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Abstract—Semantic analysis (SA) is a central operation in
natural language processing. We can consider it as the reso-
lution of 5 problems: lexical ambiguity, references, prepositional
attachments, interpretative paths and lexical functions instanci-
ation. In this article, we show the importance of this last and
explain why these tasks should be simultaneously carried out
using thematic (conceptual vectors) and lexical (semantico-lexical
network) information. We present an ant colony model which
fulfill these criteria. We show the feasability of our approach
using a small corpus and the contribution of lexical functions
for solving the problem. This ant colony model offers new and
interesting research perspectives.

Many Natural Language Processing applications, like auto-
matic summarization, information retrieval or machinal trans-
lation, can take advantage of semantic analysis (SA) which
consists of, among other things, computing a thematic rep-
resentation for the whole text and for its subparts. In our
case, thematic information is computed as conceptual vectors
which represent ideas and provide a quick estimation if texts,
paragraphs, sentences or words are in the same semantic field,
i.e. if they share ideas or not. At least five main problems
should be solved during a SA. (1)lexical ambiguities(2)
referencesi.e. resolving anaphora and identity referencing ;
(3) prepositional attachmentsi.e. to find the syntactic head to
which a prepositional phrase is linked ; (4)interpretation paths
which concerns the resolution of compatible ambiguities; (5)
the most important for us in this article,instanciation of lexical
function (LF).

LFs model typical relations between terms and include
synonymy, the different types of antonymies, intensification
(“strong fear”, “ heavy rain”) or the typical relation of instru-
ment (↪knife↩ is the typical instrument of↪to cut↩, ↪shovel↩ of ↪to
dig↩). In this article, we show that we need lexical functions
to model world knowledge (“Napoleon was an emperor”)
or language knowledge (↪destiny↩ is synonym of ↪fate↩) and
the central role they play both in SA while contributing
to the resolution of ambiguities mentioned earlier and also
adressing specific problems of individual applications. We will
see that their detection in texts require thematic and lexical
information. Thematic information is handled using conceptual
vectors which allows us to describe ideas contained in any
textual segment (document, paragraph, sentence, phrase, . . . ) .
Lexical information is addressed using a lexical network. Thus,
our objective is to solve the five phenomena using a semantic

lexical base whose lexical objects are linked to each others
by typical relations and associated with conceptual vectors
describing ideas they convey.

Usually, resolution of these phenomena are done separatly.
Thus, anaphora resolution, prepositional attchment problem
and especially lexical disambiguation are independently stud-
ied. However, this is not the approach we adopt here. Instead,
our work is based on the reasonable assumption that these
ambiguities are often interdependent and that it would be
advantageous to undertake these tasks in a holistic way.

A way to holisticly deal with these various problems is
to use a technique resulting from the distributed artificial
intelligence, meta-heuristic ofant colony algorithms. Inspired
by the collective behavior of biological ants, these algorithms
are used to resolve difficult problems, in particular those
related to graphs (TSP, partitionings, . . . ) and are used in
operational research or to solve network routings problems.
Ant colony algorithms are used in a different way for SA. It
is not a method among others to solve a problem but rather
a method which allows the simultaneous and interdependent
resolution of these various tasks. Each ant caste corresponds
to a heuristic which helps to solve a particular problem (in the
model presented, detection of a particular lexical function) and
has a behaviour influenced in part by the other ant activities.
The environment is made up of both the text morpho-syntactic
tree and a lexical network which contains typical relations
between terms. We have one nest for each word meaning
(acceptions) which competes during resource foraging. Ants
build bridges between compatible acceptions which can be
considered as sentence interpretations. We demonstrate the
efficiency of this approach in order to solve SA problems.

I. SEMANTIC ANALYSIS (SA)
Five semantic phenomena can be solved during a SA:
(1) Lexical Ambiguity : Words can have several meanings.

This well-known phenomenon leads to one of the most im-
portant problems in NLP, lexical disambiguation (also often
called Word Sense Disambiguation). It involves selecting the
most appropriate acception of each word in the text. We
define an acception as a particular meaning of a lexical item
acknowledged and recognized by usage. It is a semantic
unit acceptable in a given language. For example, we can
consider that↪mouse↩ has three acceptions: the nouns for the
↪computer device↩ and for the ↪rodent↩ and the verb for the
↪hunt↩ of the animal. Contrary to lexical items, acceptions



are thus monosemantic. WSD is certainly a widely studied
problem in SA [11]. For MT, it is essential to know which
particular meaning is used in the source text because their
translations are often different. For example, the English word
↪river↩ can be translated in French as↪fleuve↩ or ↪rivière↩. In
information retrieval, it helps to eliminate documents which
contain only inappropriate senses of a word according to the
request, thereby increasing recall and precision.

