
HAL Id: lirmm-00239439
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00239439

Submitted on 11 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Physical Synthesis Design Flow based on Virtual
Components

Fernando Gehm Moraes, Michel Robert, Daniel Auvergne, Nadine Azemard

To cite this version:
Fernando Gehm Moraes, Michel Robert, Daniel Auvergne, Nadine Azemard. A Physical Synthesis
Design Flow based on Virtual Components. DCIS: Design of Circuits and Integrated Systems, Nov
2000, Montpellier, France. pp.740-745. �lirmm-00239439�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00239439
https://hal.archives-ouvertes.fr

A Physical Synthesis Design Flow
Based on Virtual Components

Fernando Moraes1, Michel Robert2, Daniel Auvergne2, Nadine Azemard2

1FACIN-PUCRS - Av. Ipiranga, 6681 – Prédio 16
90619-900, Porto Alegre, Brazil

moraes@inf.pucrs.br

2LIRMM, UMR 5506 CNRS/Uni. Montpellier 2
161 rue ADA

34392 – Montpellier – Cedex 5 - France
{robert,auvergne,azemard}@lirmm.fr

Abstract
This paper presents a virtual library design flow for
automatic layout synthesis tools. The motivation to
develop such design flow is to enable the use of
static CMOS complex gates (SCCGs), to optimize
area and delay at the logic and physical abstraction
levels. The use of SCCGs increases the design space
(number of different primitive cells) when compared
to the state-of-the-art cell based approaches.
Therefore, a new design flow is defined, which
replaces cell libraries by virtual components,
creating in this way a virtual library. We present the
procedure to create such virtual library in the
Synopsys environment, and to integrate logic
synthesis tools in automatic layout synthesis.

1 INTRODUCTION

Previous publications ([1], [2], [3]) have presented
the advantages/disadvantages of using traditional
cell based design or tools for automatic layout
synthesis.
Briefly, cell based design has a well established
design flow (from behavioral VHDL), cells are pre-
characterized and area/delay figures can be
computed at the gate level. However, it is not
possible to size the transistor widths (the solution in
libraries is to provide several templates for each
cells, increasing the library complexity/
management) and the library is designed for one
given fabrication process. Considering deep-
submicron processes, where wire delay must be
considered, it should be possible to size each gate
according to the load to be driven.
Following [1,2], cell synthesis from transistor netlist
level is a flexible way to support open library
architecture and satisfy timing closure on cell based
design.
In [1] we have: “Cell synthesis is concerned with
creating cell layouts starting with only a transistor
level netlist for each cell. It is completely flexible in
terms of a target library architecture and does not
require any pre-existing cell-specific layout
information.” In [2] we have: “...it clearly appears

that on timing-critical cell-based designs it is
nowadays a severe penalty not to use a synthesizer.”
Then, one alternative to the cell-based approaches is
to automatically generate the layout of each gate,
without using cell libraries. Using such approach,
each gate can be individually sized, and synthesis
will be independent of process fabrication.
Automatic layout synthesis tools to be effectively
used by industry or IP providers must solve the
following problems: (i) how to define a virtual
library; (ii) how integrate automatic layout synthesis
with a logic synthesis tool, using a non limited
virtual library; (iii) how to characterize the virtual
library to allow delay prediction at the gate level.
This paper presents a solution for the first two
questions: definition of the virtual library and the
integration of layout and logic synthesis tools.
Solution for library characterization has been
presented in [9] and will be used as necessary.
Section 2 presents the conceptual design flow using
a virtual library methodology. Section 3 presents the
implementation of such methodology using Synopsy
[4] as the logic synthesis environment. Section 4
presents the physical synthesis [5], as well as the
optimization step of the design flow.

2 LIBRARY FREE TECHNOLOGY MAPPING

The concept of a virtual library is based on using
cells available through a layout generator, instead of
using a set of pre-characterized cells.
Due to design and maintenance cost, the number of
cells available into a library is quite small when
compared to the possibilities given by using
complex gates (or SCCGs - Static CMOS Complex
Gates). The number of different functions that can
be implement with SCCGs having 4 or less
transistors connected in series is 3503 ([6]) and this
number grows to 425803 for arrays of 5 transistors.
So, the use of SCCGs available through layout
generation increases the design space (number of
different primitive cells) when compared to state-of-
the-art cell based approaches.

