
HAL Id: lirmm-00204529
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00204529v1

Submitted on 3 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random Sampling over Data Streams for Sequential
Pattern Mining

Chedy Raïssi, Pascal Poncelet

To cite this version:
Chedy Raïssi, Pascal Poncelet. Random Sampling over Data Streams for Sequential Pattern Mining.
La revue MODULAD, 2007, 36, pp.61-66. �lirmm-00204529�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00204529v1
https://hal.archives-ouvertes.fr

Random Sampling over Data Streams for Sequential Pattern

Mining

Chedy Räıssi
LIRMM, EMA-LGI2P/Site EERIE

161 rue Ada
34392 Montpellier Cedex 5, France

France
raissi@lirmm.fr

Pascal Poncelet
EMA-LGI2P/Site EERIE

Parc Scientifique Georges Besse
30035 N̂ımes Cedex, France

Pascal.Poncelet@ema.fr

February 16, 2007

Abstract

In recent years the emergence of new real-world applications such as network traffic

monitoring, intrusion detection systems, sensor network data analysis, click stream mining

and dynamic tracing of financial transactions, calls for studying a new kind of model. Named

data stream, this model is in fact a continuous and potentially infinite flow of information as

opposed to finite and statically stored data sets. We study the problem of sequential pattern

mining in data streams. This problem has been extensively studied for the conventional

case of disk resident data sets. In the case of data streams, this problem becomes more

challenging as the volume of data is usually too huge to be stored on permanent devices,

main memory or to be scanned thoroughly more than once. In this case, it may be acceptable

to generate approximable solutions for our mining problem. In this paper we introduce a

new approach based on biased reservoir sampling to achieve a more efficient mining of

sequential patterns. Furthermore, we theoretically prove that our biased reservoir size is

always bounded whatever the size of the stream is. This property often allows us to keep

the entire relevant reservoir in main memory. We also show a simple algorithm to build the

biased reservoir for the special case of sequential pattern mining. Experimental evaluation

supports the claim that sequential pattern mining based on biased reservoir sampling needs

small memory requirements. Besides, we also propose an adapted approach to handle the

case of mining sequential patterns in a sliding window model. The experiment show that

the results are accurate.

1 Introduction

Recently, the data mining community has focused on a new challenging model where data arrives
sequentially in the form of continuous rapid streams. It is often referred to as data streams or
streaming data. Since data streams are continuous, high-speed and unbounded flow of infor-
mations, it is often impossible to mine patterns with classical algorithms that require multiple
scans. As a consequence new approaches were proposed to mine itemsets [5, 3, 2, 4, 8] using
different approaches based on the landmark, sliding windows or time-fading models. However,
few researches focused on sequential patterns extraction over data streams. In this paper we con-
sider that transactions are ordered into the streams and grouped under different identifiers. We

1

propose a new approach to mine sequential patterns based on the maintenance of a synopsis of
the data stream. This proposition is motivated by the fact that the volume of data in real-world
data streams is usually too huge to be efficiently mined and that an approximate answer for
mining tasks is largely acceptable. In other words, in the data stream model one has to trade off
accuracy against efficiency. A number of synopsis structures have been developed in recent years
like sketches, sampling, wavelets and histograms. Our method belongs to the class of reservoir
sampling. The reservoir sampling method is very easy to understand as it generates a sample of
the original data representation. However, the classical unbiased reservoir method is inaccurate
for data streams, this is due to the fact that when the the stream length increases, the accuracy
of the reservoir decreases as it will contain a large portion of points from the distant history of
the stream (the probability of successive insertions of new points reduces with the progression of
the stream) and in an evolving data stream only the more recent data may be relevant for many
mining tasks. To overcome this problem we use a biased reservoir sampling based on a temporal
bias function in order to regulate the choice of the stream sample.