(2) References: They are two types: (1)Anaphora is the
phenomena whereby a pronoun is properly related to another
element of the text. For example, in “The cat climbed onto
the seat, then it began to sleep.”, " it" refers to "cat" and
not to "seat". Anaphoric resolution in MT is important as it
associates pronouns to content nouns. Indeed, genders often
vary according to the language. Thus, anaphoric resolution
can help to translate the word which supports it. Therefore, in
French, "it" can be translated either as "il" (masculine), as here
in our case, or "elle" (feminine) whereas in German it could
be either "er", "sie" or "es" since German has three genders.
Note that in German the pronoun would beă"sie" (feminine)
and not masculine, as in French (“Die Katze klaetterte auf den
Sitz und (sie) begann dann zu schlafen”). (2) Identity stands
when two words in a text are references to the same entity
such as "cat" and "animal" in the sentences “The cat climbed
onto the chair. The animal began to sleep.”.

(3) Prepositional attachmentconcerns finding the depen-
dence link between a prepositional phrase and a syntactic
head (verb, noun, adjective) [9]. In “He sees the girl with
a telescope.” the prepositional phrase “with a telescope” can
be attached to the nominal phrase “the girl” or to the verbal
phrase "see". This is crucial in MT especially for a language
like English where prepositions considerably modify verb
meaning. In “The man took a ferry across the river.”, the most
logical attachment for↪across↩ should be the verb↪to take↩. We
then have for French “L’homme traversa la rivière en ferry.”.
The attachment to↪ferry↩ gives another meaning and then gives
as a translation “L’homme pris un ferry à travers la rivière.”.

(4) Interpretation path : due to other ambiguities, a
sentence can have several interpretations. Such ambiguities
occur often especially if the text is short since there is less
available information. [17] presents discussions and examples
on this phenomenon. As an example, “The sentence is too
long.” can be interpreted as a phrase with a non-trivial length
or as a condemnation with a non-trivial duration.

(5) instanciations of Lexical functions for analysiswhich
is a central point of this article and is presented now.

II. L EXICAL FUNCTIONS

A. Lexical and World Knowledge
The existence of a distinction between lexical knowledge

(LK) and world knowledge (WK) has been the subject of a
great debate particularly since the beginning of the 1980’s.
According to John Haiman [10], there is no difference between
the two, while Wierzbicka [22] argues that they are com-
pletely different. An interesting review can be found in Kornél
Bangha’s PhD. thesis [1] about the status of lexical knowledge
versus world knowledge in the process of interpretation. Here,

we adopt an intermediary stand close to his one’s. We consider
that knowledge can be divided into three categories: (1)WK
which are not directly lexicalised. Thus they are not LK.
For example, someone can know some facts of geography
(Where is New York?), of history (How did JFK die?) or
of everyday life (What is the color of a horse?). However,
these information are not lexicalised and can be expressed only
through statements; (2)WK which are directly lexicalised. As
an example, the sentence “During monsoon season, Penang
has heavy rain” is the representation in the real world of
the amount of rainfall in Penang during Monsoon lexicalised
thanks to↪heavy↩; (3) some LK which can’t be considered as
lexicalisation of WK. This is the case for grammatical gender
in languages like French or German. Thus, the French lexical
items ↪voiture↩ (↪car↩) and ↪mare↩ (↪pool↩) are feminine that does
not correspond to any information on the objects.

B. LF for Linguistic Knowledge (LFLK)
LFLK are similar to Mel’̌cuk’s LF [15]. They model LFs

which correspond to linguistic knowledge. One must be aware
of the fact that these functions also represent a state of the
world, but this state is represented by a particular, but arbitrary
(synchronically) item in the language. Thus, the sentence
“John had a strong fear” corresponds to the real world
situation describing the intense fear experienced by John, and
is lexicalised by themagnitudeLF Magn and one of its values,
↪strong↩. There are two kinds of LFLK,paradigmaticswhich
formalise classical semantic relations andsyntagmaticswhich
formalise collocations, “combinations of lexical items which
prevail on others without any obvious logical reason.” [18].

