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Abstract—This paper models recent data in the field of postu-
ral coordination showing the existence of self-organized postural
states, and transition between them, underlying supra-postural
tracking movements. The proposed biomechanical model, capital-
izing on stability and optimization criteria, captures the complex
postural behaviors observed in humans and can be used to
implement efficient balance control principles in humanoids.
Experimental results on humanoids show the relevance of this
work.

I. INTRODUCTION

The field of movement science, perception-action and motor
control in humans provides a natural source of inspiration for
researchers in humanoid robotics. Due to their anthropomor-
phic structure, humanoid robots often present dynamic simi-
larities with humans that are interesting to study in both fields
of research. The goal of the present paper is to model basic
phenomena characterizing human postural coordination, which
have motivated in depth analyses during the last decade in the
field of human movement science. In 1985, Nasher and Mc
Collum [1] observed two postural strategies when the whole
body oscillates in upright position. These postural strategies
are characterized by a large activity of the ankles during the
the ankle strategy, and by the coordinative movements of the
hips and the ankles in the hip strategy. Within the framework
of coordination dynamics [2], Bardy et al. [3] proposed the
use of a collective variable to describe in a simple way the
complex biological couplings underlying the ordering in space
and time of postural coordination. To identify this collective
variables, Bardy et al. [4] used a parametric visual tracking
task (Fig. 1).

Fig. 1. Task and set-up used in Bardy et al. experiments. Participants faced
a white target on a large screen and tracked its motion in the sagittal plane.
The frequency of the target increased or decreased continuously.

They had standing participants moving back and forth in the
sagittal plane in order to track the displacement of a the target,
with the knees locked and the soles in permanent contact with
the ground. This simple task allowed the observation of several
self-organized properties of the postural system, such as phase
transition, multistability, self-organization, critical fluctuations,
hysteresis, and critical slowing down. The collective variable
able to capture both fully and in a very compact way these
properties was the phase difference between the ankle and the
hip.
These experimental observations suggest that posture may

be organized in terms of dynamical principles [2], and call
for the existence of common principles governing pattern
formation in complex biological systems. An attempt to repro-
duce these complex couplings should ameliorate the control of
balance in humanoids.
One first approach reaching for this global objective is to
ensure the validity of the observed principles in humanoid
robots.
A biomechanical model using a double inverted pendulum

associated with an under-constraints optimization method was
proposed by [5] to reproduce the dynamical and mechani-
cal aforementioned observations. Furthermore the objective
function used in [5] was also bio-inspired. [6] has shown
that during stance the human body aims at minimizing the
variations in energy during tracking tasks. However, this
model cannot describe critical slowing down and hysteresis,
two important phenomena observed in human behaviors and
characterizing non linear systems. The present work has two
distinct objectives:
1) develop a biomechanical model reproducing the human
observations,

2) implement the model in humanoid robots.
The implementation of the model permits the execution of

pre-programmed motion even if balance cannot be maintained,
contrary to humans. Humanoid robot sensors provide informa-
tion to decompose and understand a given task perfectly.
For this purpose, the target tracking task used by [3] and [4]

was chosen, and the Martin et al.s optimization model [5] for
this task was examined in the context of humanoid robotics.
An analysis of the natural frequencies was performed and

compared with the simulations resulting from the combination
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of an optimization and a biomechanical model.
Finally, in order to validate the resulting model, the optimal
joint amplitudes were executed in open loop on two different
humanoid robots.

II. BIOMECHANICAL MODEL FOR THE TRACKING TASK

A. Biomechanical modeling
Here we replicate the simple biomechanical model proposed

by Martin et al. [5] for postural sway in the sagittal plane. The
model (Fig. 2) is formed by three rigid segments including the
feet, the lower limbs and the upper part of the body which are
linked by the ankle and the hip joints (such joints are modeled
as frictionless hinges). The entire sole of the feet were assumed
to stay in contact with the floor.