The set of available SCCGs is defined by user
constrains, e.g., number of transistors in series,
maximum fanout and output isolation. These
topological restrictions define the virtual library to
be used in library free design approaches.
Therefore, virtual library approach means the
possibility to use any kind of SCCG for a given
circuit, with individual transistor sizing.

2.1 Design Flow

Figure 1 shows the design flow for the virtual library
approach. The circuit is specified using a
behavioral/structural VHDL description. A logic
synthesis tool synthesizes the circuit (Synopsys in
the figure), generating as result a structural VHDL.
A virtual library containing a rich set of SCCGs is
used during the technology mapping. User
constraints, like critical path delay, output loads,
fanout restrictions are specified in the synthesis
script.

SPICE

Behavioral VHDL

Struct. VHDL

VIRTUAL LIB
Logic functions

Technology
data

TROPIC

SYNOPSYS

Conversion
Struc. VHDL ���� SPICE

LAYOUT

OPTIMIZATION:
Sizing, buffers,

repeaters
TIMING

ANALYSIS

TROPIC

Parasitic capacitances

User
constraints

Figure 1 - Design flow in the virtual library approach

This structural description is automatically
converted to a SPICE format, since for the automatic
layout synthesis a transistor level description is
required. The transistors are initially sized with a
constant width. The width is a multiple of the
minimum transistor width for the employed
technology.
A first layout synthesis is performed (Tropic in the
figure), aiming parasitic capacitance evaluation. The
transistor level description and the parasitic
capacitances are used for timing analysis and
electrical optimization. If timing constraints are not
met, some optimization strategies can be employed:
transistor sizing and/or buffer/repeater insertion.

After electrical optimization, if needed, a second
layout synthesis is made, resulting in the final layout
of the circuit, with each transistors individually
sized. It is important to keep the same placement
between both layout syntheses, in order to get the
same routing and consequently the same parasitic
capacitances.

3 VIRTUAL LIBRARY APPROACH IN THE
SYNOPSYS ENVIRONMENT

We present in this section a practical implementation
of a virtual library approach.
Figure 2 illustrates the first part of the flow, which
consists to generate a structural VHDL form a
behavioral description, using a virtual library during
the technology mapping.

Virtual.LIB BEHAVIORAL
VHDL

LIBRARY
COMPILER

(SYNOPSYS)
Virtual.DB Synthesis

script

DESIGN
COMPILER

(SYNOPSYS)

STRUCTURAL
VHDL

SPICE FILE

Figure 2 - Virtual library approach in the Synopsys
environment

The first action is to describe this virtual library. For
example, Figure 3 shows a SCCG description in the
Synopsys format. Each SCCG have: (1) its name,
which is used in the final structural VHDL; (2) the
area, which is proportional to the number of inputs
(this is true, since a linear matrix layout style is used
by layout synthesis tools [5] [7]); (3) the cell
function, defining the SCCG, used during
technology mapping and spice netlist generation;
(4) SCCG timing model.

cell(AOI1125) {
area : 18;
pin(z) {
direction : output;
function : "!(A*(B+(C*(D+E*(F+G*(H+I))))))";
max_capacitance : 0.250000;
timing() {

intrinsic_rise : 0.25 ;
intrinsic_fall : 0.30 ;
rise_resistance : 0.15 ;
fall_resistance : 0.10 ;
related_pin : "A B C D E F G H I" ;

}
}
pin(A B C D E F G H I) {
direction : input;
capacitance : 0.250000;
}

}

Figure 3 - SCCG described in the Synopsys format
(simplified timing)

In this example a very simple time model, the
generic CMOS [8], is used. Work under
development consists in defining a complete table
lookup model. Each SCCG will be characterized
from a set of delay equations for sub-micron
technology [9]. In this way, the delay prediction at
the logic level will have the same accuracy of the
cell-based approaches.
A virtual library is automatically generated from the
technology data (electrical model) and topological
constraints. No electrical simulations or layout
generations are required to perform this task. There
is no restriction on the number of cells into the
virtual library, all CMOS static SCCG can be
described.
The sequential elements, flip-flops, latches and tri-
states are also inserted in the virtual library file.
These sequential elements are not generated
automatically, due to its complex description. A
template file is modified, according to the
technology data. The sequential library has 9
components: 4 FFDs (only D, set, reset, set/rest), 4
LATCHs (only D, set, reset, set/rest) and 1 buffer
tri-state.
Once the virtual library file generated, it is compiled
using the "library compiler" [8] tool (Synopsys),
resulting in a library file accepted by the logic
synthesis tool, "design compiler" (Synopsys).
The input VHDL description can be behavioral,
structural or a mixed of them. If a behavioral
VHDL (Figure 4-a) is used as input, the designer
describes his circuit without references to the cells
inside the virtual library.