In the first category we have:synonymy(Syn) which
characterises different forms with a same meaning which
is only given by use and without direct relationship to
reality. Syn(↪plane↩)={ ↪airplane↩, ↪aeroplane↩,. . . }; antonymies
(Anti ) which concern items whose semantic features are
symetric relatively to an axis.Anti (↪life↩) = { ↪death↩,. . . };
Anti (↪hot↩) = { ↪cold↩,. . . } generics(Gener) which correspond
to substitution hypernyms i.e. terms of the hierarchy which
are preferred to others as reference by use. To illustrate,
we do not say “The vehicle has landed” but “ the air-
craft has landed” so Gener(↪plane↩) = { ↪aircraft↩} but not
Gener(↪plane↩)6={ ↪vehicle↩}. This function is different from hy-
pernymy where Hyper(↪plane↩)={ ↪aircraft↩,↪vehicle↩}.

In the syntagmatics, we have,adjectival LF like intensifi-
cation (Magn) or confirmation (Ver). Magn(↪tea↩)={ ↪strong↩};
Magn(↪rain↩)={ ↪heavy↩}; Ver(↪agreement↩)={ ↪good↩, ↪positive↩,. . . };
collective Mult(↪dog↩)={ ↪pack↩} and its opposite Sing
Sing(↪rice↩)={ ↪grain↩}

C. LF for the World Knowledge (LFWK)
LFWK permit to model knowledge about the world. Among

the LFWKs, we have,hypernymy(Hyper) which is the class
hypernymy contrary toGener which is the substitution
hypernymy. As we have already mentioned, the world
knowledge “a chair is a seat” is retranscribed in language
by the fact that↪seat↩ is hypernym of↪chair↩ which is a LK.
Hyper(↪plane↩)={ ↪aircraft↩,↪vehicle↩,. . . }; it’s opposite relation,
hyponymy. Hyponymy can be seen as the transcription in



language of the property that a class is subclass of another.
Hypo(↪aircraft↩)={ ↪plane↩}, Hypo(↪vehicle↩)={ ↪plane↩,↪car↩,↪boat↩};
instance(Inst) : Inst(↪writer↩)={ ↪Ernest Hemingway↩, ↪Victor
Hugo↩, . . . }, Inst(↪horse↩) = { ↪Tornado↩, ↪Black↩,. . . }; its
opposite relation,Class : Class(↪Ernest Hemingway↩)={ ↪writer↩,
↪American↩, . . . }, Class(↪Black↩) = { ↪horse↩,. . . }; meronymy
(Mero), the part-of relation and its oppositeholonymy
(Holo). Mero(↪plane↩)= { ↪fuselage↩, ↪wing↩,. . . }; verbal relations
as instrument (Instr) which links an action to its typical
instrumentInstr(↪to dig↩)= { ↪pick↩,. . . } Instr(↪to write↩)= { ↪pen↩,
↪keyboard↩,. . . } the agent relation (agt) which links an action
to its typical agent andpatient which links an action to its
typical patient which is influenced by it.agt(↪to eat↩)= ↪cat↩;
pt(↪cat↩)= ↪food↩.

D. Using of Lexical Functions
1) For Applications:

Machine translation:Igor Mel’čuk introduced lexical func-
tions in MT because he noticed that some terms are associated
to others whereas their direct equivalents are not used to mark
a similar idea. Thus, we speak of “grosse fièvre” in French
but not of∗"big fever" in English, where “high fever” will be
used instead. These phenomena were thus model by lexical
functions. They can be applied to any language in the same
manner and are considered universal. In MT, LF can be used
as aninterlingua i.e. as an intermediate language.

Information Retrieval: can be divided into two phases.
The first one, documents indexingconsists of building a
computational representation for each document. The second
one, thesearch phase, consists of transforming the request
in similar representation and to extract the closest documents
according to the given criteria. Lexical function can be useful
to find synonymy of values. For example, we can imagine
that the text representation does not directly refer to text
segments like “a high fear” or “ crushing majority” but rather
to Magn(↪fear↩) andMagn(↪majority↩). Then, documents with
“a high fear” or “ a strong fear” and “crushing majority” or
“ landslide majority” would be more easily found than with
simple distributional systems like SMART [19] or LSA [5].

2) For solving semantic analysis Problems:LFs can pro-
vide some clues which can help in the various tasks discribed:

Lexical Disambiguation: The two lexical function types can
help us: (1)LFLK for identifying the syntagmatic relations
between two words or at least to estimate its existence can
help to identify the possible meanings for the corresponding
lexical item. Thus, in “For his recent election to the senate,
Mr Smith obtained a crushing majority.” ↪majority↩ can be
partly disambiguated thanks to the LFMagn. Indeed, we
can consider that↪majority↩ can have as possible meanings
the proportion which is related to theage, the vote or the one
which is related toassembly but only Magn(majority/vote) =
↪crushing↩ and Magn(majority/assembly) = ↪crushing↩ exist. In
the same way, synonyms or generics can indirectly contribute
to the clarification via identity relation; (2)LFWK because
they formalise world relations which can exist between the
terms. Thus information such as “Renault has connection with
cars” or “ Napoleon was an emperor” can contribute to lexical

disambiguation. Clarification can be done again here indirectly
by identifying the identity relations thanks to hypernymy or
instantiation.