Fig. 2. Biomechanical model in the sagittal plane used to describe human
postural coordination

For the inverse dynamic model calculation, the Lagrange
movement equations were used. We changed only the joint
markers, with respect to the original Martin’s model.
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where, Γ1, Γ2 represent the torque at the ankle and hip
respectively. θ1, θ̇1, θ̈1 are position, velocity and acceleration
of joint 1. Finally, the dynamic parameters of each segment
are mass m, lenght l, center of mass position k, inertia I , and
the gravity constant g .
Balance is described by the position of center of pressure

(CoP) within the BoS the sagittal plane. It can be expressed
as a function of the dynamic parameters (eq.3).

CoP =
(Γ1 − Fgxd+m0k0g)

Fgy
(3)

where Fgx is the horizontal ground reaction force and Fgy

the vertical ground reaction force. For the calculation of the
ground reaction forces, Cahouet et al. [7] proposed to use
Euler’s equations.

B. Natural frequencies of the double inverted pendulum
Intrinsic properties of the dynamic model can explain some

phenomena observed in experiments, around specific frequen-
cies. Indeed, each mechanical system has natural frequencies
at which minimal inputs can provide maximal reactions. This
interesting fact has been studied in other research areas such as
in humanoid structure construction [9]. Natural frequencies are
calculated via the linearization of the inverse dynamic model,
taking only the homogeneous equations of the system (4).

θ̈1α1 + θ̈2β1 + θ1γ1 = 0

θ̈1α2 + θ̈2β2 + θ1γ2 = 0 (4)

and α, β, γ are coefficients that represent the dynamic
parameters; they are defined by the following equations:

α1 = (m1k
2

1
l2
1
+ l2

1
m2 + I1 + I2)

β1 = (m2l1l2k2 + I2)

γ1 = gl1(m1k1 +m2)

α2 = (m2l1l2k2 + I2)

β2 = (m2k
2

2
l2
2
+ I2)

γ2 = gm2k2l2

By considering the periodic solution of (eq. 4), one can
solve the system for amplitudes. The associated characteristic
equation has two real positive solutions which are the natural
frequencies of the system.

ω01 =
−1

2(α1β2 − β1α2)

(
−2(α1β2−β1α2)(−γ1β2−α1γ2

+
√
(γ1β2 − α1γ2)2 + 4 γ1γ2β1α2)
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ω02 =
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2(α1β2−β1α2)(γ1β2+α1γ2

+
√
(γ1β2 − α1γ2)2 + 4 γ1γ2β1α2)

)1/2

(6)

The numerical values of the natural frequencies for the two
tested robots are:
• HRP2: ω01 = 0.48 Hz and ω02 = 1.05 Hz
• HOAP3: ω01 = 0.74 Hz and ω02 = 1.65 Hz
The system response shows two resonance peaks at the

natural frequencies. This observation tends to confirm the
privilege for certain frequencies to naturally decrease the joint
power necessary to accomplish the movement, and to increase
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the stability of the system since CoP position is linked to the
ankle torque (eq. 3).

C. Optimal amplitude calculation for the tracking task
In Bardy et al.’s experiments [3] [4], the head movement

was assumed to be periodic with a constant distance between
the head and the target. It thus makes sense to use a periodic
solution for the system. Martin et al. proposed to decompose
the joint positions in Fourier series.

θ1(t) =
a01

2
+

N∑
k=1

(ak1cos(kωt) + bk1sin(kωt)) (7)

where ak1 and bk1 are the ankle amplitude coefficients for the
kth harmonic, ω the pulsation of the target motion and N the
number of harmonics in Fourier series.
The system constraints are thus to keep a constant distance
between the head and the sinusoidal target (eq.8) and to hold
the orthostatic balance (eq.9), i.e, to maintain the CoP inside
the base of support (BoS).

