
HAL Id: lirmm-00204872
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00204872v1

Submitted on 23 Jan 2008 (v1), last revised 1 Feb 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web usage mining: extracting unexpected periods from
web logs

Florent Masseglia, Pascal Poncelet, Maguelonne Teisseire, Alicia Marescu

To cite this version:
Florent Masseglia, Pascal Poncelet, Maguelonne Teisseire, Alicia Marescu. Web usage mining: ex-
tracting unexpected periods from web logs. Data Mining and Knowledge Discovery, 2008, 16 (1),
pp.039-065. �10.1007/s10618-007-0080-z�. �lirmm-00204872v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00204872v1
https://hal.archives-ouvertes.fr

Data Min Knowl Disc (2008) 16:39–65
DOI 10.1007/s10618-007-0080-z

Web usage mining: extracting unexpected periods
from web logs

F. Masseglia · P. Poncelet · M. Teisseire ·

A. Marascu

Received: 22 March 2006 / Accepted: 28 June 2007 / Published online: 15 September 2007
Springer Science+Business Media, LLC 2007

Abstract Existing Web usage mining techniques are currently based on an
arbitrary division of the data (e.g. “one log per month”) or guided by presumed
results (e.g. “what is the customers’ behaviour for the period of Christmas
purchases?”). These approaches have two main drawbacks. First, they depend
on the above-mentioned arbitrary organization of data. Second, they cannot
automatically extract “seasonal peaks” from among the stored data. In this
paper, we propose a specific data mining process (in particular, to extract fre-
quent behaviour patterns) in order to reveal the densest periods automatically.
From the whole set of possible combinations, our method extracts the frequent
sequential patterns related to the extracted periods. A period is considered to
be dense if it contains at least one frequent sequential pattern for the set of
users connected to the website in that period. Our experiments show that the

Responsible editor: Chang-shing Perng.

F. Masseglia (B) · A. Marascu
INRIA Sophia Antipolis – AxIS Project/Team, 2004 route des Lucioles, P. O. Box BP 93,
Sophia Antipolis 06902, France
e-mail: Florent.Masseglia@sophia.inria.fr

A. Marascu
e-mail: Alice.Marascu@sophia.inria.fr

P. Poncelet
EMA-LGI2P/Site EERIE, Parc Scientifique Georges Besse, Nimes Cedex 1 30035,
France
e-mail: Pascal.Poncelet@ema.fr

M. Teisseire
LIRMM UMR CNRS 5506, 161 Rue Ada, Montpellier Cedex 5 34392, France
e-mail: teisseire@lirmm.fr

40 F. Masseglia et al.

extracted periods are relevant and our approach is able to extract both frequent
sequential patterns and the associated dense periods.

Keywords Web usage mining · Sequential patterns · Periods · Users behaviour

1 Introduction

Analyzing the behaviour of the users of a website, also known as Web usage
mining, is a research field which consists in adapting data mining methods to
access log file records. These files collect data such as the IP address of the con-
nected machine, the requested URL, the date and other information regarding
the navigation of the user. Web usage mining techniques provide knowledge
about the behaviour of users in order to extract relationships from the recorded
data (Cooley et al. 1999; Mobasher et al. 2002; Spiliopoulou et al. 1999). Among
the available techniques, sequential patterns (Agrawal and Srikant 1995) are
particularly suited to the study of logs. The extraction of sequential patterns
from a log file is intended to provide the following kinds of relationship: “On

the INRIA website, 10% of users consecutively visited the homepage, the avail-

able positions page, the ET1 offers, the ET missions and finally the past ET

competitive selection”.
The existence of this kind of behaviour can only be assumed, because extract-

ing sequential patterns from a log file involves managing several problems, such
as:

• Caches (on the client machine) and proxies (acting as local caches) which
lower the number of records in the log file (e.g. parts of a navigation that
will be kept in a cache and thus never recorded in the log file).

• The high diversity of pages on the site. For instance, on a website such as
Inria’s, there are up to 70,000 filtered resources (after the KDD data selec-
tion step) for the main site and 82,0000 resources for the site of Sophia
Antipolis.

• Search engines, which allow the user directly to access a specific part of the
website. This may lower the number of records in the log file and the number
of navigations shared by different users (i.e. the potential common prefix of
navigations) if they do not search for the resources through a site map, for
instance.

In this paper, we will focus on a particular problem that has to be consid-
ered by Web usage mining techniques: the arbitrary way in which data is
currently divided. This problem was introduced in Masseglia et al. (2005).
This division comes either from an arbitrary decision in order to provide one
log per x days (e.g. one log per month), or from a wish to study particular
behaviours (e.g. the behaviour of the website users from November 15 to
December 23, during the period of Christmas purchases). In order better to

1 ET: Engineers, Technicians.

Web usage mining: extracting unexpected periods from web logs 41

understand our objective, let us consider student behaviour during a working
session. Let us assume that these students belong to two different groups of
20 students. The first group was connected on 31/01/05 while the other was
connected on 01/02/05, (i.e. the second group was connected one day later).
During the working session, students had to perform the following navigation:
First they accessed the URL “http://www-sop.inria.fr/cr/tp_accueil.html”, then
“http://www-sop.inria.fr/cr/tp1_accueil.html”, followed by “http://www-sop.
inria.fr/cr/tp1a.html”.

Let us consider, as is usual in traditional approaches, that we analyze access
logs per month. During January, we can only extract 20 similar behaviours from
among 200,000 navigations in the log, for the same work session. Furthermore,
even when we consider a range of 1 month or 1 year, this navigation sequence
is not sufficiently apparent in the logs (20/20,000) and is not easy to extract.
Let us now consider that we are provided with logs for a very long period (e.g.
several years). With the method developed in this article, we can find that there
was at least one dense period in the range [31/01–01/02]. Furthermore, we can
know that 340 users were connected during this period. We are thus provided
with the following new knowledge: 11% of users (i.e. 40 out of 340 connected
users) consecutively visited the URLs “tp_accueil.html”, “tp1_accueil.html”,
and finally “tp1a.html”.

Recently, efficient tools have been developed (Webalizer, http://www.
mrunix.net/webalizer/; http Analyze, http://www.httpanalyze.org.) for analyz-
ing logs at different levels of granularity (day, month, year). They reveal, for
instance, how many time the site is accessed or how many requests have been
made on each page. Nevertheless, as they depend on the chosen granularity,
they suffer from the drawback mentioned above: they cannot obtain frequent
patterns over a very short period because usually such patterns are not suf-
ficiently apparent over the whole log. A similar problem was considered in
Meger and Rigotti (2004), where the authors propose extracting episode rules
for a long sequence as well as the optimal window size. However, our problem
is very different since we do not consider that we are provided with a single
long sequence. In our context, i.e. access logs, sequences correspond to different
behaviours of users on a Web Server. We therefore have to manage a very huge
set of data sequences and extract both frequent sequences and the periods in
which these sequences appear.

The remainder of this paper is organized as follows. Section 2 goes deeper
into the presentation of sequential patterns and how they can be used for
Web usage mining. In Sect. 3, we give an overview of the Web usage min-
ing approaches which are based on sequential patterns. Section 4 presents our
reasons for developing a new approach. Our solution, based on a new heu-
ristic called Perio, is presented in Sect. 5. The experiments carried out are
reported in Sect. 6, and Sect. 7 concludes the paper with avenues for future
research.

http://www-sop.inria.fr/cr/tp_accueil.html
http://www-sop.inria.fr/cr/tp1_accueil.html

42 F. Masseglia et al.

2 Definitions

In this section we define the problem of sequential pattern mining in large
databases and give an illustration. Then we explain the goals and techniques
of Web usage mining with sequential patterns. The definitions of sequential
pattern mining are those given by Agrawal et al. (1993) and Srikant and
Agrawal (1996).

