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Abstract

We present a method for the segmentation of unstruc-

tured and unfiltered 3D data.

The core of this approach is based on the construction

of a local neighborhood structure and its recursive subdi-

vision. 3D points will be organized into groups according

to their spatial proximity, but also to their similarity in the

attribute space. Our method is robust to noise, missing

data, and local anomalies thanks to the organization of the

points into a Minimal Spanning Tree in attribute space.

We assume that the 3D image is composed of regions ho-

mogeneous according to some criterion (color, curvature,

etc.), but no assumption about noise, nor spatial reparti-

tion/shape of the regions or points is made. Thus, this ap-

proach can be applied to a wide variety of segmentation

problems, unlike most existing specialized methods. We

demonstrate the performance of our algorithm with exper-

imental results on real range images.

1 Problem statement

Segmentation is the process of grouping parts of data

into segments that are homogeneous according to some

criteria[1]. It is usually an intermediate phase, in which ob-

jective is mostly a substantial reduction in data volume and

use segmented regions in higher-level processing, such as

image recognition, reconstruction, and modelling. When

dealing with three-dimensional (3D) images, segments cor-

respond to compact surfaces or volumes. Recognizing

parts on assembly lines, reconstructing a CAD model from

an unstructured input data, recognizing physical anomalies

from medical 3D images and 3D scene modelling are some

applications where segmentation plays a fundamental role.

In this paper, we are interested in segmenting 3D images

taken from the real world. These images are composed of

free-form objects, from unknown statistic population (usu-

ally non-Gaussian [2]), variable points density (scattered)

and significative regions in multiple scales, for example,

an image composed by a set of objects with different sizes.

These images are mostly represented by an unorganized

sampled point cloud. No information about their structure,

nor the topology of the objects presented are supplied by

the acquisition system or by the application.

The segmentation algorithm proposed in this paper

takes into account this lack of information about the im-

age characteristics: no prior assumption is made about the

data.

In our segmentation algorithm, we group points with lo-

cal similarities, using a hierarchical approach. 3D image

segmentation using local similarity has been considered

before [3][4]. The main difference between the present al-

gorithm and its predecessors is that our segmentation algo-

rithm can treat 3D images from different nature, obtained

with sensors based on Laser, fringe projectors, CT-scan,

MR-scan, SEMs, among others.

The method relies on the recursive cut of a neighbor-

hood graph. The connexity of this graph embodies the spa-

tial relationships between the points, while the weight of

each edge represents the local variation of a user defined

cutting criterion. From this graph is extracted a Minimum

Spanning Tree (MST), which is the support of the segmen-

tation. The use of a MST guaranties the method to con-

verge towards well-conditioned regions in terms of con-

nexity and variations of the segmentation criterion.

This algorithm is not dedicated to one specific cutting

criterion. Any locally defined attribute (color, density, cur-

vature, etc.) can be used.

The paper will be organized as follow: in section 2 we

give a brief overview of segmentation methods applied to

3D images. In section 3 we describe the proposed algo-

rithm. Our experimental results using real range images

are presented and discussed in section 4. Finally, some

conclusions and the future works are exposed in section 5.

2 Related work - Segmentation methods

In this paper we address the problem of grouping points

into homogeneous regions, or region finding approach.

Region finding methods are categorized by the way in

which points are gathered into regions. Mobile centers,

also called region-growing and bottom-up approaches, ini-

tially segment the image into unit cells (particular points

in the image). This step is the most critical, because cells

placed on a noise or boundary points lead to erroneous re-



sults. Then, neighbor points are merged based on a simi-

larity function. As points are added to the region, the seed

points move toward the center of the region. Most of meth-

ods falling in this category propose algorithms to robustly

place these seed points.

Density-based, or top-down methods, are the second

category of region finding methods. In this approach, the

original pointset is recursively subdivided into smaller re-

gions until each region reaches constant density according

to some region similarity function. Among density-based

algorithms, we can cite DBscan [5] and hierarchical seg-

mentation [6].

