
HAL Id: lirmm-00204524
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00204524

Submitted on 14 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sampling For Sequential Pattern Mining: From Static
Databases to Data Streams

Chedy Raïssi, Pascal Poncelet

To cite this version:
Chedy Raïssi, Pascal Poncelet. Sampling For Sequential Pattern Mining: From Static Databases to
Data Streams. ICDM 2007 - 7th IEEE International Conference on Data Mining, Oct 2007, Omaha,
NE, United States. pp.631-636, �10.1109/ICDM.2007.82�. �lirmm-00204524�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00204524
https://hal.archives-ouvertes.fr

Sampling for Sequential Pattern Mining: From Static Databases to Data Streams

Chedy Raı̈ssi
LIRMM, EMA-LGI2P/Site EERIE

161 rue Ada
34392 Montpellier Cedex 5, France

raissi@lirmm.fr

Pascal Poncelet
EMA-LGI2P/Site EERIE

Parc Scientifique Georges Besse
30035 Nı̂mes Cedex, France

Pascal.Poncelet@ema.fr

Abstract

Sequential pattern mining is an active field in the do-
main of knowledge discovery. Recently, with the constant
progress in hardware technologies, real-world databases
tend to grow larger and the hypothesis that a database can
be loaded into main-memory for sequential pattern mining
purpose is no longer valid. Furthermore, the new model of
data as a continuous and potentially infinite flow, known as
data stream model, call for a pre-processing step to ease
the mining operations. Since the database size is the most
influential factor for mining algorithms we examine the use
of sampling over static databases to get approximate min-
ing results with an upper bound on the error rate. Moreover,
we extend these sampling analysis and present an algorithm
based on reservoir sampling to cope with sequential pattern
mining over data streams. We demonstrate with empirical
results that our sampling methods are efficient and that se-
quence mining remains accurate over static databases and
data streams.

1 Introduction

Sequential Pattern mining is one of the most active and
challenging field in the domain of knowledge discovery. It
allows the discovery of frequent sequences and helps identi-
fying relations between itemsets in a transactional database.
However, sequential pattern mining is a difficult task as the
search space for this problem is huge [13]. To overcome
this problem, researchers developed mining algorithms that
use levelwise generate-and-prune strategies or a multiple
database projections approach as heuristics.

Lately, thanks to evolutions in hardware technologies,
companies and organisations are able to generate and store
very large volumes of data from different sources: net-
work monitoring with, for instance, TCP/IP traffic; finan-
cial transactions such as credit card customers operations,
medical records and a wide variety of sensor logs. There-

fore, the real-world databases can scale up to gigabytes and
terabytes. Consequently, one of the main hypothesis used
in pattern mining stating that the database can hold in main-
memory is obviously challenged. Besides, if the database
is very dense and the data is highly-correlated, the mining
algorithm is likely to fail even with a high support value.

The same limits apply to the new model, called data
stream, where the data appears in a continuous, high-speed
and unbounded flow, where it is often impossible to mine
patterns with classical algorithms requiring multiple scans
over the database. As a consequence new approaches were
proposed to mine itemsets based on the landmark, sliding
windows or time-fading models [6, 4, 10]. However, few
works focused on sequential patterns extraction over data
streams.

The two major contributions of this work are: (i) A new
pre-processing approach to reduce static database access by
constructing a random sample before applying the mining
algorithm. (ii) A new approach to mine sequential patterns
based on the maintenance of a synopsis of the data stream.

The rest of this paper is organized as follows. In Sec-
tion 2 we briefly introduce the sequential pattern mining
agorithms and the different synopses approaches. Prelim-
inary concepts and problem description are introduced in
Section 3. Section 4 deals with the static database sampling
and presents proveable error guarantees. Section 5 extends
this sampling analysis to the data stream model. The ex-
periments and their results are described and discussed in
Section 6. In the last section we give some conclusions and
perspectives for future work.

2 Related Work

Sequential Pattern mining problem was introduced by
Agrawal and Srikant [9]. Different efficient algorithms like
PrefixSpan [7], SPADE [13] and SPAM [2] were proposed
later, each one of them using different mining heuristics.
However, these algorithms implementations fail to mine
multi-gigabytes databases.