2.1 Sequential pattern mining

In Agrawal et al. (1993), the problem of association rule mining is defined as
follows:

Definition 1 Let I = {i1, i2, . . . , im}, be a set of m literals (items). Let D =

{t1, t2, . . . , tn}, be a set of n transactions; Associated with each transaction is a
unique identifier called its TID and an itemset I. I is a k-itemset where k is the
number of items in I. We say that a transaction T contains X, a set of some
items in I, if X ⊆ T. The support of an itemset I is the fraction of transactions in
D containing I: supp(I) = ‖{t ∈ D | I ⊆ t}‖/‖{t ∈ D}‖. An association rule is an
implication of the form I1 ⇒ I2, where I1, I2 ⊂ I and I1∩I2 = ∅. The rule I1 ⇒ I2

holds in the transaction set D with confidence c if c% of transactions in D that
contain I1 also contain I2. The rule r : I1 ⇒ I2 has support s in the transaction
set D if s% of transactions in D contain I1 ∪ I2 (i.e. supp(r) = supp(I1 ∪ I2)).

Given two parameters specified by the user, minsupp and minconfidence, the
problem of association rule mining in a database D aims at providing the set
of frequent itemsets in D, i.e. all the itemsets having support greater or equal
to minsupp. Association rules with confidence greater than minconfidence are
thus generated.

As this definition does not take time into consideration, sequential patterns
are defined in Srikant and Agrawal (1996):

Definition 2 A sequence is an ordered list of itemsets denoted by 〈s1s2 . . . sn〉

where sj is an itemset. The data-sequence of a customer c is the sequence in
D corresponding to customer c. A sequence 〈a1a2 . . . an〉 is a subsequence of
another sequence 〈b1b2 . . . bm〉 if there exist integers i1 < i2 < · · · < in such
that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin .

Example 1 Let C be a client and S = 〈(3) (4 5) (8)〉, be that client’s purchases.
S means that “C bought item 3, then he or she bought 4 and 5 at the same time
(i.e. in the same transaction) and finally bought item 8”.

Definition 3 The support for a sequence s, also called supp(s), is defined as the
fraction of total data-sequences that contain s. If supp(s) ≥ minsupp, with a
minimum support value minsupp given by the user, s is considered as a frequent

sequential pattern.

Web usage mining: extracting unexpected periods from web logs 43

2.2 Access log file analysis with sequential patterns

The general idea is similar to the principle proposed in Fayad et al. (1996). It
relies on three main steps. First of all, starting from a rough data file, a pre-
processing step is necessary to clean up “useless” information. The second step
starts from this pre- processed data and applies data mining algorithms to find
frequent itemsets or frequent sequential patterns. Finally, the third step aims at
helping the user to analyze the results by providing a visualization and request
tool.

Raw data is collected in access log files by Web servers. Each input in the
log file illustrates a request from a client machine to the server (http daemon).
Access log file formats may differ, depending on the system hosting the website.
For the rest of this presentation we will focus on three fields: client address, the
URL asked for by the user and the time and date for that request. We illus-
trate these concepts with the access log file format given by the CERN and the
NCSA (World Wide Web Consortium 1998), where a log input contains records
made of seven fields, separated by spaces (Neuss and Vromas 1996): host user

authuser [date:time] “request” status bytes.
The access log file is thus processed in two steps. First, the access log file is

sorted by address and by transaction. Then all “uninteresting” data is pruned
out from the file. During the sorting process, in order to make the knowledge
discovery process more efficient, URLs and clients are mapped to integers.
Each time and date is also translated into a relative time with respect to the
earliest time in the log file.

Definition 4 Let Log be a set of server access log entries.
An entry g, g ∈ Log, is a tuple g = 〈ipg, ([l

g

1 · URL, l
g

1 · time] · · · [l
g
m · URL, l

g
m ·

time])〉 such that for 1 ≤ k ≤ m, l
g

k
· URL is the item asked for by the user g at

time l
g

k
· time and for all 1 ≤ j < k, l

g

k
· time > l

g
j · time.

The structure of a log file, as described in Definition 4, is close to the
“Client-Time-Item” structure used by sequential pattern algorithms. In
order to extract frequent behaviour from a log file, for each g in the log
file, we first have to transform ipg into a client number and for each record

k in g, l
g

k
· time is transformed into a time number and l

g

k
· URL is trans-

formed into an item number. Table 1 gives an example of a file obtained
after this pre-processing. For each client, there is a corresponding series of
times with the URL requested by the client at each time. For instance, client 2
requested the URL “U6” at time d4. The log entry of client 1 in this table is:
E1 = 〈c1, ([U1, d1], [U3, d2], [U4, d3], [U2, d4], [U3, d5])〉.

The goal, according to Definition 3 and by means of a data mining step, is
thus to find the sequential patterns in the file that can be considered as frequent.
The result may, for instance be 〈(U1)(U3)(U2)(U3)〉 (with the file illustrated in
Fig. 1 and a minimum support given by the user: 100%). Such a result, once
mapped back into URLs, strengthens the discovery of a frequent behaviour,

44 F. Masseglia et al.

Table 1 File obtained after a
pre-processing step

Client d1 d2 d3 d4 d5

1 U1 U3 U4 U2 U3

2 U1 U3 U2 U6 U3

3 U1 U7 U3 U2 U3

common to n users (with n the threshold given for the data mining process) and
also gives the sequence of events composing that behaviour.

3 Related work

Several techniques for extracting sequential patterns plied to
access log files (Masseglia et al. 2000; Spiliopoulou et al. 1999; Bonchi et al.
2001; Hay et al. 2004; Zhu et al. 2002; Nakagawa and Mobasher 2003). Sequen-
tial patterns can have some additional qualities compared to association rules,
such as the notion of time embedded in the extracted knowledge. The interested
reader may refer to Nakagawa and Mobasher (2003) for a detailed comparison
between association rules and sequential patterns for Web usage mining.

In this section, we describe PSP (Masseglia et al. 2000), an algorithm
designed to extract sequential patterns from a sequence base. Then we di-
vide the methods that use the notion of sequences for Web usage mining into
three main categories.

PSP: an a-priori based method for extracting sequential patterns: In ear-
lier works (Masseglia et al. 1998; Masseglia et al. 2000), we proposed a new
approach called PSP, Prefix-Tree for Sequential Patterns, which fully resumes
the fundamental principles of GSP (Srikant and Agrawal 1996). The original
feaure of the technique is to use a different hierarchical structure than in GSP
for organizing candidate sequences, in order to improve retrieval efficiency. In
the hash-tree structure managed by GSP, transaction cutting is not captured.
The main drawback of this approach is that when a leaf of the tree is obtained, an
additional phase is necessary in order to check time constraints for all sequences
embedded in the leaf.

