to the
architecture of this component if this one exists, or to define a new internal
structure for this component. The interpretation of the generated PHP, HTML,
JavaScript (Ajax) code for the whole application is depicted in Figure 4.

5 Related Work

Modeling software architectures using the UML language has already been
discussed in multiple works, such as [10, 8]. In these works different types of
extensions has been proposed to deal with the lack of expressiveness of UML in
describing some aspects of software architectures. As in these approaches, in this
paper we showed how we can use UML to model component-based architectural
abstractions, but within a particular application domain which is Web software
engineering. In addition, we make use of UML as it is in version 2.0 and not 1.5.

In the literature, many works contributed in the modeling of Web appli-
cations with UML. The most significant work in this area is Jim Conallen’s
one in [3]. The author presents an approach which makes a particular use of
UML in modeling Web applications. Web Pages are represented by stereotyped
classes, hyperlinks by stereotyped associations, page scripts by operations, etc.
Additional semantics are defined for the UML modeling elements to distinguish
between server-side and client-side aspects (page scripts, for instance). While
Conallen’s approach resembles to the approach presented here, it deals with
traditional Web applications and not with rich Web applications which enable
in some situations direct communication between presentation-tier components
and data-tier components (as illustrated in section 3). The author proposes an
extension to the UML language through stereotypes, tagged values and con-
straints, while what we propose in this work is simply the use of UML as it
is. Indeed, the distinction between server-side and client-side elements is not of
great interest in our case. Moreover, hierarchical representation of these elements
is not considered in his work, while the presentation-tier of Web applications is
by nature hierarchical.

In [6], Hennicker and Koch present a UML profile for Web Application De-
velopment. The work presented by these authors is more process-oriented than
product-centric. Indeed, they propose a development method which starts by
defining use cases as requirement specifications and then, following many steps,
deduce presentation models. These models are represented by stereotyped UML
classes and composite objects, and contain among others fine-grained HTML el-
ements. As stated above, the work of Hennicker and Koch is process-oriented. It
shows how we can obtain a Web application starting from requirement specifica-

tions. In our work we focus on the modeling of presentation models they discuss.
We do not deal with the method used to obtain these models. In addition, we
consider hierarchical elements in Web applications like their hierarchical presen-
tation elements represented by stereotyped composite objects. However, presen-
tation elements that we deal with in our work are interactive and collaborative
(like forms and form objects); their presentation elements are navigation-specific
(HTML pages that contain images and texts).

In [5], the authors present an approach for end users to develop Web ap-
plications using components. The proposed approach focuses on the building of
high level generic components by developers, which can be reused by end users
to assemble, deploy and run their applications. Components in this approach
vary from form generators to database query engines. The concern is thus with
whole Web applications, all the tiers are targeted here and their running environ-
ment. In the work we presented in this paper, components are presentation-tier
specific and focuses on the modeling of architectures of applications based on
collaborating library components. As stated previously, our approach is more
product-centric than organizational-oriented like in [5].

6 Conclusion & Future Work

Alkante develops cartography-oriented rich Web applications for regional and
local communities in Brittany (France)5. The work presented in this paper is
the continuation of a former work [7] realized in this company which targeted
the business-tier of these applications, and provided a new development process
based on building and reusing software components. In Alkante’s development
team, reusing hierarchical modules is a recurrent aspect when producing geo-
graphical web information systems. In order to make easy this task we developed
a component model which enables architecture modeling of rich Web applica-
tions and reusing at the same time these design models and their corresponding
code. In addition, we defined a version management mechanism for AlCoWeb
components. This is based on a repository which uses, as in traditional version
systems, like CVS, branches and tags for their organization.

In the near future, we plan to make available AlCoWeb-Builder and our com-
ponent repository in order to be enriched by the community (in an open-source
development perspective) and to serve as a testbed database for the component-
based software engineering community. AlCoWeb offers to the Web information
systems community a lightweight language and an environment which is con-
vivial (allowing hierarchical, incremental and reuse-based development of Web
information systems) and transparent (with simple navigation between models
and code).

5 Alkante Website: www.alkante.com

References

1. O. A. Alliance. Open ajax alliance web site: http://www.openajax.org/, Last
access: February 2007.

2. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and
J. Stafford. Documenting Software Architectures, Views and Beyond. Addison-
Wesley, 2003.

3. J. Conallen. Modeling Web Applications with UML, 2nd Edition. Addison-Wesley
Professional, October 2002.

4. Eclipse. Eclipse web site. http://www.eclipse.org/, Last access: June 2007.
5. J. A. Ginige, B. De Silva, and A. Ginige. Towards end user development of web

applications for smes: A component based approach. In In proceedings of the 5th
International Conference on Web Engineering (ICWE’05), pages 489–499, Sydney,
Australia, July 2005. LNCS 3579, Springer-Verlag.

6. R. Hennicker and N. Koch. Systematic design of web applications with uml. In
Unified Modeling Language: Systems Analysis, Design and Development Issues,
pages 1–20. Idea Group Publishing, Hershey, PA, USA, 2001.

7. R. Kadri, F. Merciol, and S. Sadou. Cbse in small and medium-sized enterprise:
Experience report. In Proceedings of the 9th ACM SIGSOFT International Sym-
posium on Component-Based Software Engineering (CBSE’06), Vasteras, Sweden,
June 2006. Springer LNCS.

8. M. M. Kandé and A. Strohmeier. Towards a uml profile for software architecture
descriptions. In Proceedings of UML’2000 - The Third International Conference on
the Unified Modeling Language: Advancing the Standard -, York, United Kingdom,
October 2000.

9. M. Larsson. Predicting Quality Attributes in Component-based Software Systems.
PhD thesis, Mälardalen University, Sweden, 2004.

10. N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins. Modeling
software architectures in the unified modeling language. ACM Transactions On
Software Engineering and Methodology, 11(1):2–57, 2002.

11. OMG. Meta object facility (mof) 2.0 core specification, document ptc/04-
10-15. Object Management Group Web Site: http://www.omg.org/cgi-
bin/apps/doc?ptc/04-10-15.pdf, 2004.

12. OMG. Object constraint language specification, version 2.0, doc-
ument formal/2006-05-01. Object Management Group Web Site:
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf, 2006.

13. C. Tibermacine, R. Fleurquin, and S. Sadou. Preserving architectural choices
throughout the component-based software development process. In Proceedings of
the 5th IEEE/IFIP Working Conference on Software Architecture (WICSA’05),
pages 121–130, Pittsburgh, Pennsylvania, USA, November 2005. IEEE Computer
Society Press.

14. C. Tibermacine, R. Fleurquin, and S. Sadou. On-demand quality-oriented as-
sistance in component-based software evolution. In Proceedings of the 9th ACM
SIGSOFT International Symposium on Component-Based Software Engineering
(CBSE’06), Vasteras, Sweden, June 2006. Springer LNCS.