Identity Relations Identification: These relations are partly
supported by equivalent terms in context. They can be syn-
onyms but also hypernyms. Knowing or identifying these
relations can thus be a determining element for the meaning
reconstitution.

III. LF INSTANCIATION :LEXICAL -THEMATIC INFO

A. Thematic Information : Conceptual Vectors

We represent thematic aspects of textual segments (docu-
ments, paragraph, phrases, etc) by conceptual vectors. Vectors
have long been used in information retrieval [19] and for
meaning representation in the LSI model [5] from latent se-
mantic analysis (LSA) studies in psycholinguistics. In compu-
tational linguistics, [3] proposed a formalism for the projection
of the linguistic notion of semantic field in a vectorial space,
from which our model is inspired. From a set of elementary
concepts, it is possible to build vectors (conceptual vectors)
and to associate them to any linguistic object. This vector
approach is based on known mathematical properties. It is
thus possible to apply well founded formal manipulations
associated to reasonable linguistic interpretations. Concepts
are defined from a thesaurus (in our prototype applied to
French, we used Larousse thesaurus [13] where 873 concepts
are identified)). LetC be a finite set ofn concepts, a conceptual
vector V is a linear combinaison of elementsci of C. For a
meaningA, a vectorV (A) is the description (in extension)
of activations of all concepts ofC. For example, the different
meanings of↪door↩ could be projected on the following con-
cepts (theCONCEPTdintensityc are ordered by decreasing values):
V(↪door↩) = (OPENINGd0.8c, BARRIERd0.7c, LIMITd0.65c, . . .

Comparison between conceptual vectors is done us-
ing angular distance. For two conceptual vectorsA and
B, DA(A,B) = arccos(Sim(A,B)) where Sim is
Sim(X, Y ) = cos(X̂, Y ) = X·Y

‖X‖×‖Y ‖ . Intuitively, this
function constitutes an evaluation of thethematic proximity
and measures the angle between the two vectors. We would
generally consider that, for a distanceDA(A,B) ≤ π

4 (45˚),
A and B are thematically close and share many concepts. For
DA(A,B) ≥ π

4 , the thematic proximity between A and B
would be considered as loose. Aroundπ

2 , they have no relation.
DA is a real distance function. It verifies the properties
of reflexivity, symmetry and triangular inequality. We have,
for example, the following angles(values are in radian and
degrees).DA(V(↪tit↩), V(↪tit↩)) = 0 (0˚); DA(V(↪tit↩), V(↪sparrow↩)) =

0.35 (20˚);DA(V(↪tit↩), V(↪bird↩)) = 0.55 (31˚);DA(V(↪tit↩), V(↪train↩)) =

1.28 (73˚);DA(V(↪tit↩), V(↪insect↩)) = 0.57 (32˚)

The first one has a straightforward interpretation, as a↪tit↩
cannot be closer to anything else than to itself. The second and
the third are not very surprising either since a↪tit↩ is a kind
of ↪sparrow↩ which is a kind of↪bird↩. A ↪tit↩ has not much in
common with a↪train↩, which explains the large angle between
them. One may wonder why↪tit↩ and ↪insect↩, are rather close
with only 32̌r between them. If we scrutinise the definition



of ↪tit↩ from which its vector is computed (Insectivourous
passerine bird with colorful feather.) perhaps the interpretation
of these values would seem clearer. Indeed, the thematic
distance is by no way an ontological distance.

B. Limitation of Conceptual Vectors For LF Detection
As shown in [2], distances computed on vectors are in-

fluenced by shared components and/or distinct components.
Angular distance is a good tool for our aims because of
its mathematical characteristics, its simplicity to understand
and to linguistically interpret and ultimately allow it efficient
implementation. Whatever chosen distance, used on this kind
of vectors (represanting ideas and not term occurences), the
smaller the distance, the bigger the number of lexical objects
in the same semantic field (Rastier call it isotopy).