The tree structure, managed by PSP, is a prefix-tree close to the structure
used in Mueller (1995). At the kth step, the tree has a depth of k. It captures
all the candidate k-sequences in the following way. Any branch, from the root
to a leaf stands for a candidate sequence, and considering a single branch, each
node at depth l(k ≥ l) captures the lth item of the sequence. Furthermore,
along with an item, a terminal node provides the support of the sequence from
the root to the considered leaf (included). Transaction cutting is captured by
using labelled edges. More precisely, let us consider two nodes, one being the
child of the other. If the items embodied in the nodes originally occurred during
different transactions, the edge linking the nodes is labelled with a ‘–’ otherwise

Web usage mining: extracting unexpected periods from web logs 45

Fig. 1 The PSP tree data
structure

it is labelled with a ‘+’ (dashed link in Fig. 1). We showed in Masseglia et al.
(2000) that a prefix tree structure is more efficient than the hash tree used in
GSP. The key features of our approach are the following:

(i) the prefix-tree structure stores both frequent and candidate sets in the
same tree in order to optimize candidate generation;

(ii) time constraints are handled when enumerating frequent sequences, i.e.
when counting candidate sequences.

Example 2 illustrates the management of candidate and frequent sequences
in PSP.

Example 2 Let us assume that we are given the following set of frequent
2-sequences: L2 = {〈(10) (30)〉, 〈(10) (40)〉, 〈(30) (20)〉, 〈(30 40)〉, 〈(40 10)〉}.
The set is organized according to our tree structure as depicted in Fig. 1. Each
terminal node contains an item and a counting value. If we consider the node
having the item 40, its associated value of 2 means that two occurrences of the
sequence {〈(10) (40)〉} have been detected so far.

First applications of sequential patterns to Web usage analysis: The WUM
(Web utilization miner) tool proposed by Spiliopoulou et al. (1999) revealed
navigation patterns that are interesting from the statistical point of view. The
pattern extraction proposed in WUM relies on the frequency (minimum sup-
port) of the patterns considered. It is also possible to specify other criteria for
the patterns such as some URLs that have to be included in the navigation or
the confidence level between two or more pages of the navigation pattern.

In Masseglia et al. (2000), the authors propose the WebTool system. In this
system, sequential pattern mining relies on PSP, an algorithm developed by
the authors. The original feature is the prefix tree designed to manage the
candidates and the frequent patterns at the same time.

Extraction techniques similar to sequential pattern mining methods: In Hay
et al. (2004), the authors propose considering the notion of time embedded in
the navigations so as to cluster user sessions. This clustering relies on an align-
ment algorithm in order to measure the distance between sessions. The main
contribution of the work is a study of cluster quality, by comparison (in their
experimentation) with the clusters obtained through a distance measurement
based on the itemsets (without the notion of time).

The authors of Zhu et al. (2002) consider the navigations of website users
as a Markov chain. The paper is mainly about problems related to Markov
models and the transition matrix computed for each log. The authors propose a

46 F. Masseglia et al.

compression algorithm of the transition matrix in order to obtain efficient link
prediction.

Quality of the results and characteristics of the site: More recently, studies
of Web usage analysis have focused on the quality, relevance and utility of the
results. This is also the case for works based on the notion of sequence.

In Nakagawa and Mobasher (2003) the authors show that the characteristics
of the site have an impact on the quality of the modifications proposed to the
users depending on whether those propositions are based on frequent itemsets
or frequent sequences (such as sequential patterns). Three main characteris-
tics are considered: the topology, the degree of connectivity and the length of
potential navigations. The patterns are first extracted from the first part of the
log. For each extraction method the patterns are used to evaluate the relevance
of the predictions that would be made. This relevance is evaluated for the second
part of the log. Their experiments show the relevance of itemsets for sites with
a high degree of connectivity. On the other hand, they show the relevance of
sequential patterns for sites with long potential navigation sequences (including
sites with dynamic content).

The methods presented in this section, like (to the best of our knowledge)
all existing methods for mining Web logs, depend on an arbitrary division of
the data. Existing definitions for the notion of dense periods may be found in
Kleinberg (2002) and Kumar et al. (2003). However, in their work, dense peri-
ods are defined by density function. Our goal in this paper, is to provide a new
kind of knowledge extracted from the Web logs. Compared to existing work on
Web usage mining, our method has the following novel charecteristics:

1. Existing methods are based on an arbitrary division of the data. Our method
will be able to handle a Web log of any size, with no need to divide it.

2. The result of the existing methods may be incomplete, because of an incor-
rect division of the data. Our method will provide all the interesting behav-
iours, whatever the period during which they occur.

3. Our method will identify interesting periods in the log. This will be per-
formed by means of an interestingness measure based on the occurrence of
frequent behaviours over the periods considered.

4. Our method will be able to extract a frequent behaviour even if it is frequent
only for a very short period, or frequent over a period that is not included
in a standard division of time. For instance, the period of “Christmas pur-
chases” starts in December and ends in January. Such a period may not be
revealed by studying a month-by-month log.

5. Our method will be able to consider millions of periods, by means of a
heuristic that will be described in Sect. 5.

In the next section, we shall explain the goal of our study and its general
principle.

Web usage mining: extracting unexpected periods from web logs 47

Fig. 2 A log containing three sequences and the associated periods

4 Motivation and general principle

This section is devoted to the reasons for our proposal with regard to the rele-
vance and utility of the knowledge tackled. It also illustrates the issues involved
and the general principle of our method.

4.1 Motivation

Our method can be outlined as follows: enumerating the sets of periods in the
log that will be analyzed, and then identifying which ones contain frequent
sequential patterns. In this section we will define the notions of period and
frequent sequential patterns over a given period. Let us consider the set of
transactions in Fig. 2 (upper left table). Those transactions are sorted by time-
stamp, as they would be in a log file. In this table containing nine records,
customer c1, for instance, connected at time 1 and requested the URL a. Let
us now consider the “in” and “out” timestamps of each client, reporting their
arrival and departure (upper right table in Fig. 2). The first request of client c1

occurred at time 1, and the last one at time 4. We can thus report the periods of
that log. In the example of Fig. 2 there are five periods. During the first period
(from time 1 to time 2), client c1 was the only one connected to the website.
After that, clients c1 and c2 were connected for the same period p2 (from time 3
to time 4), and so on.

Let us now consider the navigation sequences of the log represented in Fig. 2.
Those sequences are reported in Fig. 3, as well as the frequent sequential pat-
terns extracted from the whole log, for the identified periods. With a minimum

48 F. Masseglia et al.

Fig. 3 Frequent sequential patterns obtained for customers connected during each period

support of 100% on the whole log, the only frequent sequential pattern is
reduced to item d : 〈(d)〉. Let us now consider the periods identified above,
as well as the customers connected for each period. For periods p1, p3 and p5,
reduced to a single client, there is no relevant frequent pattern. For period p2 a
sequential pattern is extracted: 〈(a)(d)〉. This pattern is common to both clients
connected during the period p2: c1 and c2. Finally, during period p4, the pattern
〈(d)(e)〉 is extracted.

The following part of this section is devoted to more formal definitions of
period, connected clients and stable periods. Let C be the set of clients in the
log and D the set of recorded timestamps.

Definition 5 P, the set of potential periods on the log is defined as follows:
P = {(a, b)/(a, b) ∈ D × D and a ≤ b}.

In the following definition, we consider dmin(c) and dmax(c) respectively as
the arrival and departure times for c in the log (first and last request recorded
for c).

Definition 6 Let p = (a, b) be a period (p ∈ P) and let C(a,b) (or Cp) be the set
of clients connected during the period (a, b). C(a,b) is defined as follows:
C(a,b) = {c/c ∈ C and [dmin(c)..dmax(c)] ∩ [a..b] .= ∅}.

