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Abstract. The AGRE model proposed by Ferber et al. is based on an interest-

ing generalization of both physical and social environments. In this paper we

revisit the AGRE model and extend it with richer social concepts such as powers,

norms and a dependency relationship which is similar to the count as operator

introduced by Searle to describe the construction of social reality. Our main con-

tribution consists in the fact that we attribute to the environment the main role in

describing and controlling (social) interaction.

1 Introduction

In the area of multi-agent systems (MAS), Castelfranchi claimed [1] that social order,

which is a (social) metaphor for the problem of coordinating the agents or organizing

the interactions among them while preserving their autonomy, could be obtained by

using social concepts such as norms and social control. Norms are rules describing the

expected ideal behavior of an agent or of a group of agents. Social control means that

the agents themselves observe the behavior of the other agents, control if it is norm com-

pliant and act consequently. Recently, many research works [2–5] proposed models that

integrate social and organizational concepts in MAS and suggested tools to implement

the social metaphor. However, most of them propose ad-hoc solutions of how social

concepts are constructed and then manipulated. For instance, there is not always very

clear if the social knowledge (e.g. the obligation to do an action, the power of doing

an act, the membership to an institution, etc.) is shared among agents or is represented

somehow externally and independently of them.

In previous works we also have studied how to integrate in MAS the organizational

concepts of group and role [6] and proposed the AGRE model [7]. The AGRE model is

based on the idea that the environment could be used to represent not only the physical

part of the interaction but also its social aspect. The agents interact only with the envi-

ronment which will react according to agent’s influences [8] and to the rules of change

defined at both physical and social levels of interaction.

In this paper we present the AGREEN model which is a revisited extension of the

AGRE model. Our main goal is to provide a much simpler and unified way of represent-

ing (physical and social) environments. The originality of our proposal consists in the

fact that it attributes to the environment the main role in describing and controlling (so-

cial) interaction. This is the major difference when compared with other related works

that use social concepts [3, 4, 9].



The AGREEN model is based on a clear separation between what an agent tries to

do and the effects obtained as consequences of its acts on the environment. The architect

of an agent concentrates only on describing the internal structure of the agent, that is, on

the design of the decision making mechanism that allows the agent to decide what to do

next. The architect of the system describes the environment as a set of rules governing

the interaction, ignoring how the agents are built. The main benefit of this separation

is that it guarantees the autonomy of the agents and the non-intrusive control of their

behavior. The non-intrusive control is based also on a clear distinction between what an

agent can do, as capabilities (or powers), and what an agent is supposed to do as deontic

constraints (i.e. obligations, permissions, interdictions).

Another advantage obtained from the separation agent/environment is that the se-

mantics of an action could be given according to two perspectives: internal (agent’s

point of view) and external (environment’s point of view). The external semantics could

be further refined according to its social or physical aspect. This is a step forward to-

wards giving to agent communication languages a public perspective and a social se-

mantics, as requested by the agent community [10].

In the rest of the article we revisit the AGRE model and propose the AGREEN

model that enhances AGRE with social concepts such as capabilities (powers), norms

and a dependency relationship which is similar to the count as operator introduced by

Searle to describe the construction of social reality [11].

2 Social Reality and AGRE

In this section we describe some social concepts such as norms and social reality that

were announced in the original paper of AGRE but which deserve more attention.

2.1 Social Reality

The work of Searle on the construction of social reality [11] is becoming very influ-

encing on the research in agent based systems [2, 3]. The main idea is that a social

institution, even that it has no physical support, has its own (social) reality and is con-

structed by mutual convention among its members on how to interpret what happens in

the physical reality. Searle makes the distinction between brute facts and institutional

facts. A brute fact represents something (true) bellonging to the physical reality (i.e. a

piece of paper with a ten euros sign marked on it). An institutional fact is a fact that is

considered to be true by collective acceptance by the members of a group or comunity

of agents (i.e. money such as ten euros). According to Searle an institution is defined

in terms of two types of rules: constitutive and regulative. Constitutive rules show how

to construct the social reality by giving an interpretation to brute facts or other social

facts. They have the form "X counts as Y in context C". For instance, in the money

institution a piece of paper with ten euros special printings on it counts as a ten-euro

banknote. Jones and Sergot [2] give a formalization of count as, and present the con-

cept of institutionalized power as being the (social) capability to act in an institution.

Regulative rules describe ideal normative situations or behaviors from the point of view

of an institution.



2.2 The AGRE Model

In [7], Ferber et al. propose an extension of the AGR model [6] and consider an orga-

nization as being a special kind of environment. Social actions are associated with an

organization, i.e. playing a role, entering and leaving a group, communicating inside

a group, etc. The main ideas presented in that work concern (i) the use of both social

and physical environments to describe the interaction among agents; (ii) the concept

of space which is a generalization of the concepts of physical area and social group,

introduced to partition the environment; and (iii) the concept of mode, which is a gen-

eralization of the concepts of physical body and social role, used to describe the agent’s

capabilities to influence [8] physical and respectively social environments.