…
input_adder2<=(not busB) when uins.ula=AsubB else

(others=>'0') when uins.ula=negA else
(others=>'1') when uins.ula=decA else
busB;

…
process(ck,reset,uins)

begin
if (reset = '1') then

n <= '0'; z <= '0';
elsif ck'event and ck = '0' then
if uins.nz ='1' then

n <= out_ula(15);
if out_ula="0000000000000000"

then z <= '1';
else z<='0';

end if;
end if;

end if;
end process;

(a) Partial behavioral VHDL description

entity my_circuit is
port(pg: out reg2; PGij, PGjk, PGkl : in reg2);

end my_circuit;

architecture A1 of my_circuit is
signal s1, s2 : std_logic;
begin
U0: nor3 port map(PGij(0),PGjk(0),PGkl(0),s1);
U1: inv port map(s1, pg(0));
U3: AOI_BK3 port map (PGij(1), PGij(0),

PGjk(1), PGjk(0), PGkl(1), s2);
U4 : inv port map (s2, pg(1));

end A1;

(b) Example of a structural VHDL

Figure 4 - Behavioral and structural VHDL
descriptions

If a structural (Figure 4-b) or mixed description is
used, the designer must known in advance the cell
names, since the logic synthesis will make the
mapping using the cell names of the description. In
this example, the cells nor3, inv and AOI_BK3 must
be in the virtual library, since they are instanced
(command port map).

A synthesis script, containing the area and timing
constraints, guides the logic synthesis. Figure 5
shows a synthesis script, where area (set_max_area),
fanout (set_max_fanout) and delay constraints
(set_max_delay) are imposed. It is important to
generate a flat output description (commands
uniquify and ungroup). This is a constraint imposed
by the layout synthesis tool.

link_library = {sccg33.db libdff.db}
target_library = {sccg33.db libdff.db}

cell_list = { sklansky }

foreach (cell, cell_list) {

read -f vhdl cell + ".vhdl"
current_design cell

set_input_delay 0.0 all_inputs()
set_max_delay 1.0 -to all_outputs()
out_load = 0.25
set_load out_load all_outputs()
set_max_area 300
set_max_fanout 6 cell

uniquify –force
ungroup –flatten -all
compile -map_effort medium

vhdlout_write_components = TRUE
vhdlout_single_bit = "TRUE"
vhdlout_dont_create_dummy_nets = "TRUE"

write -format vhdl -hierarchy -output cell +
"_S.vhdl"

}
quit

Figure 5 - Synthesis script, with delay and area
constraints

The structural VHDL, synthesized by Synopsys and
mapped over our virtual library, is automatically
converted to a SPICE format. The final SPICE
netlist has three components: sub-circuits, reference
to the sub-circuits and output/input pins.
Each cell (component, in VHDL) used in the
structural VHDL is translated into a spice sub-
circuit, using the command function (see Figure 3).
Figure 6 shows a cell equation, and the respective
spice sub-circuit, automatically generated. The
translation of an equation to a sub-circuit is
performed by a recursive function, which considers
the operation ‘*’ (and) as transistors connected in
series and the operation ‘+’ as transistors connected
in parallel, for the N plan (the P plan is dual to the N
plan). Observe that all functions in the virtual library
are negative. The tool responsible to translate the
netlist spice from structural VHDL reads the same

file used by the library compiler tool. The sequential
elements are also created from templates (nine
previously defined spice subcircuits are used).

All references to cells (port map, in VHDL) used in
the structural VHDL is translated sub-circuit calls.
Finally, the input/output pins are obtained from the
entity declaration. The resulting SPICE file is used
as input description for our layout synthesis tool,
TROPIC3.

Example of an initial VHDL and final SPICE files
are shown in Figure 7.