Finally, we give the definitions of stable period and dense period. First, a
stable period p ∈ P is a period during which Cp does not vary. In the example
given in Fig. 2, period [6..7] is a stable period. This is not the case for [3..3],
which is included in [3..4] and contains the same clients (i.e. C(3,3) = C(3,4)).
A dense period is a stable period containing at least one frequent sequential
pattern. In the example given in Sect. 1, the period corresponding to January 31
(i.e. during the working session) is a dense period.

Definition 7 Let Pstable be the set of stable periods. Pstable is defined as follows:
Pstable = {(a, b)/(a, b) ∈ P and

(1) . ∃ (a′, b′)/(b − a) < (b′ − a′)

and [a′..b′] ∩ [a..b] .= ∅

and C(a′,b′) = C(a,b)

(2) ∀(x, y) ∈ [a..b], ∀(z, t) ∈ [a..b]/

x ≤ y, z ≤ t then C(x,y) = C(z,t).
}

Web usage mining: extracting unexpected periods from web logs 49

Condition 1, in definition 7, ensures that no larger period includes (a, b)

and contains the same clients. Condition 2 ensures that there is no arrival or
departure inside any period of Pstable.

Definition 8 A stable period p is dense if Cp contains at least one frequent
sequential pattern with respect to the minimum support proportional to |Cp|

specified by the user.

The notion of dense period (Definition 8), is the core of this paper. In the
rest of the paper, our goal will be to extract those periods, as well as the cor-
responding frequent patterns, from the log file. By way of illustration, let us
consider the period pe containing 100 clients (|Cpe | = 100) and a minimum
support of 5%. Any sequential pattern included in at least five navigations of
Cpe will be considered as frequent for that period. If there exists at least one
frequent pattern in pe, then this period needs to be extracted by our method.
Extracting the sequential patterns of each period by means of a traditional
sequential pattern mining method is not a suitable solution for the following
reasons. First, sequential pattern mining algorithms (such as PSP (Masseglia
et al. 1998) or PrefixSpan (Pei et al. 2001) for instance) can fail if one of the
patterns to be extracted is very long. When considering navigation through a
website, it is usual to find numerous requests for the same URL (pdf or php files
for instance). Finally, during our experiments, with a total of 14 months of log
files, we detected approximately 3, 500, 000 stable periods. We believe that min-
ing dense period by means of a heuristic is more relevant for mining sequential
patterns than using a traditional algorithm several million times. The outline of
our approach, intended to detect dense periods in the log file, is presented in
the next section.

4.2 General principle

Figure 4 gives an overview of the Perio heuristic that we propose for solving
the problem of dense period mining. First, starting from the log, the periods
are detected. Those periods are then considered one by one and sorted by their
“begin” timestamp. For each iteration n, the period pn is scanned. The set of
clients Cpn is loaded in the main memory (“DB” in Fig. 4). Candidates having
length 2 are generated from the frequent items detected in Cpn (step “1” in
Fig. 4). Because of the large number of candidates generated, this operation
only occurs every s steps (where s is a user-defined parameter). Candidates
are then compared to sequences of Cpn in order to detect frequent patterns
(step “2” in Fig. 4). Frequent patterns are injected in the neighbourhood oper-
ators described in Sect. 5.2.1 and the newly generated candidates are compared
with the sequences of Cpn . In order to obtain as fine a result as possible for each
period, it is possible for the user to specify the minimum number of iterations
(j) for each period.

50 F. Masseglia et al.

Fig. 4 Overview of the operations performed by Perio

4.3 Limits of sequential pattern mining

Our method will process the log file by considering millions of periods (each
period corresponds to a sub-log). The principle of our method will be to extract
frequent sequential patterns from each period. Let us consider that the frequent
sequences are extracted with a traditional exhaustive method (designed for a
static transaction database). We argue that such a method will have at least one
drawback, leading to a blocking operator. Let us consider the example of the
PSP (Masseglia et al. 1998) algorithm. We tested this algorithm on databases
containing only two sequences (s1 and s2). Both sequences are equal and con-
tain repetitions of itemsets of length 1. The first database contains 11 repetitions
of itemsets (1)(2) (i.e. s1 = 〈(1)(2)(1)(2) . . . (1)(2)〉, length(s1) = 22 and s2 = s1).
The number of candidates generated at each scan is given in Fig. 5. Figure 5 also
shows the number of candidates for databases of sequences of length 24, 26 and
28. For the database of sequences of length 28, the memory was exceeded and
the process could not succeed. We made the same observation for PrefixSpan2

(Pei et al. 2001), where the number of intermediate sequences was similar to
that of PSP with the same databases. While this phenomenon is not blocking
for methods extracting the whole exact result (the appropriate method can be
selected according to the dataset), it is impossible to include such a method in
our process for extracting dense periods because the worst case can appear in
any batch.3

5 Extracting dense periods

In this section, we describe the steps performed to obtain the dense periods of
a Web access log. We also describe the neighbourhood operators designed for
Perio, the heuristic presented in this paper.

2 http://www-sal.cs.uiuc.edu/∼hanj/software/prefixspan.htm
3 In a web usage pattern, numerous repetitions of requests for pdf or php files, for instance, are
common.

Web usage mining: extracting unexpected periods from web logs 51

Fig. 5 Limits of a framework involving PSP

5.1 Preprocessing

This section is not intended to give details about the general preprocessing
methods that can be applied to a Web access log. We assume that a preprocess-
ing method such as Tanasa and Trousse (2004) (identifying navigations, sessions,
and robots) has already been applied to the log. The preprocessing described
here is straightforward. It is described in Fig. 2. For each client, we extract the
date of arrival and departure in the log. Then, the different dates are stored as
“date, action, client”. So, for each date, we know whether it corresponds to an
arrival or a departure (by means of the “action” field) and the client related to
this action. Those records are then sorted by date in order to have an history of
the log. Reading this history reveals the next action to be performed for each
date recorded (adding or deleting a client sequence in the main memory).

5.2 Heuristic

Since our proposal is a heuristic-based miner, our goal is to provide a result
with the following characteristics:

For each period p in the history of the log, let realResult be the set of fre-
quent behavioural patterns embedded in the navigation sequences of the users
belonging to p. realResult is the result to be obtained (i.e. the result that would
be revealed by a sequential pattern mining algorithm which would explore the
whole set of solutions by working on the clients of Cp). Let us now consider
perioResult the result obtained by running the method presented in this paper.

We want to minimize
∑size(perioResult)

i=0 Si/Si .∈ realResult (with Si standing for a

frequent sequence in perioResult), as well as to maximize
∑size(realResult)

i=0 Ri/Ri ∈

perioResult (with Ri standing for a frequent sequence in realResult). In other
words, we want to find most of the sequences occurring in realResult while
preventing the proposed result becoming larger than it should (otherwise the
set of all client navigations would be considered as a good solution, which is
obviously wrong).

52 F. Masseglia et al.

This heuristic is inspired by genetic algorithms and their neighbourhood
operators. Those operators are provided with properties of frequent sequen-
tial patterns in order to produce optimal candidates. The main idea of the
Perio algorithm is to scan Pstable, the set of stable periods, and, for each p in
Pstable, to propose candidate populations by means of previous frequent pat-
terns and neighbourhood operators. These candidates are then compared to the
sequences of Cp in order to find out their threshold (or at least their distance
from a frequent sequence). These two phases (neighbourhood operators and
candidate evaluation) are explained in this section.