In the framework of SA as outlined here, we use angular
distance to take advantage of mutual information carried
by conceptual vectors in order to make disambiguate words
pertaining to the same or closely related semantic fields.
Thus, “Zidane scored a goal.” can be disambiguated thanks
to common ideas concerning sport, while “The lawyer pleads
at the court.” can be disambiguated thanks to those of justice.
Furthermore, vectors allow to attach properly prepositions due
to knowledge about vision. For example, the prepositional
phrase “with a telescope” would be attached to the verb “saw”
in the sentence “He saw the girl with the telescope.”.

On the contrary, conceptual vectors cannot be used to
disambiguate terms pertaining to different semantic fields.
Actually, an analysis solely based on them might lead to
misinterpretation. For example, the French noun↪avocat↩ has
two meanings. It is the equivalent of↪lawyer↩ and the equivalent
of the fruit↪avocado↩. In the French sentence “L’avocat a
mangé un fruit.”, “ The lawyer has eaten a fruit”, ↪to eat↩
and ↪fruit↩ convey the idea of↪food↩, hence the interpretation
computed by conceptual vectors for↪avocat↩ will be ↪avocado↩.
It would have been good to realize that “a lawyer is a human”
and “a human eats”, yet this is not possible by using only
conceptual vectors. They are simply not sufficient to exploit
the instanciation of lexical functions in texts, however, a lexical
network can help to overcome these shortcomings. These kind
of limitations have been shown in experiments for the SA
using ant algorithms in [12].
C. Lexical Information : Lexical Networks

1) Principles: Natural language processing has used lexical
networks for more than fourty years, with Ross Quillian’s
work going back to the end of the sixtie’s [?]. Authors differ
concerning the network type and the way to use them. Some
authors use directly graph microstructures (cliques, hubs)
while others use them indirectly through similarity operations
and/or activation of nodes (neural networks, pagerank).

The types of networks depends on entities chosen for nodes
(lexical items, meanings, concepts) and on lexical relations
chosen for edges. We can consider two families of lexical
networks : (1)semantic lexical networkssuch as Quillan’s [4],
or, more recently, [20], WordNet [7] where nodes correspond
to lexical items, concepts or meanings and, usually, there
are several kind of edges to qualify a relation (synonymy,

antonymy, hypernymy, . . . ); (2)distributional lexical networks
such as [21] where two terms are linked with an edge provided
they cooccur in a corpus. In this kind of network there is only
one type of edge. For SA, lexical networks are used only for
lexical disambiguation. On the other hand, Jean Véronis, for
example, showed that distributional networks aresmall worlds
and used this property to find every possible meaning for a
word [21]. He made partitions on graphs to extract the different
components organised around a hub, a central node to which
are linked terms used in a same context. For a SA, these
components are exploited while searching for the partition
containing the words in the co-text of the target term. With
regard to the indirect use of the structure of the graph, it is
done step by step by mutual activations and excitation of the
nodes to cause compatible solution to emerge. [20], for exam-
ple, use a technique inspired by"neural networks"on a graph
made from dictionaries definitions while [16] built a network
with words of a sentence and their possible meanings and
edges weighted according to a similarity between definitions.
Excitation of nodes is done with apagerankalgorithm.

Very few authors use edge labels in their experiments. We
have found only theLeacock and Chodorow measure[14]
based on WordNetis-a relations.

2) Limits of Lexical Networks:All these methods help to
solve only one of the problems mentionned, i.e. lexical ambi-
guity. They provide a way to make a preference concerning the
meaning of each word of a text taken individually. This last
feature makes it impossible to even obtain the compatible paths
of interpretation. By their very nature, it is hard to imagine
how to extend the above mentioned methods in order to solve
at least one of the other problems. Indeed, they all consider
that the important information to be found in the networks lie
only in the node, whereas in reality theyalso lie in the edges.
However, as mentionned in part II-D2, to find the relations
between items in a statement can contribute to the resolution
of other types of ambiguity (e.g. lexical ambiguity).

Of course, this last comment has to be considered with
respect to the specifically used networks. In the previous
examples, none present both paradigmatic and syntagmatic
information as the network we manage to build. Nevertheless,
some research converges towards this idea. Syntagmatic infor-
mation is crucially lacking in a network like WordNet. This
phenomenon is known as thetennis problem. The lexical item
↪racket↩ is in one area while↪court↩ and↪player↩ are in others. Of
course this is true, no matter what field chosen. Syntagmatic
and paradigmatic relations are essential for natural and flexible
access to the words and their meaning. Michael Zock and
Olivier Ferret have made a very interesting proposal in this
respect [8].
D. Hybrid Representation of Meaning : Mixing Conceptual
Vectors and Lexical Network