At = l1(cos(θ1(
Tt

2
))− cos(θ1(0)))+

l2(cos(θ1(
Tt

2
) + θ2(

Tt

2
))− cos(θ(0) + θ2(0))) (8)

CoPmin ≤ CoP ≤ CoPmax (9)

where Tt

2
is the half period of the target motion, At its

amplitude, CoPmax and CoPmin the upper and the lower BoS
limits, respectively.
In the litterature, it is often assumed [6] that the human body
tries to minimize the global torque variations. For this reason,
(eq.10) is named the minimum torque change criterion.
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j=1

(
d Γ2

1

dt
(tj) +

d Γ2

2

dt
(tj)

)
Δt (10)

where n is the number of discrete time tj and Δt the time
discretization step, and 10 is the criterion in discrete time.
The optimization problem boils down to find the optimal
Fourier coefficients that respect these constraints.

III. SIMULATION OF THE TRACKING TASK
A. Simulation parameters
For the tracking task simulation, we used two different

models of humanoid robot, HRP2 and HOAP3. HRP2 (1.54m,
58kg) has the mass and the length repartition similar to
the Winter’s anthropometric model [8]. HOAP3 however is
not close to the anthropometric tables (70cm, 8.8kg). It is
interesting to see how the optimization evolves with a non-
standard anthropometric model.
The initial posture parameters all positioned the double in-
verted pendulum in an upright position. We took in (eq. 7)
only the first Fourier harmonic, to keep a periodic solution.
Simulations were performed with different input parameters.

The amplitude of the target varied between 20 and 100 mm,
and the oscillation frequencies varied from 0.2Hz to 1.2Hz.
The length of the BoS must also be a variable parameter,
because in the model the detachment of the sole is not
considered. The humanoid feet are rigid, wich can introduce
a bouncing phenomenon. It is necessary to adapt the length of
the BoS. The difference in the phase between the two joints
was measured by using the Lissajous curves.

B. Simulation results
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Fig. 3. Typical simulations (aT = 4cm , BoS = 2cm) for the HRP2 model.
In-phase (f < 0.67) and anti-phase (f > 0.67) coordination modes (a), CoP
under the BoS limits for the in-phase mode with a minimum variation at ω0

and on the BoS limits after the phase transition (b), the total net joint power
(b) with a inflection close to ω0 (c).

For the model corresponding to HRP2 parameters, two
distinctive stable modes appeared (Fig. 3a), similar to the
outcome of the anthropometric model used by Martin: the in-
phase mode between the ankle and the hip at low frequencies
and the anti-phase mode at high frequencies. Around the
natural frequency ω01, and independently of the length of the
BoS and At, a minimum peak-to-peak variation of the CoP
was visible (Fig. 3b) with a reduction of the total joint power
used (Fig. 3c).
For the model corresponding to the HOAP3 parameters, two

distinctive stable modes again appeared (Fig. 4a), but an anti-
phase mode was also the preferred mode at very low frequen-
cies, probably due to the non-antropometric parameters. With
this exception, all previous observations were confirmed. It is
interesting to note that a modification of the inertia and CoM
position of each segment, to approach the Winter’s parameters
[8], produced results closer to the HRP2 simulations.
(Fig. 5), (Fig. 6) illustrate Fourier’s first optimal coefficients

(i.e the amplitude) for fixed length of BoS and At. These
curves, constant before the transition, can be approximated to
provide a direct relation between the frequency and the optimal
amplitude.
Moreover the size of the constraints (BoS and AT ) influ-

enced the frequency of phase transition.
There is converging evidence from these results that the CoP
governs the emergence of the coordination mode; when CoP
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Fig. 4. Typical simulations (aT = 4cm, BoS = 2cm) for the HOAP3
model. Two coordination modes anti-phase (f < 0.47,f > 0.92 ) and in-
phase (0.47 < f < 0.92) (a), CoP with a minimum variation close to ω0

(b), the total net joint power (b) with a inflection close to ω0 (c), the two last
curves (d) and (e) represent the optimal amplitude (first Fourier coefficients.)
at each frequency
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Fig. 5. Optimized amplitudes for the HRP2 model. Amplitudes were constant
before the phase transition but increased afterwards with the antiphase mode.