The large and growing number of data in static databases
or in data streams results in new challenging space and time
constraints for mining algorithms. In these cases, it is ac-
ceptable to get approximate solutions. In other words, one
has to trade off accuracy against efficiency. A number of
synopsis structures have been developed in recent years like
sketches, sampling, wavelets and histograms. These differ-
ent synopses structures share the same properties of broad
applicability, space efficiency, and robustness. Furthermore,
all these synopsis methods respect a one-pass constraint
which makes them perfectly suitable for the data stream
model.

The method presented in this work belongs to the class of
reservoir sampling and is very easy to understand as it gen-
erates a sample of the original data representation. Reser-
voir sampling was first introduced in [12]. However, as the
data set length increases, the probability of the insertion of
a data point in the reservoir reduces. This is a clear dis-
advantage for data stream mining tasks because users may
consider that recent information provided by the stream is
the most relevant. In [3], the authors adapted the reservoir
sampling method to the sliding window model over a data
stream. However, this solution does not allow to sample
from different lengths of the stream history. One solution
proposed recently in [1] was the use of an exponential bias
function to regulate the choice of the stream sample.

3 Preliminary concepts and problem descrip-
tion

Let D be a database of customer transactions where each
transaction T consists of: a customer identifier, denoted by
Cid; a transaction time, denoted by time and a set of items
(called itemset) involved in the transaction, denoted by it.

Definition 1 (Sequence) Let I = {i1, i2...im} be a finite
set of literals called items. An itemset is a non-empty set of
items. A sequence S is a set of itemsets ordered according
to their timestamp. It is denoted by < it1 it2 ... itn >,
where itj , j ∈ 1...n, is an itemset.

A sequence S′ =< s′1 s′2 ... s′n > is a subsequence of
another sequence S =< s1 s2 ... sm >, denoted S′ " S, if
∃ i1 < i2 < ... ij ... < in such that s′1 ⊆ si1 , s′2 ⊆ si2,...
s′n ⊆ sin.

Definition 2 (Support) Let Ctrans be the ordered list of
transactions for a single customer C. The support of
a sequence S in a transaction database D, denoted by
Sup(S,D), is defined as:

Sup(S,D) =
|{C ∈ D|S " Ctrans}|

|{C ∈ D|

Given a user-defined minimal support threshold, denoted
σ, the problem of sequential pattern mining is the extraction
of all the sequences S in D such that Sup(S,D) ≥ σ.

Example 1 Consider the following database with I =
{a, b, c, d}. There are 3 different identifiers C1, C2 and
C3. Let the minimal support threshold be σ = 2

3 , the fre-
quent sequences in D are: 〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈(ab)〉, 〈(ad)〉,
〈(a)(c)〉 and 〈(d)(c)〉

D =

C1 T1 a,b,c,d
T2 a,c

C2 T1 a,b
C3 T1 a,d

T2 c

Biased reservoir sampling was introduced in [1] and is
based on the following fact: overtime, in many cases, the
data stream distribution may evolve and the original reser-
voir sampling results may become irrelevant. A solution
is to use a bias function to regulate the sampling in order
to focus on recent or old behaviors in the stream following
application specific constraints. The use of a bias function
guarantees that recent points arriving over the stream have
higher probabilities to be inserted in the reservoir. The au-
thor in [1] exploit some properties of a class of memory-less
bias functions: the exponential bias function which is de-
fined as follow: f(r, t) = e−λ(t−r) with parameter λ being
the bias rate. The inclusion of such a bias function enables
the use of a simple and efficient replacement algorithm.

4 Static data set sampling for sequence min-
ing

In this section, we discuss the usefulness of the sampling
method as a pre-processing step for sequence mining. We
intuite that we can focus on a sample from the real data set
in order to get a faster and easier mining task.

The first question that one has to answer when working
on samples for mining tasks is: how accurate my sample is
compared to my original data set? We answer to this ques-
tion by theoretically analyzing the accuracy of our sample
given a user defined error threshold. Notice that a similar
approach was used for itemset mining in [11].