5.2.1 Neighbourhood operators

The neighbourhood operators we used were validated by experiments per-
formed on the Web logs of Inria Sophia Antipolis (see Sect. 6). We chose
“Genetic-like” operators as well as operators based on sequential pattern prop-
erties. The operators presented in this section are involved in the process of gen-
erating candidate sequences at each step of Perio. This refers to the “Operators”
step in Fig. 4 where Perio divides the candidate generation into n subroutines
corresponding to the n available operators. This corresponds to function “neigh-
bourhood” in algorithm Perio given in Sect. 5.2.2. Each operator is thus given
the set of frequent sequences and returns a set of candidates. The final set of
candidates at this step is the result of the union of all candidates generated by
the operators. When we talk about random sequence, we use a biased random
such that sequences having a high threshold may be chosen before sequences
having a low threshold.

Finally, we evaluated the success rates for each of our operators thanks to the
average number of frequent sequences compared to the proposed candidates.
An operator having a success rate of 20% is an operator for which 20% of the
proposed candidates are detected as frequent.

New frequent items: When a new frequent item occurs (after being requested
by one or more users) it is used to generate all possible 2-candidate sequences
with other frequent items. For instance, if item z becomes frequent and the set
of frequent items has size 10, then 30 2-candidate sequences will be generated
(i.e. 〈(z)(a)〉 〈(a z)〉 〈(a)(z)〉, . . . , 〈(j)(z)〉). The candidate set generated is thus
added to the global candidate set. Due to the number of candidate sequences
to test, this operator only has a 15% ratio of accepted (i.e. frequent) sequences.
However, the frequent 2-sequences obtained are essential for other operators.

Adding items: This operator aims at choosing a random item among frequent
items and adding this item to a random sequence s, after each item in s. This
operator generates length(s) + 1 candidate sequences. For instance, with the
sequence 〈 (a) (b) (d) 〉 and the frequent item c, we will generate the candidate
sequences 〈 (c) (a) (b) (d) 〉, 〈 (a) (c) (b) (d) 〉, 〈 (a) (b) (c) (d) 〉 and finally
〈 (a) (b) (d) (c) 〉. This operator has a 20% ratio of accepted sequences, but the
sequences found are necessary for the following operators.

Web usage mining: extracting unexpected periods from web logs 53

Fig. 6 Some operators designed for extracting frequent navigation patterns

Basic crossover: This operator (widely inspired by genetic algorithms oper-
ators) uses two different random sequences and proposes two new candidates
coming from their amalgamation. For instance, with the sequences 〈 (a) (b) (d)
(e) 〉 and 〈 (a) (c) (e) (f) 〉, we propose the candidates 〈 (a) (b) (e) (f) 〉 and 〈 (a)
(c) (d) (e) 〉. This operator has a good ratio (50%) thanks to frequent sequences
embedded in the candidates generated by previous operators.

Enhanced crossover: Encouraged by the result obtained when running the
previous operator, we developed a new operator, designed to be an enhance-
ment of the basic crossover, and based on the frequent sequences properties.
This operator aims at choosing two random sequences, and the crossover is not
performed in the middle of each sequence, but at the end of the longest prefix
common to the considered sequences. Let us consider two sequences 〈 (a) (b)
(e) (f) 〉 and 〈 (a) (c) (d) (e) 〉 coming from the previous crossover operator. The
longest prefix common to these two sequences is 〈 (a) 〉. The crossover therefore
starts after the item following a, for each sequence. In our example, the two
resulting candidate sequences are, 〈 (a) (b) (c) (d) (e) 〉 and 〈 (a) (c) (b) (e) (f)〉.
This operator has a success ratio of 35%.

Final crossover: An ultimate crossover operator was designed in order to
improve the previous ones. This operator is based on the same principle as the
enhanced crossover operator, but the second sequence is not randomly chosen.
Indeed, the second sequence is chosen as being the one having the longest
common prefix with the first one. This operator has a ratio of 30%.

Sequence extension: This operator is based on the following idea: frequent
sequences are extended with new pages requested. The basic idea aims at add-
ing new frequent items at the end of several random frequent sequences. For
instance, if item z becomes frequent and the set of frequent sequences has size
100, then this operator generates 30 candidates by adding z at the end of 30
random frequent sequences. This operator has a success ratio of 60%.

Figure 6 gives an illustration of some operators described in this section.

54 F. Masseglia et al.

5.2.2 Candidate evaluation

The Perio heuristic is described by the following algorithm:

Algorithm Perio

In: Pstable the set of stable periods.
Out: SP The sequential patterns corresponding

to the most frequent behaviours.
For (p ∈ Pstable) {

// Update the items thresholds
itemsSupports = getItemsSupports(Cp);
// Generate candidates from frequent
// items and patterns
candidates = neighbourhood(SP, itemsSupport);
For (c ∈ candidates) {

For (s ∈ Cp) {
CandidateValuation(c, s);

}
}
For (c ∈ candidates) {

If (support(c) > minSupport OR criteria){
insert(c, SP);

}
}

}
End algorithm Perio

Algorithm CandidateEvaluation

In: c a candidate to evaluate and s the
navigation sequence of the client.

Out: p[c] the percentage given to c.
// If c is included in s, c is rewarded
If (c ⊆ s) p[c] = 100 + length(c);
// If c, having length 2, is not included then
// give c the lowest mark.
If (lengthc)≤ 2) p[c] = 0;
// Else, give s a mark and give
// largest distances a penalty

p[c] = length(LCS(c,s))∗100
length(c)

− length(c);

End algorithm CandidateEvaluation

For each stable period Pstable, Perio generates new candidates and then com-
pares each candidate to the sequence of Cp. The comparison aims at returning a
percentage, representing the distance between the candidate and the navigation
sequence. If the candidate is included in the sequence, the percentage is 100%

Web usage mining: extracting unexpected periods from web logs 55

and this percentage decreases when the number of interferences (differences
between the candidate and the navigation sequence) increases. To evaluate this
distance, the percentage is obtained by the fraction of the length of the longest
common subsequence (LCS) (Cormen et al. 1994) between s and c, on the
length of s: |LCS(s, c)|/|s|. Furthermore, in order to obtain frequent sequences
that are as long as possible, we use an algorithm that rewards long sequences
if they are included in the navigation sequence. On the other hand, the algo-
rithm has to avoid long unincluded sequences (in order to avoid clients giving a
high score to any long sequence). To cover all these parameters, the calculation
performed by the client machine is described in the algorithm CandidateEval-

uation. Finally evaluated candidates having either their support greater than or
equal to the minimal support value or corresponding to a “natural selective cri-
teria” are stored into SP. This last criteria, which is user-defined, is a threshold
corresponding to the distance between the candidate support and the minimal
support. In our case, this criteria is used in order to avoid the Period heuristic
leading towards a local optimum.

5.3 Summary and visualization of results

Due to the number of candidates proposed by such a heuristic, the number
of resulting sequences is very large. For instance, if the patterns 〈(a)(b)〉 and
〈(a)(b)(c)〉 are extracted by Perio, then they will both be inserted in the result.
In fact this problem cannot be reduced to the inclusion problem. As the size
of extracted patterns is very long and the processing time has to be as short as
possible, we could obtain patterns which are very close. Furthermore, extracted
patterns could be very different since they represent different kinds of behav-
iour. In order to facilitate the visualization of the result produced, we propose
extending the work of Kum et al. (2003).