However, the AGRE model presents some inconveniences. First, the generalized

concepts of space, mode and institution show very well the relationship that should exist

between an agent and an environment, but they remain abstract and unused. Moreover,

like in AGR, there is no explicit description of the expected behavior of the agents,

i.e. a role is simply a label with no other semantics. Normally we should be able to

associate to a role powers and deontic constraints such as obligations, permissions or

interdictions. Finally, AGRE in its original form did not take into account the ideas on

social reality by Searle. What is missing in AGRE is something similar to the count as

relationship that links together physical and social environments or more generally any

two environments.

3 The AGREEN Model

In this section we show how to improve and generalize the concepts introduced initially

in AGRE. That is, we propose: (i) to use only the generalized concepts of space, mode

and capability, (ii) to better explain the role of the environment from the point of view of

behavior control, (iii) to give more details on the role of modes as capabilities to act in

an environment, and (iv) to try to generalize the relationship existing between physical

and social environments.

In Figure 1 we give a simplified description of the main relationships existing be-

tween a space, a mode and an agent. In order to interact to other agents an agent will

influence a space through its mode which provides controlled capabilities to act in an

environment. According to what an agent is able to do in a space the environment will

react to its influences. The reaction of the environment is finally the result of a more

complex interaction between various objects which have the role to encapsulate the

environment’s state and behavior.

3.1 Spaces

As in AGRE, we borrow concepts from the object-oriented programming paradigm to

specify an environment. The role of a space is to keep the information about the state

of a physical or social environment. A space is for agents a sort of interaction place.

Its state can change as a consequence of their influences. A space is characterized by a

name and a space type as as explained below. The state of a space is given by the state



Fig. 1. Simplified UML representation of AGREEN

of the objects that compose it. The kinds of objects composing a space could be further

divided in ordinary objects, modes and recursively other subspaces. In the following we

will give definitions for all these concepts.

Definition 1 (Space). A space S is a tuple <IdS , ST , O∗, M∗, S∗> where: IdS is

the space’s Id that uniquely identifies it, ST is the current space type, and O∗, M∗, S∗

represent the sets of objects, modes and respectively subspaces that compose a space.

The type of a space is a concept similar to that of class in the object-oriented

paradigm and contains the description of common properties and behaviors of iden-

tical instances, i.e. concrete spaces. A space type defines the structure of its instances,

i.e. the way a space instance is composed of objects, modes, and other subspaces.

Definition 2 (SpaceType). A space type ST is a tuple <ATD∗

S
, OT ∗, MT ∗, ST ∗,

DR∗, C∗

S
> where ATD∗

S
represents the set of attributes composing a space. An at-

tribute could be an instance of a type taken from the sets OT ∗, MT ∗ and ST ∗ which

correspond to object types, mode types and respectively other space types. DR∗ repre-

sents the set of explicit dependency rules that link an instance of ST to other spaces,

and C∗

S
is the set of environmental constraints for the environmental control.

The set DR∗ contains rules that determine how a space modifies its internal state

according to some external changes produced by other spaces. A dependency rule be-

tween two spaces introduces constraints of various natures: causal (an internal event is

the result of some external causes or events occurred in other spaces), logical (a local

property is the logical consequence of some external properties), social (like count as).

Note, for instance, that physical spaces have no social dependency rules.

3.2 Objects

Objects encapsulate the internal state of the environment and the laws that govern its

change. An object exists at runtime and is characterized by a type and a state.

Definition 3 (Object). An object O is a tuple <IdO, OT , AT ∗

O
> where: IdO is the

object’s name that uniquely identifies it; OT is the object type; and AT ∗

O
is the set of

attributes of the object.



The type of object is similar to the class in object-oriented programming and con-

tains the description of common properties and behaviors of identical instances, that is

concrete objects. An object type describes the possible states of its instances and how

they change under agents’ influences.

Definition 4 (ObjectType). An object type OT is a tuple <ATD∗

O
, M∗> where ATD∗

O

is the set of attribute declarations and M∗ is the set of methods defining how an object,

instance of OT , changes its internal state.

3.3 Modes

There are mainly two reasons to introduce the concept of mode: (i) to allow a space to

individually attribute capabilities to agents; (ii) to allow a space to specify the expected

behavior by using social deontic constraints. We propose to use the term capability to

describe the unified concept of physical capability and social power. A capability is

associated to a mode and a space, and defines the way an agent (called owner of the

mode) is able to modify the space at runtime. A mode is characterized by a mode type

and a set of attributes.