Definition 3 (Error rate) Let D be a database of customer
transactions and SD a random sample generated from D.
Let s be a sequence from D. The absolute error rate in
terms of support estimation, denoted e(s,SD), is defined
as: e(s,SD) = |Sup(s,SD) − Sup(s,D)|

Let Xi be a Bernoulli random variable with Pr[Xi =
1] = pi if the ith customer supports s and Pr[Xi =
0] = 1 − pi if not. Let X(s,SD) =

∑|SD|
i Xi. Clearly,

X(s,SD) is the number of customers in the sample SD that
support the sequence s. It can be written as X(s,SD) =
Sup(s,SD).|SD|. Then the expected number of customers
that support the sequence s in the sample is E[X(s,SD)] =
Sup(s,D).|SD|.

We would like to estimate the probability that our er-
ror rate gets higher than a user defined threshold ε, denoted
Pr[e(s,SD) > ε].

To answer this question we use Hoeffding concentration
inequalities [5]. Basically, the concentration inequalities are
meant to give an accurate prediction of the actual value of
a random variable by bounding the error term (from the ex-
pected value) with an associated probability. These inequal-
ities usually require the random variable to be decomposed
as a sum of independent random variables.

This assumption holds in our problem and by using Ho-
effding concentration inequalities, the following theorem
gives us a lower bound for the size of the reservoir given
ε and a maximum probability δ that the error rate exceeds ε
(called also an (ε, δ)-approximation):

Theorem 1 Given a sequence s then Pr[e(s,SD) > ε] ≤ δ
if the reservoir size |SD| ≥ ln(2

δ) 1
2ε2

Proof 1

Pr[e(s,SD) > ε] = Pr[|Sup(s,SD) − Sup(s,D)| > ε]
= Pr[|X(s,SD) − E[X(s,SD)] | > ε.|SD|]

(1)

The Hoeffding concentration inequalites state that for
n independant bounded random variables X1,X2, . . . , Xn

lying in the range [a, b], the sum S of these variables with
positive values of t satisfies the following:

Pr[|S − E[S] | ≥ nt] ≤ 2exp

(
−2n2t2

n(b − a)2

)

Thus, Pr[|X(s,SD)−E[X(s,SD)] | > ε.|SD|] ≤ δ with
δ = 2e−2ε2.|SD| !

Table 1 gives some examples of sample sizes in term of
customers for different values of ε and δ.

5 Sampling over data streams for sequence
mining

One of the main problem for stream mining is that the
length of the stream is unknown. Therefore, we need to
maintain a dynamic sample of the stream. In this sec-
tion, we extend the previous results for sampling static data

ε δ |SD|
0.01 0.01 26492
0.01 0.001 38005
0.01 0.0001 49518
0.001 0.27 1000000

Table 1. Different sample sizes for ε and δ

sets of customers sequences to the challenging case of data
streams. Our goal is to approximate sequences support from
the dynamic sample. However, and unlike in the static
database sampling, customers transactions list size can grow
over time in the data stream and thus, we need to find a way
to keep the size of the sampled customers transactions list
under control. Moreover, and from an application point-of-
view, we would like to have a choice between biased and
unbiased results.

In order to do so, our sampling algorithm should respect
two conditions: (i) There must be a lower bound on the
size of the sample. According to the previous results from
section 4, we would like our approach to produce accurate
mining results from a dynamic sample. This can also be
achieved by using an (ε, δ)-approximation, like the one for
static databases, combined with an exponential biased reser-
voir sampling method. Note also that the reservoir size is
defined in term of customers number and not in term of
transaction numbers. (ii) The insertion and replacement op-
erations, essential for the reservoir updating, must be done
at customers level and at transactions level. This is neces-
sary to control the size of the itemsets for each customer in
the reservoir.

In our data stream model, on every timestamp, a new
data point arrives in the stream and a data point is defined
as a couple of customer and its associated transaction.