Our method is performed as follows. We cluster together similar sequences.
This operation is based on a hierarchical clustering algorithm (Han and Kamber
2001) in which similarity is defined as follows:

Definition 9 Let s1 and s2 be two sequences.
Let |LCS(s1, s2)| be the size of the longest common subsequence between s1 and

s2. The degree of similarity between s1 and s2 is defined as: d =
2×|LCS(s1,s2)|

|s1|+|s2|
.

The clustering algorithm acts as follows. Each sequential pattern is first con-
sidered as a cluster (c.f. Step 0, Fig. 7). At each step, the matrix of similarities
between clusters is processed. For instance, sequences 〈(a)(b)〉 and 〈(b)(c)〉 are
50% similar since they both contain the itemset (b). If we now consider the fol-
lowing two sequences 〈(a)(b)〉 and 〈(d)(e)〉, their similarity is 0%. The closest
two clusters are either {〈(a)(b)〉, 〈(b)(c)〉} or {〈(d)(e)〉, 〈(d)(f)〉} since they have
the same distance. They are grouped together in a single cluster. Step “2” in
Fig. 7 shows the three clusters: {〈(a)(b)〉, 〈(b)(c)〉}, {〈(d)(e)〉} and {〈(d)(f)〉}. This
process is repeated until there are no more clusters of similarity greater than 0

56 F. Masseglia et al.

Fig. 7 Clustering of sequential patterns before alignment

with respect to an existing cluster. The last step in Fig. 7 gives the result of the
clustering phase: {〈(a)(b)〉, 〈(b)(c)〉} and {〈(d)(e)〉, 〈(d)(f)〉}.

The clustering algorithm results in clusters of similar sequences, which is
a key element for sequence alignment. The alignment of sequences leads to
a weighted sequence (as defined in kum et al. 2003), represented as follows:
SA = 〈I1 : n1, I2 : n2, . . . , Ir, nr〉 : m. In this representation, m stands for the
total number of sequences involved in the alignment. Ip (1 ≤ p ≤ r) is an itemset
represented as (xi1 :mi1 , . . . xit :mit), where mit is the number of sequences con-
taining the item xi at the npth position in the aligned sequences. Finally, np is
the number of occurrences of itemset Ip in the alignment. Example 3 describes
the alignment process for four sequences. Starting from two sequences, the
alignment begins with the insertion of empty items (at the beginning, the end or
inside the sequence) until both sequences contain the same number of itemsets.

Example 3 Let us consider the following sequences:
S1 = 〈(a, c) (e) (m, n)〉, S2 = 〈(a, d) (e) (h) (m, n)〉, S3 = 〈(a, b) (e) (i, j) (m)〉,
S4 = 〈(b) (e) (h, i) (m)〉. The steps leading to the alignment of those sequences
are detailed in Fig. 8. First, an empty itemset is inserted in S1. Then S1 and S2

are aligned in order to provide SA12. The alignment process is then applied to
SA12 and S3. The alignment method goes on processing two sequences at each
step.

At the end of the alignment process, the aligned sequence (SA14 in Fig. 8)
is a summary of the corresponding cluster. The approximate sequential pattern
can be obtained by specifying k: the number of occurrences of an item in order
for it to be displayed. For instance, with the sequence SA14 from Fig. 8 and
k = 2, the filtered aligned sequence will be: 〈(a,b)(e)(h,i)(m,n)〉 (corresponding
to items with a number of occurrences greater than or equal to k).

Figure 9 illustrates three screenshots of the implemented visualization mod-
ule. It shows sequences (bottom part of the window) together with the alignment
performed on those sequences (top part of the window). The corresponding
URLs are described in the middle section. The left window illustrates behav-
iours corresponding to the SGP2004 Conference (Symposium on Geometry

Web usage mining: extracting unexpected periods from web logs 57

Fig. 8 Different steps in the alignment method with the sequences from Example 3

Fig. 9 Screenshots of three clusters and their alignments

Processing) which was organized by the Geometrica team of Inria Sophia
Antipolis. The meaning of the alignment is as follows: users first accessed the
“home page” of the conference, then the “Important Dates” or “Submission
Page” (the navigation toolbar css, item (3,949), could appear anywhere in this
behaviour). The second and third windows illustrate behaviours on teacher
pages. For instance, in the last window, we can notice that two frequent behav-
iours were grouped together. These behaviours were therefore aligned in order
to provide the end user with a more global behaviour.

6 Experiments

Perio was written in C++ and compiled using gcc without any optimizations
flags. All the experiments were performed on a Pentium 2.1 Ghz PC running
Linux (RedHat). They were applied to the Inria Sophia Antipolis logs. These
logs were obtained daily. At the end of a month, all daily logs were merged
together into a monthly log. During the experiments we worked on 14 monthly
logs. They were merged together in order to provide a single log for a 14-month
period (from January 2004 to March 2005). The size of this log is 14 Go. It
contains 3.5 million sequences (users), the average length of which is 2.68 and
the maximum size 174 requests.

58 F. Masseglia et al.

Fig. 10 Peaks of frequency for C1, C2, C3, C4, C5 and C6

6.1 Extracted behaviours

Now we shall report some of the extracted behaviours. Those behaviours show
that an analysis based on multiple division of the log (as described in this
paper) extracts behavioural patterns embedded in both short and long periods.
The execution time of Perio on this log with a minimal support value of 2%
was nearly 6 h. The 2% support was the best setting for obtaining interesting
patterns and limiting the size of the output. We found 1981 frequent behaviours,
which were grouped together in 400 clusters using the techniques described in
Sect. 5.3.

Figure 10 focuses on the evolution of the following behaviours:

• C1 = 〈(semir/restaurant) (semir/restaurant/consult.php)
(semir/restaurant/index.php) (semir/restaurant/index.php)〉

• C2 = 〈(eg06) (eg06/dureve_040702.pdf) (eg06/fer_040701.pdf) (eg06)〉
• C3 = 〈(requete.php3) (requete.php3) (requete.php3)〉
• C4 = 〈(Hello.java) (HelloClient.java) (HelloServer.java)〉
• C5 = 〈(mimosa/fp/Skribe) (mimosa/fp/Skribe/skribehp.css)

(mimosa/fp/Skribe/index-5.html)〉
• C6 = 〈(sgp2004) (navbar.css) (submission.html)〉

All itemsets of behaviour C4 are prefixed by “oasis/anonym2/Prog Rpt/TD03-
04/hello/”. For C3 the prefix is “mascotte/ anonym3/web/td1/” and for C6 the
prefix is “geometrica/events/”.

The first behaviour (C1) corresponds to a typical periodic behaviour. Actu-
ally, the Inria’s restaurant was closed for a few weeks and people had to order a

Web usage mining: extracting unexpected periods from web logs 59

Fig. 11 Peaks of frequency for a behaviour on a long period

cold meal through a dedicated website. This website was located at “semir/res-
taurant”. C2 is representative of behaviours related to the recent “general
assembly” of French researchers, hosted in Grenoble (France, October 2004).

Behaviours C3 and C4 correspond to students’ navigations on pages about
computer science courses stored on some Inria researchers’ pages.

When we noticed behaviour C5, we asked the owner of the pages about the
reasons for such behaviour. His interpretation was that such behaviour is due
to the large number of e-mails exchanged in March 2004 through the Skribe
mailing list (generating numerous navigations on the web pages of this project).
For behaviour C6, two different peaks appear (beginning of April and middle of
April). Those peaks in fact correspond to the steps in the submission of articles
for the SGP2004 Conference(abstract and full paper respectively).