While lexical networks offer unquestionable precision, their
recall is poor. It is difficult to represent all possible relations
between all terms. Indeed, how can we represent the fact
that two terms are in the same semantic field? They may be
absent from the network because they are not connected by



“traditional” arcs. Introducing arcs of the type “semantic field”
is also problematic for us because of two reasons implicated by
the fuzzy and flexible of this relation: (1) the first one is related
to the database creator’s understanding on this relation: when
are two synsets considered to be in the same semantic field? In
an unfavourable case there would be very few arcs, while in the
extreme opposite case we could have a combinative explosion
in the number of arcs; (2) the second and more fundamental
problem is related to the representation itself. How could a
fuzzy relation, the essence of which is a continuous field, be
represented with discrete elements?

Thus, the continuous domain offered by conceptual vectors
gives flexibilities that the discrete domain offered by the
networks cannot. They are able to bring closer words which
share ideas, including less common ones. A network, on the
other hand, cannot do so, however common the ideas are.
The conceptual vectors and the operation of thematic distance
can correct the weak recall inherent of the lexical networks.
This, then, is why conceptual vectors and lexical networks
are complementary tools to each other: the defects of one are
mitigated by qualities of the other.

IV. A NT ALGORITHMS AND SA

It has been demonstrated that cooperation inside an ant
colony is self-organisated. It results of simple interactions be-
tween individuals which allow the colony to solve complicated
problems. This phenomenon is called swarm intelligence and
is more and more used in computer science where centralised
control systems are often successfully replaced by other types
of control based on interactions between simple elements [6].

In these algorithms, the environment is usually represented
by a graph. Virtual ants exploit pheromone deposited by others
and pseudo-randomly explore the graph. Pheromone quantity
plays the role of heuristic. These algorithms are a good
alternative for the graph modelised problems resolution. They
allow fast and efficient walkthrough close to other resolution
methods. Their main interest is their important ability to adapt
themselves to changing environment.

We think that phenomena to be addressed for a proper SA
should be globally considered for at least two reasons. (1) They
are dependent on each other. We exemplified it with Lexical
Functions in II-D2 and this demonstration can be easily
extended to other phenomena. (2) It is problematic to combine
expertises with a supervisor. Criteria are often contradictory
and their possible weighting are function of the others (again
because they are related). Finally, the bottleneck is not only
the expert agent conception but the precise definition of an
aggregate function for the returned values. Ants algorithms
constitute an easy and efficient way to handle SA issues in
a hollistic manner. Each ant caste is associated to heuristics
intended to solve a particular problem (in the presented model,
to instanciate a LF type) and thus has its own behavior partly
influenced by other castes. The idea is to constitute a beam
of clues which causes one (or several) compatible solutions
to emerge. Thus, when elements needed for an ambiguity
resolution are present, solving one problem is able to help in

the resolution of another. In this way, somewhat like domino
theory, resolution is done progressively.

V. THE MCSE MODEL

The Multi-Caste and Sharing Environment Model is not
in the scope of this article we just present its characteris-
tics. Mathematical heuristics which can be found in Didier
Schwab’s PhD. dissertation.

A. Principle

1) Bootstrapping: On the morpho-syntactic tree of the
sentence (cf. figure 1(b)) we put (1) an ants nest for each
ACCEPTION of the lexical item; (2) on each node a quantity
of energy which corresponds to the reward of the ants. At
each discovery of a lexical network node by an ant, we will
also place there the same quantity of energy; (3) a conceptual
vector with all its coordinate are equal, an odor, on each node
of the tree. At step cycle of the experiment, we consider this
odor as a representation of the thema of the subgraph.

2) Simulation: Simulation consists in a potentially infinite
iteration of cycles. The simulation can be stopped and the
current state observed. During a cycle, the following tasks are
done: (1) eliminate the oldest ants (a number of fixed cycles);
(2) for each nest, request the production of an ant (an ant can
be or not be born, in a probabilistic way); (3) For each edge,
decrease the rate of pheromone (evaporation of the traces); (4)
for each ant:determine its mode (search for food, return to the
nest) and make it move and create an interpretative bridge if
necessary; (5) compute move consequences of the ants (on the
activation of the edges and the energy of the nodes);

In an abstract way, one can summarize the move of an ant
as follows. A newborn ant (ie. just produced by its nest) looks
for food. It is attracted by the nodes which carry much energy
(food). It collects as much energy as it can carry, it transports
more and more food and the probability of wishing to return to
the mother nest increases. When it wants to return, it moves
following (statistically) the ways which contain the mother
nest pheromone and then try goes back to deposit its loading
there. When an ant is on a nest, it has the choice between an
edge of the morpho-syntactic tree or an edge of the lexical
network. If it chooses to follow a network edge, we recopy
the arrival node and we place there a quantity of energy equal
to the one which was placed on each node of the morpho-
syntactic tree during the bootstrapping phase. Just like a nest,
this node corresponds to anACCEPTION, thus its vector cannot
be modified. The ant will then seek to explore other nodes
gradually and will be likely to build a bridge toward its nest
mother if it finds a node thematically close.