2 Preliminary Concepts

2.1 Sequential Patterns

The traditional sequence mining problem was first introduced in [7] and extended in [6].
Let D be a database of customer transactions where each transaction T consists of :

1. a customer-id, denoted by Cid

2. a transaction time, denoted by time

3. a set of items (called itemset) involved in the transaction, denoted by it

Definition 1 (Sequence) Let I = {i1, i2...im} be a finite set of literals called items. An item-
set is a non-empty set of items. A sequence S is a set of itemsets ordered according to their
timestamp. It is denoted by < it1 it2 ...itn >, where itj, j ∈ 1...n, is an itemset. A k-sequence
is a sequence of k items (or of length k).

Definition 2 (Support) Let Ctrans be the ordered list of transactions for a single customer C
(the maximal sequence supported by C). The support of a sequence S in a transaction database
D, denoted by Support(S,D), is defined as:

Support(S,D) =
|{C ∈ D|S � Ctrans}|

|{C ∈ D|

Given a minimal support threshold, the problem of sequential pattern mining is to extract
all the sequences S in D such that Support(S,D) ≥ σ.

2.2 Biased reservoir sampling

Reservoir sampling was first introduced in [9], in this method the first n points in the data
stream are stored at the initialization step, when the (t + 1)th is received in the data stream it
replaces randomly one of the points in the reservoir with probability n

t+1 . As the stream length
increases the probability of the insertion reduces. This is a clear disadvantage for mining tasks
that consider that recent information provided by the stream is the most relevant. One solution
proposed in [1] was to use an exponential bias function defined as follow : f(r, t) = e−λ(t−r)

2

with parameter λ being the bias rate. The aim of this bias function is to regulate the choice of
the stream sample. In other words, the bias function modulates the sample in order to focus on
recent or old behaviors in the stream following application specific constraints. Moreover, the
inclusion of an exponential bias function implies also an upper bound on the reservoir size which
is independant of the stream length. For a stream of length t, let R(t) be the maximal size of
the reservoir which satisfies the exponential bias function, we have R(t) ≤ 1

λ
.

In the next section we give results on the bounds for sample size, given the desired accuracy
of the results in terms of support and errore rate.

3 Sampling analysis

The first question that one has to answer when sampling for mining tasks is : how accurate my
sample is compared to my original data set? We answer to this question by giving exact bounds
on the size of the sample w.r.t an error rate.

Definition 3 (Error rate) Let D be a database of customer transactions and SD a random
sample generated from D. Let s be a sequence from D. The absolute error rate in terms of
support estimation, denoted ǫ, is defined as :

e(s,SD) = |Support(s,SD) − Support(s,D)|

Let Xi be a random variable for the ith customer with Pr[Xi = 1] = pi if the ith customer
supports the sequence s and Pr[Xi = 0] = 1− pi, if not. All the Xi are independant. Note that
we are in presence of Poisson trials as the number t of trials in which the probability of success
pi varies from trial to trial. Let X(s,SD) =

∑
i Xi = Support(s,SD) × |SD| be the number of

customers in the sample that supports the sequence s. Then the expected number of customers
that support the sequence s in the sample is E[X(s,SD)] = Support(s,D) × |SD|. We would
like to estimate the probability that our error rate gets higher than a user defined threshold ǫ,
denoted Pr[e(s,SD) > ǫ].

Using Chernoff bounds the following theorem gives us a lower bound on the size of the
reservoir given ǫ and a maximum probability δ that the error rate exceeds ǫ:

Theorem 1 Given a sequence s then Pr[e(s,SD) > ǫ] ≤ δ iff the reservoir size is |SD| ≥
ln(2

δ
) 1
2ǫ2

As we are working on biased reservoir samples, the following corollary gives an upper bound
on the bias rate :

Corollary 1 Given an error bound ǫ and a maximum probability δ that e(s,SD) > ǫ we get an
upper bound on the bias rate:

λ ≤
2ǫ2

ln(2/δ)

4 Algorithm

Based on the sampling analysis results we built an algorithm that achieve exponential bias with
the λ parameter. Unlike the algorithms presented in [1], our approach need to take into account
the constraint of the lower bound of the size of the reservoir. Note that the reservoir size is
defined in term of customers number and not in term of transaction numbers. That means that
insertion and delete operations must be done at the customers level and at the itemsets level.