approaches the BoS limit, the hip-ankle relative phase switches
to a new value. The anti-phase mode thus appears to be the
most stable mode in terms of balance, whereas the in phase
mode appears to be the mode minimizing energy.
These results also tend to show that the natural frequency is
a privileged frequency at which the system needs minimum
joint power and has a better equilibrium(eq. 3). The second
natural frequency has no physical sense since the constraints
are activated and change the model used for calculation of the
natural frequencies. The second minimum on the joint power
curves, located just after the transition, is due to the ankle
torque. In fact, the torque produced by the in phase mode
near the transition is important (in order to maintain balance),
which is not the case after the transition.
In conclusion, we observed a decrease in the peak-to-peak CoP
movement during the anti-phase mode, a reduction in the total
joint power for the in phase mode, and an increase in balance
with a minimization of energy around the natural frequencies.

IV. EXPERIMENTAL RESULTS AT THE TRACKING TASK
To show the effectiveness of the proposed optimized biome-

chanical model, we implemented in HOAP3 and HRP2 the
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Fig. 6. Optimized amplitudes for the HOAP3 model. The anti-phase mode
was observed at very low frequencies (f < 0.47Hz) due to the specific
HOAP3 parameters; then amplitudes followed the HRP2 amplitude pattern.
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Fig. 7. CoP evolution for HOAP3 (BoS top view) showing a better stability
for the anti-phase mode(b) than for the in-phase mode (a).

offline optimal joint amplitudes calculated for each frequency
of the target motion. The robots were used without stabilizers
and positioned initially in an upright position. The main
features we expected to observe were the minimization of the
joint energy during the in phase mode, the minimization of the
CoP peak-to-peak displacement during the anti-phase mode,
the shaping role of the CoP location in the phase transition,
and the CoP and torque values around the natural frequencies.

A. Effects of the coordination mode on the CoP

To analyse the influence of the two coordination modes on
the CoP position, we executed the same head motion at various
frequencies. The sign of the hip coefficient was changed and
consequently the coordination bifurcated from in phase to anti-
phase. On (Fig. 7) we can see clearly that the anti-phase mode
reduced the CoP peak-to-peak displacement of the HOAP3
robot.
CoP evolution of HRP2 (Fig. 8) described the same phe-

nomenon.
The anti-phase mode thus appears to improved the general

equilibrium in both robots.

B. Effects of the coordination mode on the energy

In this part, only the HRP2 results are presented since the
robot HOAP3 has no joint torque sensors. The methodology
was identical to the one used for the CoP analysis.
The in-phase mode (Fig. 9a,b) dissipated less joint power

than the anti-phase mode (Fig. 9c,d). This was due to the hip
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Fig. 8. CoP evolution during two periods of head oscillation for HRP2
(AT = 2cm, BoS = 2cm); the anti-phase mode reduces the CoP peak-to-
peak distance.
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Fig. 9. The joint power (W) is inferior for the in-phase mode (c,d) compared
to the anti-phase mode (a,b). Ankle power is slightly the same for in phase
mode (a) and anti-phase mode (d), hip power during anti-phase becomes larger
in the movement.

joint which increased after the phase transition. This shows
clairly that the in-phase mode minimizes joint power.

C. The role of CoP position in phase transition
In section III, we evidenced that the CoP dynamics gov-

erns both the general equilibrium and the coordination mode
adopted. We tried to evidence this effect with humanoid robots
by observing when the CoP location crossed the BoS limits.
Because however we did not take into account a possible take-
off of the sole from the ground, rebound behavior sometime
appeared due to the rigidity of the humanoid feet. Thus, robots
could fall because of these uncontrolled rebounds. We thus
searched for a compromise between the length of the BoS and
the amplitude of target motion. The experiment was performed
with short lengths of BoS. For example, with HOAP3, a
BoS length of 1cm together with a head amplitude of 5cm,
produced a stable value of the in phase mode at 0.85Hz while
the predicted value was 0.92Hz. As an other example using
HRP2 (BoS = 2cm and AT = 4cm ), the experimental in
phase stable value was around 0.55Hz while the predicted
value was 0.69Hz. The difference between experimental and
predicted results was more important for HRP2 than for