[2,(c d)][1,(b c d)] [3,(b e)] [1,(a b)]

t0 t1 t2 t3

Figure 1. Stream model with 4 data points

Our approach is a simple replacement algorithm using an
exponential bias function that regulates the sampling of cus-
tomers and their transactions over a stream. We start with
an empty reservoir of capacity 1

λ (where λ is the bias rate of
our exponential bias function) and each data point arriving
from the stream is deterministically added to the reservoir
by flipping a coin, either as a simple insertion into the reser-
voir, or as a replacement of a customer and all its related
transactions. Note that this is enough to sample customers,
but we also need to bound the size of the list of transactions

belonging to each customer present in the reservoir. In order
to do so, we use a sliding window mechanism. A sliding-
window can be defined as a sequence-based window of size
k consisting of the k most recent data elements that arrived
on the stream or as a timestamp-based window of duration
t containing all the data points whose arrival timestamp is
within a time interval t of the current time.

In our approach we use a sequence-based window to re-
tain the latest and most recent transactions for a given cus-
tomer in the sample. This is useful to get accurate mining
tasks over recent horizons of the stream. Besides, the ex-
ponential biased function that we use enables the user to
choose the desired size of the reservoir (with some con-
straints on the (ε, δ)-approximation) and thus a relevant
sample may be maintained in main memory, depending on
the application needs.

The lower bound for the size of the reservoir can be de-
duced from the following corollary. This corollary high-
lights the direct link between the bias rate λ and the(ε, δ)-
approximation from theorem 1.

Corollary 1 Let λ be the bias rate, ε be an error threshold
and δ the maximum probability that e(s,SD) > ε, then:

λ ≤ 2ε2

ln(2/δ)

Proof 2 By [1], for a stream of length t, let R(t) be
the maximal reservoir requirement for a random sample
from a stream which satisfies the exponential bias function
f(r, t) = e−λ(t−r), then R(t) ≤ 1

λ . The whole reservoir is
used as our sample for the mining task, thus R(t) = |SD|.
On substitution in theorem 1, the result follows.

A problem arises in our algorithm for the specific case
of customers replacement from the reservoir: we need to
detect if a customer was already in the sample, because
reinserting it without any sanity-check will introduce incon-
sistency at the mining step. The customer sequence-based
window will be incomplete: there will be missing transac-
tions that were discarded when the customer was previously
replaced. To avoid this inconsistency the data point needs to
be ignored. On the other hand, ignoring data points over the
whole stream is no good either, because this will bias the
sample towards customers that replaced others in the reser-
voir. To overcome this problem, we introduce the idea of a
customers black list that gets refreshed at each replacement
in the reservoir. The black list is updated at each sliding
of the window in order to allow the ignored customers to
be able to get back into the reservoir. Example 2 presents a
case of sequence-based window consistency checking using
the black list. The full algorithm is described in Algorithm
1.

Example 2 Let R be the reservoir with maximal size = 2
and W = 4 the sequence-based window size for the trans-
actions in the reservoir, at an instant t:

Customers Sequence-based window
C1 (ab) (cd) (ab) (d)
C2 (abcde) (a) (b)

Suppose that the next point from the stream at time t +
1, which is the tuple formed by the the customer C3 and
its transaction (de), replaces customer C2 in the reservoir
after a successful coin flip:

Customers Sequence-based window
C1 (ab) (cd) (ab) (d)
C3 (de)

BlackList
C2 3

The black list is updated with a new entry for customer
C3 for 3 window slides. It is obvious that for consistency
reasons our algorithm cannot reintroduce in the reservoir
any data point with customer C2 because we already dis-
carded the sequence of 3 itemsets (abcde)(a)(b).

Data points with customer C2 can be reintroduced in the
sample only when its counter in the black list is equal to
0. All customers in the black list have their counters decre-
mented by one at each window sliding.

One observation about this algorithm is that it can be
implemented very easily. However, in the section 5 we as-
sumed that Algorithm 1 does indeed achieve exponential
bias with parameter λ. We need now to prove this assump-
tion. Like in [1], we show that the replacement policy in our
algorithm results in a biased sample of size |SD| = n which
respects the exponential bias behaviour with λ = 1/n. The
proof appears in the full technical report [8].