Definition 5 (Mode). A mode M is a tuple <IdM , MT , A, AT ∗

M
, OPI∗> where: IdM

is the mode’s name that uniquely identifies it, MT is the mode type, A is the owner’s

(agent) identifier, AT ∗

M
is a set of attributes, and OPI∗ is a set of deontic constraints

such as obligations, permissions and interdictions.

Definition 6 (ModeType). A mode type MT is a tuple <ATD∗

M
, P ∗, C∗

M
, N∗> where:

ATD∗

M
is the set of attribute declarations, P ∗ is the set of capabilities (or powers) that

an instance of MT will offer to its owner, C∗

M
is a set of conditions that should be ful-

filled by an agent to obtain a mode in a space or to release it, and N∗ is a set of norms

that describe the conditions of apparition of deontic constraints that apply to a mode,

instance of MT .

The type of mode is similar to the class in object-oriented programming. It is an

abstract description of the internal structure of its instances, the modes, and of the oper-

ations that could be executed on them to change their state. Since the notion of type is

similar to that of class, we also introduce the concept of inheritance between two types.

As in object-oriented software engineering, the inheritance is used to represent the is-a

relationship or to reuse code.

In the definition of a mode type, the set C∗

M
contains the conditions that should be

verified on an agent at the creation of its mode or rechecked later to see if the agent still

posses the necessary conditions to continue to interact with the environment.

The role of capability rules is to define what is possible for an agent to do in a space.

When an agent influences the environment, the capability rule triggered by its mode is

immediately executed by the environment. A capability rule also contains the precon-

ditions on producing an influence on the environment. As shown before, a mode encap-

sulates the conditions that gives its owner the possibility to act in an environment. The

capability rules are mainly employed to externally control the behavior of the agents

inside a space through their modes, hence preserving their internal autonomy.



The role of norms is to implement the social control since they reflect the deontic

aspect of interaction. They are of the following conditional form:

if Condition then OPI(agent, α)

where OPI(agent, α) describes deontic constraints such as the obligation, the permis-

sion or respectively the interdiction to do something or to arrive in a certain state of

affairs α. If the Condition part in a norm is true, the norm describes a permanent

deontic constraint. We note that we do not consider general deontic constraints as in

standard deontic logic, but directed deontic constraints on specific agents. Like capabil-

ities, a deontic constraint is always connected to a mode.

As shown in the previous section, we only consider the context of social interac-

tions. For instance, a physical mode (e.g. a body), is only a mode with an empty set of

norms.

A norm could be used in various ways, for instance, as a simple container of nor-

mative information, eventually sanctioned by social penalties if violated and rewarded

otherwise, or "regimented" by social mechanisms that force or block the execution of

agent’s actions in a space thanks to its modes. Since there is no common agreement on

how to use norms in multi-agent systems, we leave open to an architect the choice of

semantics and their implementation.

4 Example: modeling Warbot

In this section we illustrate the concepts introduced in AGREEN by modeling Warbot

[12], a video game where two teams of robots fight against each other to destroy the

opponent’s base.

In Warbot there are three physical types of robots:

– Bases, fixed robots which are able to perceive large areas and transform food in

new agents,

– RocketLaunchers, mobile robots that have to bring food to the base and which

are able to shoot other robots perceived in their neighborhood,

– Explorers, mobile robots specialized in searching for food but which move faster

than RocketLaunchers.

Warbot is constructed following the idea of separating the minds of the agents from

their bodies which are situated in an environment. That is, we consider that behind

each robot there is an autonomous agent which decides for the robot what to do next.

The environment (or the spaces) offers the agents the capabilities to interact. Thus, the

interaction could be divided in four spaces: arena which is used for the physical part

of the game, lions and tigers which correspond to the organizational aspect of the

game, and game777 which contains the score and the entire lifecycle of one play of

the game. More exactly, the agents use robots to confront physically in arena space,

coordinate their attacks in lions and tigers spaces, and play one round Warbot games

in gameXXX spaces. A game play is finished if one of the bases has been destroyed

in the arena space.



Fig. 2. Warbot, a robot video game

The space arena is defined as a two-dimensional physical space allowing physical

robots to move, shoot, communicate in a certain range and pick up food. The space

arena is an instance of WarbotArena, a space type which contains the definitions

(see Figure 3 for some excerpts) of object types such as Food, Obstacle and Missile,

and mode types such as Robot, MobileRobot, RocketLauncher, Explorer, Base.

The Robot type is the super type of all the robot types and defines the capability of

a robot to perceive and communicate in a certain range; MobileRobot inherits from

Robot and adds the capability to move. Both RocketLauncher and Explorer inherit

from MobileRobot. Base inherits directly from Robot and adds the capability to create

new robots from food.