3

Algorithm 1: Reservoir Sampling for Sequential Patterns algorithm
Data: Reservoir SD;Bias rate λ;Transaction T

Result: Reservoir SD after insertion of the (t + 1)th transaction

// F (t) = q

|SD |
∈ [0, 1] is the fraction of the reservoir filled at the arrival of the tth1

transaction

// I(Ci, t) = i
|itemsetList|

∈ [0, 1] is the fraction of the itemsets list for customer Ci at the2

arrival of the tth transaction

if T.Ci 6∈ SD then3

// Deterministic insertion of the transaction T with its customer id Ci4

Coin← Random(0, 1);5

if Coin ≤ F (t) then6

// Success case: we replace one of the customers with all its itemsets with T.7

pos← Random(0, q);8

Replace(T.Cpos .it,T.Ci.it);9

else10

//Failure case: we directly add the transaction T without replacement.11

Add(T.it,SD);12

q++;13

else14

// A sample of customer Ci transactions is already present in the reservoir15

// Deterministic insertion of the transaction T in Ci itemsets list16

Coin← Random(0, 1);17

if Coin ≤ F (t) then18

pos← Random(0, i);19

ReplaceItemset(itpos ,T.Ci.it);20

else21

AddItemset(T.it,Ci .itemsetList);22

i++;23

4

5 Experimentation

The experiments were performed on a Core-Duo 2.16 Ghz MacBook Pro with 1GB of main
memory, running Mac OS X 10.4.6. We performed several tests with sythetic datasets that
were generated with the IBM QUEST synthetic data generator, our data stream is divided into
batches of period 25 seconds, each batch contains from 25k to 50k transactions. The memory
management is the main focus of our performance study.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500 600 700 800

U

se
d

m
em

or
y

 (
K

by
te

s
un

its
)

Seconds

 1

 10

 100

 0 20 40 60 80 100 120

S

ec
on

ds

Batches

Figure 1: memory usage and time requirements for data set C1200I10K with reservoir sizes
λ = 2.10−5

6 Summary

In this presentation we introduced a new biased reservoir sampling algorithm for sequential
pattern mining over data streams. The sampling analysis shows that we can efficiently bound
our error rate to get approximate but acceptable results on our mining task. The experiments
shows that our reservoir memory requirement are very low.

References

[1] Charu C. Aggarwal. On biased reservoir sampling in the presence of stream evolution. In
Umeshwar Dayal, Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman,
Martin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim, editors, VLDB, pages 607–618.
ACM, 2006.

5

[2] Y. Chi, H. Wang, P.S. Yu, and R.R. Muntz. Moment: Maintaining closed frequent itemsets
over a stream sliding window. In Proceedings of the 4th IEEE International Conference on
Data Mining (ICDM 04), pages 59–66, Brighton, UK, 2004.

[3] G. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining frequent patterns in data streams at
multiple time granularities. In In H. Kargupta, A. Joshi, K. Sivakumar and Y. Yesha (Eds.),
Next Generation Data Mining, MIT Press, 2003.

[4] H.-F. Li, S.Y. Lee, and M.-K. Shan. An efficient algorithm for mining frequent itemsets
over the entire history of data streams. In Proceedings of the 1st International Workshop on
Knowledge Discovery in Data Streams, Pisa, Italy, 2004.

[5] G. Manku and R. Motwani. Approximate frequency counts over data streams. In Proceedings
of the 28th International Conference on Very Large Data Bases (VLDB 02), pages 346–357,
Hong Kong, China, 2002.

[6] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance
improvements. In Proceedings of the 5th International Conference on Extending Database
Technology (EDBT 96), pages 3–17, Avignon, France, 1996.

[7] R. Agrawal R. Srikant. Mining sequential patterns. In Proceedings of the 11th International
Conference on Data Engineering (ICDE 95), pages 3–14, Tapei, Taiwan, 1995.

[8] W.-G. Teng, M.-S. Chen, and P.S. Yu. A regression-based temporal patterns mining schema
for data streams. In Proceedings of the 29th International Conference on Very Large Data
Bases (VLDB 03), pages 93–104, Berlin, Germany, 2003.

[9] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–
57, 1985.

6

View publication statsView publication stats

https://www.researchgate.net/publication/229046562