The similarity function can be either data-based or

model-based, depending on the image nature and the ap-

plication. Model-based similarity functions [7] fit points

to some known model. Consequently, a prior knowledge

about the image nature is required. Data-based functions

[4], on the other hand, are based only on local information,

and they are especially efficient when dealing with sam-

pled data.

Many methods were proposed in the literature to the

specific problem of 3D range images segmentation. In [7],

a good overview of a model-based planar range image seg-

mentation algorithms is presented, and experimental re-

sults are provided to compare these methods. In [8], 3D

images from general scenes are segmented into elementary

surfaces, planes, conics, splines and 3D histogram for non-

parametric free form objects. In [9], is suggested a method

to segment terrain-like and cylindrical volume images.

While the previous methods are more or less

application-dependant, we address the problem of segmen-

tation for unstructured and unfiltered 3D data. Thus, the

algorithms based on prior knowledge of models cannot be

used. Furthermore, because any local criterion can be cho-

sen for segmentation (color, local curvature, etc. ), no

assumption should be made concerning noise or spatial

repartition/shape of the segments.

3 A description of the algorith
3.1 Terminology and algorithm overview

We consider a 3D image defined as a set of sampled

points X = {x1,x2, . . . ,xn}. Each element of this set xi =
(pi,ai) is composed of the point coordinates pi ∈ℜ3 and its

attribute value ai ∈ ℜ. Brightness, distance in color space,

texture or curvature are examples of such attributes.

From this set of sampled points, we aim at building spa-

tially compact subsets characterized by the continuity of

the attribute values over the subset. The overview of our

segmentation algorithm is showed in fig. 1, and it proceeds

as follows:

1. Neighborhood Graph Building: The spatial neigh-

borhood information of each point is gathered in an

undirected graph structure. This graph is referred as

the Neighborhood Graph. The nodes of this graph

are the points of the dataset.

2. Edge Weighting: To each edge of the neighborhood

graph is assigned a weight which is the distance ac-

cording to the attribute values.

3. MST Extraction: From the weighted neighborhood

graph is extracted a Minimum Spanning Tree. The

edges of this spanning tree link points which are

neighbors in both euclidian and attribute spaces.

4. Recursive cutting: The final step of our method is

the segmentation itself. A hierarchical cutting algo-

rithm recursively splits the regions until they reach

homogeneity in attribute space.

3.2 Neighborhood Graph Building

Neighborhood around a point is a local surface descrip-

tor. In our algorithm, neighborhood is used to obtain points

connectivity, and to guarantee that segmented regions are

spatially related.

For each point, pi ∈ ℜ3, we form a neighborhood

Nbhd(pi) of all points around pi inside a sphere centered in

pi with radius R. The radius R is chosen to be proportional

to the points density, σ .

Points density is an unknown variable which must be

identified in our approach. This is done by picking ran-

domly some sample points, and for each sample find its

closest neighbor and compute their distance. The density

is estimated as being the average distance between closest

points. Finally, the sphere radius is defined as R = N ∗σ ,

where N is an input parameter.

The neighboring information is then used to con-

struct an undirected graph G, called Neighborhood Graph.

Nodes in the graph represent the sampled points and every

edge Ei, j links the point pi and its neighbor p j ∈ Nbhd(pi).

3.3 Edge Weighting

We apply an edge weighting to the neighborhood graph

in order to represent points relations in the chosen attribute

space.

The edge weighting consists in assign to each connected

pair points, represented by the edge Ei, j in the Neigh-

borhood Graph G, the cost wi, j =
∣

∣ai −a j

∣

∣, which is the

points distance in the attribute space. We obtain then not

only connectivity information from the edges of the neigh-

borhood graph, but also attribute variation through sur-

face/volume, explicited by the edges weight.

3.4 MST Extraction

The next step of our algorithm is to extract a Minimum

Spanning Tree in attribute space from the weighted neigh-

borhood graph.