!((A*B*C)+(D*E*F)+(G*H*I))

SUBCKT AOI1 out A B C D E F G H I vcc
MN1 gnd I 6 NMOS w=2.0um l=0.25um
MN2 6 H 3 NMOS w=2.0um l=0.25um
MN3 3 G out NMOS w=2.0um l=0.25um
MN4 gnd F 5 NMOS w=2.0um l=0.25um
MN5 5 E 2 NMOS w=2.0um l=0.25um
MN6 2 D out NMOS w=2.0um l=0.25um
MN7 gnd C 4 NMOS w=2.0um l=0.25um
MN8 4 B 1 NMOS w=2.0um l=0.25um
MN9 1 A out NMOS w=2.0um l=0.25um
MP10 vcc I 16 PMOS w=2.0um l=0.25um
MP11 vcc H 16 PMOS w=2.0um l=0.25um
MP12 vcc G 16 PMOS w=2.0um l=0.25um
MP13 16 F 15 PMOS w=2.0um l=0.25um
MP14 16 E 15 PMOS w=2.0um l=0.25um
MP15 16 D 15 PMOS w=2.0um l=0.25um
MP16 15 C out PMOS w=2.0um l=0.25um
MP17 15 B out PMOS w=2.0um l=0.25um
MP18 15 A out PMOS w=2.0um l=0.25um
.ends AOI1

Figure 6 – SCCG equation and its spice description

Entity DIV2 is
Port(clk,rst: in std_logic; d2_clk: out std_logic);

end DIV2;
Architecture arch of DIV2 is
signal temp : std_logic;

begin
d2_clk <= temp;
process (clk,rst)
begin
if rst='0' then temp<='0';
elsif clk'event and clk='1' then temp<=not temp;

end if;
end process;

end;

Entity div4 is
Port(clk,rst:in std_logic; div,div4,div8: out std_logic);

end div4;
Architecture arch of div4 is

signal carry : std_logic_vector(2 downto 0);
begin
st0: DIV2 Port Map(clk=>clk, rst=>rst, d2_clk=>carry(0));
st1: DIV2 Port Map(clk=>carry(0),rst=>rst, d2_clk=>carry(1));
st2: DIV2 Port Map(clk=>carry(1),rst=>rst, d2_clk=>carry(2));
div <= carry(0);
div4 <= carry(1);
div8 <= carry(2);

end;

(a) Input description: VHDL

** SUBCIRCUITS (generated from the lib file)
.SUBCKT DFFR D rst clk QN Q vcc
MN1 H clk gnd gnd NMOS l=0.25u w=2u
MP2 H clk vcc vcc PMOS l=0.25u w=2u
MN3 NH H gnd gnd NMOS l=0.25u w=2u
MP4 NH H vcc vcc PMOS l=0.25u w=2u
…
.ends DFFR

.SUBCKT GAT1_1 out A vcc
MN1 gnd A out gnd NMOS l=0.25u w=2u
MP2 vcc A out vcc PMOS l=0.25u w=2u
.ends GAT1_1

** COMPONENTS (generated from the VHDL file)
X1 net21 n3 clk net21 div vcc DFFR
X2 net20 n3 n1 net20 div8 vcc DFFR
X3 net19 n3 n2 net19 div4 vcc DFFR
X4 n3 rst vcc GAT1_1
X5 n2 net21 vcc GAT1_1
X6 n1 net19 vcc GAT1_1

** INPUTS AND OUTPUTS (generated from ENTITY in the VHDL file)
*interface: div8 orient n output
*interface: div4 orient n output
*interface: div orient n output
*interface: rst orient s input
*interface: clk orient s input

(b) Spice file automatically obtained from the input VHDL

Figure 7 - Original VHDL description and resulting SPICE file

4 PHYSICAL SYNTHESIS

This Section presents briefly the layout synthesis
features and the work under development in timing
analysis/optimization.
The layout synthesis tool, TROPIC [5], is a macro-
cell generator. The initial SPICE description,
obtained from a behavioral VHDL, is decomposed
into leaf cells that will be assembled together by
dedicated place and route tools, without constitute a
separate library. Two instances of the same logic
function can have different layouts, according to its
environment.
The main features of the layout style:
• Linear-matrix layout style, each cell row is

composed of two horizontal diffusion strips;
• Routing is implemented with 3 metal layers and

stacked contacts, reducing the routing area;
• No layout compaction. This is the main feature

of TROPIC, since it allows a very fast layout
synthesis. Tools, like LAS [7], create an
intermediate symbolic layout description,

requiring layout compaction, consuming a lot of
CPU time.