Theorem 2 The probability of a data point r to be still
present in the reservoir of maximum size n at the time t
is approximately equal to f(r, t) = e−λ(t−r)

6 Experimental Evaluation

In this section, we present the experiments we conducted
in order to evaluate the feasability of our sampling tech-
niques as a pre-processing step before sequential pattern
mining (our complete set of results is in the full paper [8]).

The experiments were performed on a Core-Duo 2.16
Ghz MacBook Pro with 1GB of main memory, running Mac
OS X 10.4.6. Sequential pattern mining is performed with
the public PrefixSpan [7] implementation1. We performed

1http://illimine.cs.uiuc.edu/

Data Set Items Avg. size of transactions Avg. # trans per customer # of clients size in GB
CL1MTR2.5SL50IT10K 10000 2.5 50 1000000 1.05
CL6MTR2.5SL10IT20K 20000 2.5 10 6000000 0.686

Data Set Name Number of frequent sequential patterns Support Processing time Required memory
CL6MTR2.5SL10IT20K 5503 0.3% 523.969 s. 685.821 MB

Table 2. Different data sets used for the experiments and mining results on the static data set without
sampling.

Algorithm 1: RESERVOIR SAMPLING FOR SEQUEN-
TIAL PATTERNS algorithm

Data: Reservoir SD;Bias rate λ;sequence-based
window size |W |;Data point T ;Black List BL

; Result: Updated Reservoir SD after processing the1

data point T
begin2

if T.Ci *∈ BL then3

if T.Ci *∈ SD then4

// Deterministic insertion5

// of the data point T
Coin ← Random(0, 1);6

// F (t) ∈ [0, 1] is the fraction7

// of the reservoir filled
// at instant t
if Coin ≤ F (t) then8

// Success case:9

// replacement10

pos ← Random(0, q);11

Replace(Cpos, T.Ci);12

//Add T.Cpos to BL.13

BL.add(T.Cpos);14

else15

//Failure case:16

//Add directly T17

Add(T,SD);18

else19

//Ci already in SD20

//Insert T in Ci’s21

//sequence-based window22

Insert(Ci,T);23

// Check if there is a slide24

if Ci.window.size > |W | then
slideAllWindows();25

Update(BL);26

end27

several tests with different synthetic data sets that were gen-
erated with QUEST 2 software (see table 2). In order to
sample static databases we used and implemented the reser-
voir sampling algorithm from [12]. All the implementations
are done in C++.

We tested the correctness of our theoretical results pre-
sented in section 4. We used in these experiments the data
set CL6MTR2.5SL10IT20K to compare the accuracy of our
sampling based on the (ε, δ)-approximation from Theorem
1. The results of the different experimentations are listed in
Tables 2 and 3. We considered samples of different sizes
varying from 25000 to 500000 customers. These samples
are built using reservoir sampling. One interesting obser-
vation is that these small size samples are easily handled in
main-memory by the PrefixSpan implementation. We re-
peated these experiments 5 times for each sample and each
value presented in the results is the average value computed
over the 5 runs. The error column shows the number of
frequent sequential patterns that had their absolute error
rate such that e(s,SD) > ε. As estimated by our (ε, δ)-
approximations (cf. Table 1), the results remain very accu-
rate and precise even for small samples, the mining speed is
of course faster over the samples and we can push the ex-
traction for low support values that could not be mined from
the original data set. In order to test Algorithm 1, we used
the data set CL1MTR2.5SL50IT10K with different param-
eters: the bias rate value (λ = 0.00001 and 0.000004) and
the sequence-based window size (|W | = 10 and 2). In these
experimentations, we focus on the size of the reservoir and
on the size of the black list. Figure 3 shows that even if the
number of black listed customers vary drastically over time,
it remains bounded (less than 3000 and 100 customers) be-
cause of the updatings that are made at each window slid-
ing. Notice that if the sequence-based window size is small,
the black list tends to be very small also, this is due to the
frequent slidings implying a rapid update of the black list.
Besides, the reservoir size is stable and bounded in term of
required memory (less than 27 and 16MB) in the as it can

2http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data mining/

|SD| # of seq. patterns Error Proc. time
25000 5830 342 1.6 s.
38005 5239 271 1.608 s.
50000 5321 184 1.903 s.