Figure 1: Segmentation algorithm overview.

The Minimum Spanning Tree is a subgraph of a graph.

The MST connects all points (nodes) from the graph, form-

ing a tree. All edges presented in the MST is extracted from

the original graph.

In a MST, there are no cycles between any two points.

This defines a tree, and among all possible spanning trees,

the MST is the one (or ones) where the sum of all costs is

minimal. All the algorithms encountered to construct MST

are based on the following two properties:

• Identifying edges that must be in a MST: given a

graph G (fig. 2, top left), a cut in the graph is the

partition of the nodes into two disjoint sets. A cross-

ing edge is the one that connects a node in one set

with a node in the other (fig. 2, top right). Given any

cut in a graph, every minimal crossing edge belongs

to some MST of the graph [10].

• Identifying edges that must not be in a MST: given a

graph G (fig. 2 top left), if we add a new edge Ei, j,

the new MST is the one constructed by adding Ei, j

to the original MST and deleting a maximal edge on

the resulting cycle (fig. 2 bottom left).

In our segmentation algorithm, a MST is extracted from

the Neighborhood Graph using the classic Prim’s algo-

rithm [11]. From the MST algorithm construction, it is

always preferred paths in gradient direction and, if any

edge Ei, j is removed from the MST, two new independent

MSTs are formed. The first property ensures that paths

passing through discontinuity regions in attribute space are

avoided and noise points and its neighbors are leaf nodes in

the MST. From the second property, if nodes of the MST

represent points of a given region, removing any edge of

the MST create two independent MSTs and, consequently,

the original pointset is divided into two subsets.

Noise is amplified when weighting the edges of the

Neighborhood Graph in attribute space, due to the differ-

ential nature of the edge cost. Because of that, one can

expect a large cost between noise regions and the rest of

the samples. In MST algorithm they’re naturally placed

in leaf nodes. This behaviour is explored in segmentation

procedure to filter region segmentation.

3.5 Recursive cutting

The final step of our algorithm recursively breaks the

regions until they reach homogeneity according to the cho-

sen attribute. We used the hierarchical clustering, an unsu-

pervised hierarchical segmentation technique applied spe-

cially to segment sampled data from an unknown distribu-

tion [6] .

In Hierarchical clustering, the number of partitions ob-

tained at the end of segmentation is unknown and it de-

pends mostly on the input data, the noise level and the sim-

ilarity function. This behaviour makes it the most appropri-

ate technique to segment 3D images, when they are treated

just as a sampled points cloud.

At the initialization, all points belong to the same region

and the MST explicits the relation between points in at-

tribute space. The principle of the segmentation procedure

is to recursively remove edges from the MST. Every time

an edge is removed, two new disjoints MSTs are created,

and the original region is splitted in two new regions. The

attribute variation through each new region is smaller than

the variation through the original one. This process is ter-

minated when homogeneity in attribute space is achieved.

The segmentation algorithm recursively proceeds as fol-

low: it traverses a given MST (representing a region) and

it takes the link that has the biggest cost, Emax
i, j . Then, a

noise test is performed on the link nodes of Emax
i, j by seeing

if one of these points pi or p j are leaf nodes of the MST. If

one of the nodes is a leaf node, smoothing is applied to the

link cost wmax
i, j and the segmentation procedure is restarted.

Otherwise, the similarity function is applied to determine if

the region must be splitted in two or not. In our algorithm,

the similarity function is simply a comparison between the



Figure 2: Minimum Spanning Tree properties.

biggest cost, wmax
i, j , and a cutting criterion. The cutting cri-

terion is a threshold value and the region is splitted in two

if the biggest cost is above the threshold. Region partition

is done by removing the edge Emax
i, j of the original MST.

Segmentation procedure is repeated until all edges linking

the points of a given region (MST) have their cost bellow

the threshold value.

The drawback of this technique is that the cutting de-

cision depends upon only one link between two points.