• Complete parasitic capacitance/resistance
evaluation.

• Simple technology file to describe design rules
(28 rules) and parasitic capacitances/resitances
(26 rules).

At the cell level, we can enumerate the following
features (Figure 8):
• connection between N and P plan directly in

metal 1;
• minimum separation between N and P;
• gnd/vcc wires between transistors, in metal2;
• over-the-cell routing (OTC), connecting internal

nodes of SCCGs and nets belonging to only one
channel;

• jogs are automatically inserted in the polysilicon
wires, to reduce diffusion area (capacitance
reduction);

• polysilicon gate is only aligned to a virtual grid
if it is connect to the routing region of the
circuit.

N diffusion

P diffusion

gnd (metal2)

vcc (metal2)

Body-tie/stacked contact
Metal1 to
connect
supply line

Aligned pins Not aligned pin

Jog in
polysilicon
wire

Connetion
between N
and P plan in
metal1

Over-the-cell
routing

Figure 8 - Layout example (row level)

The layout generator has only 2 input files: the
SPICE netlist and the design rules file. Its outputs
are the layout (CIF format) and the parasitic
capacitance/resistance estimation (flat spice netlist).
Figure 9 shows some transistor densities for
TROPIC for 2 different processes. For a 0,25 µm
process, an average transistor density of 60000
transistors/mm2 was obtained. Refinements in the
routing algorithm can improve this density up to
20% [5]. The CPU time, to generate the layout and
estimate parasitic capacitances, for the largest
example (15000 transistors), was 227,67 seconds (in
an Ultra-10 Sparc).

0

20000

40000

60000

80000

100000

120000

0 3000 6000 9000 12000 15000

0.25µm

0.5µm

Transistor Density (tr/mm2)

Number of Transistors

Figure 9 - Transistor densities for TROPIC

As CPU time for layout generation is no more a
bottleneck, iterations can be made to obtain an
optimized circuit. The logic synthesis tool can
execute initial iterations to get accurate information
on routing length (parasitic capacitances) and area.
This can guide the technology mapping and also
indicate where buffers must be inserted, since the
real load in each node is calculated during the layout
synthesis.
There are three capacitance components: line-to-
ground, line-to-line and crossover capacitances. The
line-to-ground and crossover capacitances are
calculated by the traditional formulation based in the
area and perimeter of the interconnections. We used
a simple and accurate 2½D methodology described

in [11]. For each connection in the layer i, we
analyze the immediate neighbor in the same layer,
all crossunders in the layer i-1 and all crossovers in
the layer i+1, treating the layers i±2 like ground
planes. However, the line-to-line capacitance is a
function of the distance between two connections
and the thickness of the layer. We use the empiric
formulation described in [10].
The components of the diffusion capacitance, the
area and perimeter of drain/source areas also
computed by the layout generator.
The circuit delay obtained through electrical
simulation using the evaluated capacitances was
compared to extracted capacitances. Preliminary
results show an average difference of only 5%
between estimation and extraction.
The resistances are calculated using the number of
squares in each wire, plus the number of contacts
and vias. This simple model is been improved. If
resistances are also evaluated, the user can choose
between 3 representation models (with one state): L,
T and Pi.

4.1 Electrical Optimization

After layout generation and capacitance evaluation,
the last step in the design flow is the timing analysis
and electrical optimization.
At the physical step of the design, the delay and
power performances of MOS integrated circuits can
be controlled by the appropriate selection of
transistor sizes. This sizing problem is generally
addressed as a non-linear optimization problem with
a number of parameters equal to the number of
transistors to be considered. Alternatives can be
obtained by regularly varying the transistor drive
capabilities until the longest and shortest paths fulfill
the delay-power constraint [12]. The consideration
on the sensitive paths of the drive capability of gates
may reduce the global optimization problem to local
optimizations allowing effective management of the
circuit delay and power.
The satisfaction of imposed delay constraints
implies a full path enumeration with a complete
account of the real (post layout) evaluation of the
performance parameters of the different switching
blocks. For that, it is necessary to get available fast
and accurate path identification techniques. This has
been obtained using graph exploring techniques such
as BFS or DFS algorithms. However in these
enumeration techniques all the circuit paths are
considered and stored at the expense of prohibitive
CPU time and memory allocation when considering
large circuits. As a result no complete path
enumeration and classification, allowing speed-
power trade-off on the different branches can be
performed.