100000 5432 75 2.725 s.
500000 5531 31 9.854 s.
|SD| Required Memory Sample size (Mb)

25000 3.070 MB 3
38005 4.503 MB 4.4
50000 5.997 MB 5.9

100000 11.831 MB 11.8
500000 58.947 MB 58.8

Table 3. Mining results for different sample
sizes for data set CL6MTR2.5SL10IT20K

 19000

 20000

 21000

 22000

 23000

 24000

 25000

 26000

 27000

 0 50 100 150 200

Us

ed
 m

em
ory

 (
Kb

yte
s)

Seconds

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 100 200 300 400 500

Us

ed
 m

em
ory

 (
Kb

yte
s)

Seconds

Figure 2. Memory requirement in order to
sample data set CL1MTR2.5SL50IT10K

be seen in Figure 2.

7 Conclusion

We have described a novel approach to ease the sequen-
tial pattern mining problem. We have detailed the theoret-
ical aspects to sample static data sets and we extended this
work to take into account the data streams model by us-
ing a biased reservoir sampling approach in order to build
a dynamic sample. We showed that these pre-processing
sampling techniques give good results on the data sets we
considered. We provided compelling evidence that it is pos-
sible to obtain accurate and fast results for sequential pattern
mining using small samples. Furthermore, we showed that
our stream sampling algorithm is efficient, making it suit-
able for use on real-world data streams like network traffic.
Finally, our results shows the potential of further work on
sampling for sequential pattern mining and specially in the
new challenging data streams model.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200

Si
ze

 o
f

th
e

bl
ac

k
lis

t
(i
n

cu
st

om
er

s)

Seconds

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

Si
ze

 o
f

th
e

bl
ac

k
lis

t
(i
n

cu
st

om
er

s)

Seconds

Figure 3. Black list size in term of customers
for data set CL1MTR2.5SL50IT10K

References

[1] C. Aggarwal. On biased reservoir sampling in the presence
of stream evolution. In VLDB, pages 607–618. ACM, 2006.

[2] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pat-
tern mining using a bitmap representation. In KDD, pages
429–435. ACM, 2002.

[3] B. Babcock, M. Datar, and R. Motwani. Sampling from a
moving window over streaming data, 2002.

[4] Y. Chi, H. Wang, P. Yu, and R. Muntz. Moment: Maintain-
ing closed frequent itemsets over a stream sliding window.
In ICDM 04, pages 59–66, 2004.

[5] W. Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical Asso-
ciation, 58(301):13–30, Mar. 1963.

[6] G. Manku and R. Motwani. Approximate frequency counts
over data streams. In VLDB 02, pages 346–357, 2002.

[7] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen,
U. Dayal, and M. Hsu. Mining sequential patterns by
pattern-growth: The prefixspan approach. IEEE Trans.
Knowl. Data Eng., 16(11):1424–1440, 2004.

[8] C. Raı̈ssi and P. Poncelet. Sampling for sequential pattern
mining : From static databases to data streams. Technical
report, LIRMM Laboratory - Univ. of Montpellier, 2007.

[9] R. Agrawal and R. Srikant. Mining sequential patterns. In
ICDE 95, pages 3–14, 1995.

[10] W.-G. Teng, M.-S. Chen, and P. Yu. A regression-based tem-
poral patterns mining schema for data streams. In VLDB 03,
pages 93–104, 2003.

[11] H. Toivonen. Sampling large databases for association rules.
In VLDB, pages 134–145. Morgan Kaufmann, 1996.

[12] J. S. Vitter. Random sampling with a reservoir. ACM Trans.
Math. Softw., 11(1):37–57, 1985.

[13] M. J. Zaki. Spade: An efficient algorithm for mining fre-
quent sequences. Machine Learning, 42(1/2):31–60, 2001.