The spaces lions and tigers are spaces for social interaction between the members

of the same team. Each team can have its own organizational structure and coordination

rules, but for simplicity reasons we suppose that both teams are instances of the same

space type Team. For instance, we can have that Team is composed by one Leader

and many Subordinates. All the modes in a space instance of Team have the capability

to communicate. The Leader of a team contains in addition the capability (power)

to give orders to a Subordinate. When a Subordinate receives an order it becomes



SpaceType WarbotArena {

ModeTypes = {

ModeType Robot = {

Attributes = {

int radius = 12;

int energy = 1000;

int detectionRange = 130;

}

Capabilities = {

int getEnergy() {...}

}

Conditions = {

boolean onDemand() {...};

boolean onRelease() {...};

...

}

}

ModeType MobileRobot extends Robot

{

Attributes = {int speed;}

Capabilities = {

void move () {...};

}

...

}

}

ObjectTypes = {

ObjectType Food {...}

ObjectType Obstacle {

int x, y;

int getX(); int getY();

}

}

SpaceType Team {

ModeTypes = {

ModeType Leader {

Capabilities = {

void order(Subordinate ag,

Request r) {...}

boolean onDemand() {

return plays(this.owner,

MobileRobot,

WarbotArena) &&

leader == null;

}

}

}

ModeType Subordinate { ...

Norms = { {

if ordered(Leader l, this,

act)

then obliged(this, act, l)},

...

}

SpaceType WarbotPlay {

ModeTypes = {

ModeType Player { ...

Norms = { {

forbidden (this, nextTo(this,

base, 10)) }

...

Dependencies = {

{ WarbotArena,

// count as

boolean nextTo(Player p, Base b,

int time) {...}

}

}

}

Fig. 3. Types definitions for spaces, modes and objects

obliged to obey the order. This rule is described by a norm defined in Subordinate

mode type. Depending on the strategy of a team, the violation of such a norm could

trigger various institutional actions, for instance, that affect the agent’s trust level or

socially isolate the agent from the rest of the team.

The space game777 is an instance of WarbotP lay, a space type that defines the

rules of the game. It contains, for instance, the conditions to start, pause or end a game,

the conditions of a team to score one point or win a game, the penalties attributed to a

team if some of its members don’t obey the normative rules, such as a Player in a team

should not stay next to a base more than a certain period of time. The constitutive rules

of WarbotP lay depend mainly on what happens in an instance of WarbotArena.

In Figure 4 we show some possible content of a space at runtime.



arena = {

id = arena,

spaceType = WarbotArena,

subspaces = {},

modes = {

{ id = base1,

type = BaseRobot,

owner = agbaseA,

attributes = {radius = 20, energy

= 2000, ...},

deontic constraints = {},

},

{ id = explorer1,

type = Explorer,

owner = rob33,

attributes = {..., x = 10, y =

23, speed = 20, ...},

deontic constraints = {}

},

...

},

objects = {

{ id = ob1,

type = Obstacle,

attributes = {x = 20, y = 30}},

},

...

}

}

lions = {

id = lions,

spaceType = Team,

subspaces = {},

modes = {

{ id = boss,

type = Leader,

owner = ag332,

attributes = {ordered(ex1,

returnHome)},

deontic constraints = {},

},

{ id = ex1,

type = Explorer,

owner = rob33,

attributes = {...},

deontic constraints = {obliged(

returnHome, boss)}

},

...

},

objects = {...}

}

Fig. 4. Spaces at execution time

5 Conclusions

The AGREEN model described in this paper is a revisited extension of the AGRE

model. Its main goal is to provide a much simpler and unified way of representing

(physical and social) environments. The model is based on: (i) a clear separation be-

tween what an agent tries to do and the effects obtained as independent consequences

of its acts on the environments and (ii) a clear distinction between what an agent can

do, as capabilities, and what an agent is supposed to do, as deontic constraints.

Another message of this article is that, the institution, defined by Searle as a set of

constitutive rules of the form "X counts as Y in context C", is a concept general enough

to expressively describe mediated interaction and environment-based coordination. In

AGREEN, the space and its type, taken together, should be seen as the basic institu-

tional unit. A space represents that part of the social reality constructed according to the

(constitutive) rules defined by its type. A space type actually corresponds to the context

C in Searle’s terminology or to S in Jones and Sergot’s formalization of count as oper-

ator (e.g. X ⇒S Y ). It regroups all the constitutive rules relative to the same context C.

When modeling the interaction, the expressive power of institutional concepts comes

from the fact that we can divide the whole space of interactions in smaller parts and

consider them separately, in isolation or connected to others.



The unified institutional model proposed in this article, allows someone to uni-

formly describe various types of interaction. The difference between physical and so-

cial interaction is that in the case of a physical space we don’t have to specify deontic

constraints and social dependency relationships. We note, however, that the social de-

pendency relationship, which is similar to the count as operator, and the more general

notion of dependency between any two spaces deserve both more attention and formal

definitions. This will be subject of our future work.
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