3) Creation, Suppression and Bridge Type:As soon as
an ant is on a node corresponding to aACCEPTION , (i.e.
a nest or a recopied node) of the lexical network, it can
build a bridge. A bridge can be created when an ant reaches
a potentially friendly nest. In this case, the ant evaluates
the node corresponding to its mother nest like the nodes
structurally related to this nest. If this node is selected, there
is creation of a bridge between the two nests. This bridge is
then considered as standard by the ants, i.e. the nodes which



it links are regarded as neighbors. A bridge can be seen like a
compatibility between two nests, a possible interpretative way.
This bridge is covered at the same time by the pheromone of
passage deposited by each ant which borrows it and by the
pheromone specific to each class. If all the pheromone of the
bridge evaporates, the bridge is removed. Indeed, not only ants
make it possible to know the various possible interpretative
ways but they also make it sometimes possible to qualify these
ways. Thus, if a bridge between two nests is often borrowed
by ants of a castec , one will be able to deduct from it a
certain number of more or less direct information according
to the caste. For example, a bridge strongly borrowed by
ants of the casteseek_magn will probably represent this
relation. It will be the same with the antsseek_predicat or
the antsseek_patient . On the other hand, some are less easily
interpretable like the synonymy or the hyperonymy which can
contribute to discovered relations of identity if the nests join
the same terms morphology.

4) Energy: At the beginning of simulation, the system has
a certain energy which is distributed equitably on each node.
The nests use energy they have to manufacture ants. These last
move in the environment and bring back energy to the nests
which will use it to produce other ants. When an ant dies on
a node, the energy which was carrying and the energy which
was necessary to produce ant is deposed on the node. There
is thus neither a loss nor contribution of energy at any time.
The system is completely closed. The quantity of energy is a
fundamental element of the convergence of the system toward
a solution. Indeed, since total energy is limited, the nests are
in competition and only alliances may permit emergence of
solutions. If we didn’t choose to limit energy, all nests would
receive energy and all would be strongly activated and none
would be inhibited.
B. Example of Semantic Analysis in the MCSE Model

Let us take an ultra-simplified example to understand how
is held an analysis in hybrid model. Let us consider the
sentence “He digs with the pick.” and the mini lexical
network presented in figure 1(a). The most important thing to
understand here is the overall dynamics of the system. From
some relatively simple heuristics presented in the preceding
section, we have, by simple emergence, at the resolution of the
various problems of analysis raised by the text. In our example,
the only difficulties are at the level of lexical ambiguity: is
↪pick↩ the instrument or the choice and does↪to dig↩ mean “to
hit” or “ to make a hole”? It is thus probable to understand
how the bridges (E), (F) and (G) of the figure 1(b) will
be formed and how the system chooses this interpretation
rather than the others, can contribute to the comprehension
of this dynamic. In this simple example, theto dig/to hit and
pick/choice nests cannot be reasonably combined in order to
emerge an interpretative way. Indeed, the lexical network given
does not connect them and the topics given by each one are
relatively distant. This fact has a significant consequence on
ant moves on the morpho-syntactic tree. In this environment,
it can only be chaotic at the beginning of the experiment and
only influenced by the network. Let us consider each nest and
the behavior of the ants which of it result.

Ants from to dig/to hit (2) and pick/choice (4) nestsexplore
the lexical network or the tree and get lost since they can find
nothing sufficiently tangible to come back toward their mother
nest. Thus, they often die, seldom build bridges which, if they
happen to exist, are seldom crossed and quickly disappear.

Ants from pick/instrument (3), in particular those of the
castelook_for_instrument cross the edge (C) to arrive on the
ACCEPTION to dig/hole (7). The ants which are in the morpho-
syntactic tree go down again toward the leaf and specifically
reach the nestto dig/hole (1). Statistically, a stable bridge (E)
cannot be directly considered now because the arrival of the
ants is not very probable since it is only possible from the tree.
These ants thus start to go in great majority on the lexical
network by the edge (B), on nodes most probably already
copied by the ants from the nestto dig/hole (1). Arrived on
pick/instrument (9), they probably create a bridge toward their
mother nest (3) since the odor criterion will be then maximum.