It makes the original algorithm sensitive to noise and to

data distribution, and it could cause surface/volume over-

segmentation. Robustness is achieved in our algorithm by

applying the cutting procedure to the MST.

The cutting criterion is a simple threshold that depends

on the attribute space and the level of detail one wants to

extract from the image. For small threshold values, large

surfaces tend to be over-segmented and smaller surfaces

are correctly extracted. The opposite is observed for big

values. Tuning is necessary to choose the best threshold

value but it depends only on the attribute space, and it

doesn’t depend on the image nature. The cutting criterion

can be also a value associated with some statistical prop-

erty. This makes the process automatic, but is out of the

scope of this paper, once we want to work with points from

unknown population.

4 Algorithm evaluation

In this section we present the algorithm setup, the nature

and characteristics of the images treated and some results.

4.1 Algorithm setup

Three input parameters are taken in our algorithm: the

radius R used to construct the Neighborhood graph, the at-

tribute space we want to segment the image and the thresh-

old used as cutting criterion. The experiments presented

here will illustrate how these parameters influence the im-

age segmentation.

Attribute space is chosen depending on the informa-

tion of the input data one wants to segment. Normal vec-

tors, curvature, distance between points, are examples of

attributes associated to a point that characterize locally a

surface. In our experiments, two differential descriptors

which provide curvature information can be used as at-

tribute: sphere fitting and the angle between normal vec-

tors. They’re preferred because their variation on homo-

geneous surfaces is small and they require low memory

space, which is an important issue when dealing with large

data sets.

When the sphere fitting is chosen as attribute, we assign

to each point pi the radius estimated by the sphere fitting to

the neighborhood Nbhd(pi). When angle between normal

vectors is chosen, we assign to each point pi the biggest

angle between the normal vector of pi and its neighbors.

A fundamental geometric component used to estimate

those curvature attributes is the oriented tangent plane as-

sociated with a point, T p(pi), composed of its center point,

oi together with its unit normal point n̂i. In our algorithm,

the normal vectors are estimated by plane fitting using the

technique described in [12]. From the neighborhood graph,

we take only a fixed and small k−nearest points around pi

to estimate the normal vector, in order to augment the ro-

bustness of the plane tangent estimation [13].

4.2 Results and Discussion

Most of our image data sets were composed by range

images. Different attributes like color, texture, and inten-

sity are supplied by distinct acquisition systems. Range

images are generally contaminated by heavy noise, differ-

ent resolution and missing data. Besides that, we don’t use

any pre-processing algorithm to smooth the surface or to



eliminate noise.

Range images representing complete and partial object

were explored. We tested the capability of the algorithm to

segment the image into meaningful surfaces, the influence

of the input parameters in the final segmented images and

we analysed if equivalent surfaces in different images were

treated similarly by our algorithm and if these surfaces had

compatible attribute descriptors.

To validate our algorithm and its applicability to a large

variety of 3D images, we took performance measurement

over a large number of range images, as suggested in [7].

Over 30 range images of our database were used, and the

most significative results are showed here.

The first experiment verifies the repeatability of our seg-

mentation algorithm. Fig. 3 illustrates the original and

segmented range images taken from the same object, but

from different points of view. Angle between normal vec-

tors was the chosen attribute in segmentation for all im-

ages, due to the richness of geometric information of the

object. The same input parameters were used in segmen-

tation of all images. Looking at the segmented regions ob-

tained on all three images by our segmentation algorithm

and comparing them, we can notice that the algorithm is re-

peatable, once it generates similar regions, with similar at-

tribute descriptors, for equivalent surfaces. The differences

observed in the obtained regions were mainly due to miss-

ing data. We can also notice that details in different scales

were correctly extracted by our algorithm. Some small and

meaningless surfaces are generated especially because of

boarder points. These points have generally smaller den-

sity compared to the rest of the image points, and conse-

quently, attribute estimation is less accurate over the en-

tire region, and it is not recognized by our algorithm as

noise. A simple region merging algorithm could overcome

this problem, but it was not implemented in the present ap-

proach.