Some of the extracted behaviours do not only occur over short periods. Their
occurrences are frequent over several weeks or even several months. Their sup-
port on the global log is related to the number of customers connected for each
period. This is the case, for instance, of:

• C7 = 〈(css/inria_sophia.css) (commun/votre_profil_en.shtml)
(presentation/chiffres_en.shtml) (actu/actu_scient_
colloque_encours_fr.shtml)〉

The evolution of C7 is reported in Fig. 11. We can observe that this behaviour
occurs over 5 consecutive months (from May to September).

6.2 Comparison to sequential pattern mining

Section 6.1 is devoted to showing some extracted behaviours and their content.
The aim of this section is to present a comparison between our method, on the
one hand, and traditional methods for sequential patterns on the other. We will
show that the behaviours obtained by Perio have such a low support that:

1. They cannot be extracted by a traditional sequential pattern mining algo-
rithm.

2. The period they belong to cannot be identified by a traditional sequential
pattern mining algorithm.

Table 2 provides some information about the behaviours presented in Sect.
6.1. The meaning of each value is given in Table 3. We give this information at

6
0

F
.

M
a

sse
g

lia
e

t
a

l.

Table 2 Supports of the extracted behaviours using three granularities (Global, Month & Day)

Max Global %Global (%) PSPGlobal Month %Month (%) PSPMonth Day %Day (%) PSPDay

C1 13 507 0.0197 – 08-2004 0.031 – Aug-09 0.095 20 s

C2 8 69 0.0027 – 07-2004 0.004 – Jun-10 0.2 –

C3 10 59 0.0023 – 07-2004 0.004 – Jul-02 0.33 10 s

C4 12 19 0.0007 – 02-2004 0.006 – Feb-06 0.35 18 s

C5 10 32 0.0012 – 02-2004 0.01 – Feb-16 0.33 21 s

C6 10 935 0.0364 – 02-2004 0.09 – Mar-15 0.35 12 s

C7 10 226 0.0088 – 04-2004 0.01 – Apr-03 0.23 8 s

Web usage mining: extracting unexpected periods from web logs 61

Table 3 Legend for table

Max The maximum number of simultaneous occurrences of this behaviour in

a stable period

Global The support (total number of occurrences) of this behaviour in the global

(14-month) log file

%Global The support (percentage) corresponding to Global w.r.t the number of

datasequences in the global log file

PSPGlobal The execution time of PSP on the global log file with a minimum support

of %Global

Month The month having the highest number of simultaneous occurrences of this

behaviour over a stable period

%Month The support (percentage) of this behaviour for Month

PSPMonth The execution time of PSP on the log file corresponding to Month with a

minimum support of %Month

Day The day with the highest number of simultaneous occurrences of

this behaviour in a stable period

%Day The support (percentage) of this behaviour over Day

PSPDay The execution time of PSP on the log file corresponding to Day with a

minimum support of %Day

three granularities (year, month and day). First of all, we give the maximum
number of simultaneous occurrences of each behaviour over a stable period
(column “Max”). Then we report the global support of this behaviour: the
number of sequences containing the behaviour in the whole log file is given in
column “Global”, whereas the ratio is given in column “%Global”.

A first comparison with PSP is given for the whole log file for each behaviour.
We report in PSPGlobal the execution time of PSP on the whole log file with a
support of %Global. We can observe, for each behaviour, that PSP is unable to
extract the patterns corresponding to the given support. The main reason is that
this support is much lower than any traditional method for mining sequential
patterns would accept. The number of frequent items for C6 with a support of
0.0364% (bold “–”) is 935. In this case, the number of candidates of length 2
is 1,311,805 so the main memory was rapidly overloaded and PSP could not
succeed.

We also identified (by comparing months for each behaviour) the month
with the highest number of simultaneous occurrences of the same behaviour
over a stable period. In fact, the “Month” column corresponds to the month
where this behaviour has the best support compared to other months. In column
%Month, we give the support of each behaviour for the corresponding month
and in column PSPMonth the PSP execution time for that month with a support
of %Month. We can observe that PSP is unable to extract the sequential patterns
corresponding to each month.

The reason why PSP is unable to extract the corresponding patterns is sum-
marized above. The huge number of candidates generated by PSP is due to the

62 F. Masseglia et al.

very weak support of the behaviours to be discovered over that period. This is
explained in Sect. 4.3. The advantage of Perio is that it works on a population of
frequent sequences which will evolve during the process of scanning the log file.
Thus, Perio is able to process each period fast enough by taking into account
the frequent sequences of the previous period. On the other hand, a traditional
method like PSP would try to find an exact result for each period. That would
involve analyzing a very large number of combinations before the frequent
sequences could be found. Furthermore, a traditional method (even if we try
to apply the most up-to-date algorithms for mining sequential patterns) would
have to start from scratch for each period. The fact that periods in the Web log
files are numerous (up to several million) also explains the failure of traditional
methods for mining interesting periods and their associated frequent sequential
patterns.

Finally, for each behaviour we identified the day with the highest number
of simultaneous occurrences of that behaviour during a stable period (column
“Day”). We report in column %Day the support of each behaviour on the cor-
responding day and in column PSPDay the execution time of PSP on that day
with a support of %Day. We can observe, at this granularity level, that PSP
is able to extract most of the behaviours. Furthermore, PSP is so fast that it
could be applied to each day of the log and the total time would be around
70 min (420 days and an average execution time of approximately 10 s per day).
Nevertheless, we should bear in mind that with such an approach:

1. Periods will remain undiscovered (for instance a period of two consecutive
days or a period of one hour embedded in one of the considered days).

2. Behaviours will remain undiscovered (embedded in the undiscovered peri-
ods).

3. The method would be based on an arbitrary division of the data (why work
on each day and not on each hour or each week or each half-day?).

Finally, in order to avoid the drawbacks enumerated above, the only solu-
tion would be to work on each stable period and apply a traditional sequential
pattern algorithm. However this would require running the mining algorithm
several million times, and the total execution time would be around 20 days
(3,500,000 periods and an average execution time of approximately 0.5 s per
period). Furthermore, (as stated in Sect. 4.3) this solution is not satisfactory
because of the long repetitive sequences that may be embedded in the data.

6.3 Effectiveness of the operators

The goal of this experiment is to evaluate the result provided by Perio, depend-
ing on the number of operators involved in the candidate generation step.

First, we need to define a quality measurement. In order to value the results
provided by Perio, we measured, for each solution proposed, the longest com-
mon sequence (LCS) between the sequences of the proposed solution and the
real result to get (obtained by calling on the same data, the PSP algorithm).
Algorithm qualityMeasurement is designed for this measurement. The goal

Web usage mining: extracting unexpected periods from web logs 63

of this algorithm is to provide the average quality of the sequences in the pro-
posed solution. Basically, if all the sequences in the proposed solution are in the
real result and if each sequence in the real result is in the proposed solution,
then the proposed solution is considered as a result with a quality of 100%
(i.e. proposedSolution ≡ realResult). If a sequence in the proposed solution is
only included (or not included at all) in a sequence of the real result, then the
average quality will decrease. The last instructions aim at decreasing the global
quality if a sequence in the real result is not in the proposed solution.