Ants from to dig/hole (1) act in a symmetrical way to those
of pick/instrument (3). Some ants choose to cross edge (B) to
pick/instrument (9). In parallel, those which choose to go in
the tree go down again towards the leafs and in particular
towards the nestpick/instrument (3). Statistically, at this time,
the bridge (E) can be created but its conservation is not very
probable considering the relatively weak flow of ants of (1)
newcomer in (3). The majority of these ants then will explore
the lexical network by the edge (C) towardsto dig/hole (7).
Arrived at this node, they have a rather strong probability to
create a bridge (G) towards their mother nest (1).

The most significant point in this example relates to the
collaborative behavior of pick/instrument and to dig/hole. The
ants of (1) created the bridge (G) and ants ofpick/instrument (3)
can thus cross it and find themselves on the nest (1). From
there, they can manufacture a bridge (E) which this time
will have statistically more chance to be preserved since it
is compatible with available information of circuit CEG. In
the same way, this bridge will be reinforced by the ants of
dig/hole (1) which, they, will use EFB.
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best

patient
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acceptions global nouns adjectives verbs adverbs
recall 0,79 (+4%) 0,79 (+5%) 0,79 (+3%) 0,74 (+6%) 0,82 (+0%)

precision 0,78 (+3%) 0,78 (+2%) 0,82 (+4%) 0,76 (+4%) 0,8 (+2%)

edges global interpretation prep. attachments references FL instantiation
recall 0,82 (+80%) 0,81 (+14%) 0,83 (+2%) 0,78 (+50%) 0,83 (+∞%)

precision 0,85 (+77%) 0,82 (+12%) 0,89 (+6%) 0,81(+63%) 0,87 (+∞%)
FL syn hyper Magn Ver Bon mero holo instr agent patient dest

recall 0,85 0,77 0,7 0,72 0,73 0,62 0,7 0,72 0,72 0,6 0,61
precision 0,86 0,78 0,72 0,74 0,75 0,66 0,69 0,7 0,74 0,62 0,62

VI. EXPERIMENT AND RESULTS
A forty short texts corpus was constituted. These texts

were selected for their representativeness of the semantic
phenomena which we seek to solve (cf. I). In this corpus,
each sentence was manually annotated to describe, ideally, its
complete SA. In practice, for each sentence, one describes
each possible interpretation i.e. (1)ACCEPTION used for each
word , (2) references(3) prepositional attachmentsand (4)
lexical functions instantiations. The evaluation then consists
in comparing nests and edges created by ants. At the end of
five minutes of analysis of each text, computation is stopped
(in all our tests, we did not find convergence exceeding two
minutes). Only the nests whose activation level is higher than
0 are preserved. In other words, the inhibited meanings are
ignored as well as the possible edges they would be linked to
(what is very little probable). Usually, one compares results
according to the traditional method of recall-precision. The
experiment presented was undertaken on 11 FL and 22 castes.
The table presents hybrid model results, percentages show
rates augmentation comparing to a pure conceptual vectors
model. First, we can notice that all semantic phenomenon
are solved and, thus, validate the model. We also see that
LF usage improves results. As an example, references are
the best results as precision rate goes to 63%. Results of
disambiguation also show an indirect qualitative profit of the
instantiation of the FL on interpretation edges and terms
disambiguation. The significant instantiation of the adjectival
FLs explains in particular the good rate for adjectives and
nouns. The same phenomenon is found for the verbs although
the rate of instantiation of the verbal FL is less except for the
agent relation.

VII. C ONCLUSION AND FURTHER WORK
In this paper, we presented some of the ambiguity problems

that a semantic analysis should solve. The resolution of these
linguistic problems can take advantage of both thematic infor-
mation (conceptual vectors) and lexical information (lexical
network) through instanciation of lexical functions. Handling
these tasks can be difficult when they are considered separately
and often contradictory when they are globally considered.
Instead, they can be process by emergence through ant al-
gorithms. We have presented a model with multi-caste (each
looking for a particular lexical function) ant colony and shared
environment(morpho-syntactic tree and lexical network). This
is just a first study which paves the way toward many
extensions. Some problems still remain such as passive form
(as in “L’avocat a été mangé” (cf. I) where "avocat" is the
lawyer with the presented model) or the system stop.

Indeed, we are strongly convinced that our model, at least
in its principle if not in its implementation, carries many
interesting tracks of research. In particular, the genericity of
the approach makes it possible to easily define new ant castes
corresponding to new heuristics.
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