The second experiment verifies the influence of the in-

put parameter values on the final segmented regions. The

original and segmented images are showed in fig. 4. The

only input parameter that remained unchanged in this ex-

periment was the attribute space, where we chose the an-

gle between the normal vectors space. Fig. 4(a) shows

the original image, and fig. 4(b) is the segmented image,

when we take the same input parameters as the ones used

in the first experiment. These input parameters are used

as default when working in angle between normal vectors

space, so the segmented image (fig. 4(b)) is taken as ref-

erence. The analysis of the influence on the input parame-

ters on the segmentation is based on the number of regions

formed, the quantity of points in each region, and in visual

inspection.

Figs. 4(c) and (d) show the segmented image when

we reduce and increase in 20% the default threshold value

used as cutting criterion, respectively . Comparing the seg-

mented images, we can notice how the threshold value in-

terferes the higher-level information provided by the seg-

mented regions. For smaller threshold, image is decom-

posed into many more segments, where small parts com-

posing the image, like the statue’s eyes and mouth, were

efficiently extracted. However, some meaningless regions

were also presented due to noise, border regions, and holes

presented in the image. For bigger threshold, on the other

hand, the number of regions decreases, but these regions

contains a larger amount of points and they provide a good

information about the global topology of the image, once

it is only outlined the main parts that compose it.

Fig. 4(e) shows the segmented image when we use a

neighborhood radius 40% smaller than the one used as de-

fault. In this configuration, noise visibly affects the seg-

mentation, once the image was clearly over-segmented.

This result shows that the robustness of our algorithm to

overcome noise is dependent on the choice of the neighbor-

hood sphere’s radius. This parameter not only influences

the MST construction, and consequently, how noise paths

are avoided or placed on leaf nodes, but in the present case,

it also determines the accuracy on the estimation of the at-

tribute, once the angle between normal vector attribute is

estimated around the neighborhood Nbhd(pi).
The last experiment outlines the influence of the choice

of the attribute space in segmentation. For that, we take

the same image and segment it according to different at-

tribute spaces: the angle between the normal vectors and

the sphere fitting. The original and segmented images are

showed in fig. 5. Both segmentation procedures took

the same radius R to construct the Neighborhood graph.

Although both attributes provide local information about

surface curvature, we can observe that our algorithm seg-

mented the image into different regions. This is due to

the attribute’s nature and the influence of noise on attribute

estimation. The main problem of these attributes is that

they’re computed around a small region and when deriva-

tives are computed, noise present in the input and in normal

estimation are amplified. We can see that sphere fitting es-

timation is more affected by noise, since segmentation in

this attribute space created many small and meaningless

regions.

5 Conclusions and future works
We have presented here an algorithm for segmenting 3D

images into homogeneous regions, according to some at-

tribute. The results showed that our algorithm is robust

to noise, missing data and local anomalies. This was only

possible because we organize points into a Minimum Span-

ning Tree in attribute space, extracted from the weighted

Neighborhood Graph. The properties of the MST construc-



(a) (b) (c)
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Figure 3: Repeatability and correspondence test. Original range images (a), (b) and their respective segmented images, (c),

(d). Attribute considered in segmentation: angle between normal vectors.

tion and the spatial connectivity constraint imposed by the

neighborhood graph ensure that discontinuity is avoided,

noise are placed in leaf nodes and they can be recognized

in the recursive cutting process. The use of MST guaran-

tees that the method converges towards compact and ho-

mogeneous well conditioned regions.

For future work, we aim to study the effect of the choice

of the radius R used to construct the Neighborhood Graph

on the robustness of segmentation algorithm. The same

theorical analyses could be performed on the other input

parameters, as the cutting threshold. This would make our

algorithm even more robust to noise and if these input pa-

rameters could be estimated correctly, the segmented al-

gorithm proposed would become automatic. Some good

results were obtained when applying the segmentation al-

gorithm to volumetric images, but more experiments are

still required.
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