HOAP3, probably because HRP2 has a compliance element
located at is ankle level. This compliant element can add
oscillations which are not considered in our model. The
differences can also be due to an incomplete model: the
missing friction parameter, among others, may reduce these
differences. Above these values the only stable mode was the
anti-phase mode. This confirms that the CoP is an important
variable constraining the adopted coordination pattern.

D. Robot postural states around natural frequencies
Section III evidenced privileged frequencies, with minimal

variations in peak-to-peak CoP and energy.
HRP2 sensors provide the joint torques as function of

frequency. Our experiments did not reveal a direct effect of
natural frequencies, but a slow down in the increasing of
torques with frequency near the theoretical natural frequency.
Further tests are necessary in order to fully understand the
effects of natural frequencies.
For the CoP, the test is performed with HOAP3.
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Fig. 10. Evolution of the experimental CoP peak-to-peak displacement as
a function of frequency. A minimum variation observable at 0.62Hz (not
depending of the BoS and the AT ) but less important than the theoretical
frequency.

A diminution of the peak-to-peak CoP displacements is
visible (Fig. 10), but less important and not at the theoretical
frequency. That is certainly due to the imprecisions of the
model (section .IV-C). Nevertheless, the important fact is the
presence of a privileged frequency.

V. DISCUSSION AND PERSPECTIVES
By using humanoid robots we validated the results obtained

by Bardy et al. [4]. We showed experimentally, that the anti-
phase postural mode is more efficient for the global stability of
the postural system at high frequencies, and that the in phase
mode minimizes joint power at low frequencies.
Phase transition occurred when CoP reached the limits of the
BoS. This proves that the distance between the CoP and the
limits of the BoS is a key variable which has to be taken into
account by the nervous system.
The natural frequency for in-phase mode appears like a
privileged mode in terms of CoP displacements and in terms of
joint power. Based on these first results, we aim at developing
a ankle-hip controller which takes into account the natural
frequencies. For example, we would like to generate adequate
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trajectories in order to maintain the frequency spectrum close
to the natural frequency.
However, the model analysed in this paper does not take into
account all the dynamical phenomena observed in humans.
For this reason, and also in order to improve the humanoid
robot control, we plan to develop a more complete model
of the human postural system, capitalizing on nonlinear cou-
pled oscillators (ankles and hips). Haken Kelso and Bunz
(HKB) have proposed a nonlinear coupled-oscillators system
for bimanual coordinations [10]. The HKB model is able to
produce bi-stability, phase transition, amplitude evolution with
frequency increase. With few changes, such as those proposed
by [11], we plan to have a more complete picture of human
postural coordination, in order to create a new controller for
the ankles and the hips.
The use of nonlinear coupled oscillators associated with the

results obtained by the biomechanical model will be proposed
to create a new controller between the ankle and the hip.
This controller will be able to automatically change the

phase difference, the joint amplitude necessary to maintain
balance, capitalizing on the natural frequency properties.

(a) t=0 sec (b) t=0,25 sec (c) t=0,5 sec

(d) t=0,75 sec (e) t=1 sec (f) t=1.45 sec

Fig. 11. HOAP3 experiments with in-phase coefficients at high
frequency(f = 1Hz, BoS = 1cm, At = 5cm). The robot cannot maintain
its balance and falls backward.

(a) t=0 sec (b) t=0.4 sec (c) t=0.8 sec

(d) t=1.1 sec (e) t=1.15 sec (f) t=1.2 sec

Fig. 12. HRP2 experiments with in-phase coefficients at high frequency
(f = 0.6Hz, BoS = 2cm, At = 4cm). The robot cannot maintain its
balance and falls backward.
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