Algorithm qualityMeasurement

In:proposedSolution, a solution to value. PSP_realResults the real results to
obtain (for comparison).
Out:quality, the quality percentage for proposed results compared to real re-
sults.

sum=0;
For (s1 ∈ proposedSolution)

localQuality=0;
For (s2 ∈ PSP_realResults)

If (s1==s2) Then localQuality=100;
Else localQuality=max(localQuality, (LCS(s1,s2)/size(s2))*100);

sum = sum + localQuality;
quality=sum/size(proposedSolution);
For (s ∈ PSP_realResults)

If (s .∈ proposedSolution) Then quality=max(0,quality-1);
Return(quality);

End Algorithm qualityMeasurement

In order to value the effectiveness of our operators, we worked with a frozen
population which corresponds to a stable period. Then, Perio has been set to
continuously run on this population. We could thus know how much candidate
sequences our heuristic has to test before providing a result having quality
100%. In order to simulate an on-going process, the heuristic is initialized with
the set of frequent items and the set of frequent 2-sequences. The population
contains 72 users. Our experiments are illustrated in Fig. 12. Each of the four
graphs corresponds to different combinations of operators. From [op2] (only
operator 2 is available in Perio for generating candidate sequences) to [op2,
op3, op4, op5] (four operators are available in Perio). Operators “New frequent

item” and “Sequence extension” are excluded from this experiment, since they
are based on the arrival of new frequent items (the population is frozen, hence
no new frequent item can appear). The results clearly show that the combina-
tion of all operators is the most effective. We can observe that operator op2
(i.e. “Adding Items” alone is not able to provide a good solution, event in 15
iterations. On the other hand, combining all the operators allows finding the
solution with nine iterations.

64 F. Masseglia et al.

Fig. 12 Results quality depending on the available operators

7 Conclusion

The proposition developed in this paper has shown that considering a log as a
whole, i.e. without any division according to different values of granularity as
in traditional approaches, could provide the end user with a new kind of knowl-
edge cutting system: periods where behaviours are particularly significant and
distinct. In fact, our approach aims at rebuilding all the different periods that
make up the log. In considering the log as a whole (several month, several
years, . . .) we have to deal with a large number of problems: too many periods,
too low frequency of behaviours, inability of traditional algorithms to mine
sequences over one of those periods, etc. We have shown that a heuristic-based
approach is very useful in this context and that by indexing the log, period by
period, we can extract frequent behaviours if they exist. Those behaviours could
be very limited in time, or frequently repeated, but their main feature is that
there are very few of them in the logs and they are representative of a dense
period. The experiments carried out showed different kinds of behaviour con-
cerning, for instance, students, conferences, or restaurants. These behaviours
were completely hidden in the log files and could not be extracted by tradi-
tional approaches since they are frequent over particular periods rather than
frequent in the whole log.

References

Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large
databases. In: Proceedings of the 1993 ACM SIGMOD conference, Washington DC, USA,
May, pp 207–216

Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of the 11th international
conference on data engineering (ICDE’95), Tapei, Taiwan, March

Bonchi F, Giannotti F, Gozzi C, Manco G, Nanni M, Pedreschi D, Renso C, Ruggieri S (2001) Web
log data warehousing and mining for intelligent web caching. Data Knowl Eng 39(2):165–189

Web usage mining: extracting unexpected periods from web logs 65

Cooley R, Mobasher B, Srivastava J (1999) Data preparation for mining world wide web browsing
patterns. Knowl Inf Syst 1(1):5–32

Cormen T, Leiserson C, Rivest R (1994) Introduction to algorithms. MIT Press
Fayad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R, (eds) (1996) Advances in knowledge

discovery and data mining. AAAI Press Menlo Park, CA
Han J, Kamber M (2001) Data mining, concepts and techniques. Morgan Kaufmann
Hay B, Wets G, Vanhoof K (2004) Mining navigation patterns using a sequence alignment method.

Knowl Inf Syst 6(2):150–163
http Analyze, http://www.http-analyze.org/
Kleinberg J (2002) Bursty and hierarchical structure in streams. In: Proceedings of the 8th ACM

SIGKDD international conference on knowledge discovery and data mining, Edmonton,
Alberta, Canada, July 23–26

Kum H, Pei J, Wang W, Duncan D (2003) ApproxMAP: approximate mining of consensus sequen-
tial patterns. In: Proceedings of SIAM International Conference on data mining, San Francisco,
CA

Kumar R, Novak J, Raghavan P, Tomkins A (2003) On the bursty evolution of blogspace. In:
WWW ’03: Proceedings of the 12th international conference on World wide web, pp 568–576

Masseglia F, Cathala F, Poncelet P (1998) The PSP approach for mining sequential patterns. In:
Proceedings of the 2nd European symposium on principles of data mining and knowledge
discovery (PKDD’98), Nantes, France, September, pp 176–184

Masseglia F, Poncelet P, Cicchetti R (2000) An efficient algorithm for web usage mining. Netw Inf
Syst J 2:571–603

Masseglia F, Poncelet P, Teisseire M, Marascu A (2005) Web usage mining: Extracting unex-
pected periods from web logs. In: Proceedings of the 2nd workshop on temporal data mining
(TDM 2005), held in conjunction with the 5th IEEE international conference on data mining
(ICDM’05), Houston, USA, 27 November

Meger N, Rigotti C (2004) Constraint-based mining of episode rules and optimal window sizes. In:
Proceedings of the 8th European conference on principles and practice of knowledge discovery
in databases (PKDD), Pisa, Italy, September, pp 313–324

Mobasher B, Dai H, Luo T, Nakagawa M (2002) Discovery and evaluation of aggregate usage
profiles for web personalization. Data Mining Knowl Discov 6(1):61–82

Mueller A (1995) Fast sequential and parallel algorithms for association rules mining: a compari-
son. Technical report CS-TR-3515, Department of Computer Science, University of Maryland-
College Park, August

Nakagawa M, Mobasher B (2003) Impact of site characteristics on recommendation models based
on association rules and sequential patterns. In: Proceedings of the IJCAI’03 workshop on
intelligent techniques for web personalization, Acapulco, Mexico, August

Neuss C, Vromas J (1996) Applications CGI en Perl pour les Webmasters. Thomson Publishing
Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu MC (2001) PrefixSpan: mining

sequential patterns efficiently by prefix-projected pattern growth. In: 17th international con-
ference on data engineering (ICDE)

Spiliopoulou M, Faulstich LC, Winkler K (1999) A data miner analyzing the navigational behaviour
of web users. In: Proceedings of the workshop on machine learning in user modelling of the
ACAI’99 international conference Creta, Greece, July

Srikant R, Agrawal R (1996) Mining sequential patterns: generalizations and performance improve-
ments. In: Proceedings of the 5th international conference on extending database technology
(EDBT’96), Avignon, France, September, pp 3–17

Tanasa D, Trousse B (2004) Advanced data preprocessing for intersites web usage mining. IEEE
Intell Syst 19(2):59–65. ISSN 1094-7167

Webalizer, http://www.mrunix.net/webalizer/
World Wide Web Consortium. (1998) httpd-log files. http://lists.w3.org/Archives
Zhu J, Hong J, Hughes JG (2002) Using Markov chains for link prediction in adaptive web sites.

In: Proceedings of soft-ware 2002: first international conference on computing in an imperfect
world, Belfast, UK, April, pp 60–73

http://www.http-analyze.org/
http://www.mrunix.net/webalizer/
http://lists.w3.org/Archives