The problem of circuit performance optimization
must be addressed on a complete path enumeration.
We considered an incremental technique, which
supplies the enumeration of the longest (shortest)
paths in a decreasing (increasing) delay order.
One advantage of this technique is to work on a user
specified limited number of paths [13], allowing the
easy application of different path optimization
criteria. For that we developed a sizing algorithm to
satisfy delay (power) constraints. This algorithm size
the gates belonging to the paths classified by the
incremental technique. The selected criterion for
gate resizing is defined through the gate load to
drive ratio, evaluated on each node and which has
been shown to constitute a robust metric for the gate
strength and the gate loading evaluation [13]. This
parameter associated to the physical performance
description of the gate load (considering the
estimated parasitic capacitances), gives direct
indication of its loading level. Results of such work
can be found in [12].

5 DISCUSSION

We have presented in this paper a complete design
flow for automatic layout synthesis tools, coupled
with logic synthesis and electrical optimization. Our
main contributions are (i) the definition of the virtual
library using SCCGs and (ii) the integration of the
logic synthesis to the physical synthesis. The
characterization of the virtual library is a work under
development.
Another alternative to the virtual library was
investigated. A simple library (containing basic
gates: and, or, inverters) is used during the logic
synthesis, resulting in an intermediate description.
This description is used by a specific tool for
technology mapping, like SIS, generating the SPICE
netlist with complex gates. This approach was
rejected, since there is no way to control design
constraints at the logic level because only simple
gates are used.
The advantages of virtual libraries over cell libraries
are:
• great flexibility during the technology mapping;
• realistic parasitic evaluation without electrical

extraction;
• an incremental path enumeration allowing

transistor sizing according to the user
constraints;

• easy technology migration.

Design flow based on virtual libraries can replace
cell-based approaches in deep sub-micron
technologies. This approach allows a fast technology
independent IP prototyping for the design of systems
on silicon.

References

[1] M.LEFEBVRE, D.MARPLE, C.SECHEN. The
Future of Custom Cell Generation in Physical
Synthesis. DAC'97.

[2] P.IENNE, A.GRIEßING. Practical Experiences with
Standard-Cell Based Datapath Design Tools - Do
We Really Need Regular Layouts? DAC'98.

[3] J.L.BURNS; J.A.FELDMAN. C5M – A Control-
Logic Layout Synthesis System for High-
Performance Microprocessors. IEEE Transactions
on CAD, Vol. 17, no. 1, January 1998, pp. 14-23.

[4] http://www.synopsys.com.
[5] F.MORAES, M.ROBERT, D.AUVERGNE. A

Virtual CMOS Library Approach for Fast Layout
Synthesis. VLSI, 1999, pp 415-426. Lisbon -
Portugal.

[6] E.DETJENS; G.GANNOT; R.RUDELL; S.VIN-
CENTELLI; A.WANG. Technology mapping in
MIS. ICCAD, Santa Clara, 1987, pp. 116-119.

[7] CADENCE. Virtuoso layout synthesizer - LAS - user
guide. CADENCE Version 4.2, October 1991

[8] SYNOPSYS. Library Compiler User Guide, Volume
1. Synopsys Documentation, v1998.08.

[9] J.DAGA, D.AUVERGNE. A Comprehensive Delay
Macro-Model of Submicrometer CMOS Logics.
IEEE Journal of Solid States Circuits, vol 34, n°1,
pp.42-55, January 1999.

[10] J.CHERN, J.HUANG, L.ARLEDGE, P.LI,
P.YANG. Multilevel Metal Capacitances Models for
CAD Design Synthesis Systems. IEEE Electron
Devices Letters, v.13, n.1, p.32-34, Feb. 1992.

 [11] J.CONG, A.KAHNG, D.NOICE; N.SHIRALI,
S.YEN. Analysis and Justification of a Simple,
Practical 2 1/2D Capacitance Extraction
Methodology. UCLA Computer Science Technical
Report 970013, 1996.

[12] S.CREMOUX; N.AZEMARD; D.AUVERGNE.
Path resizing based on incremental technique.
ISCAS98, Monterey, USA, 1998.

[13] S.YEN, D.DU, S.GHANTA. Efficient Algorithms
for Extracting the k Most Critical Paths in Timing
Analysis. DAC'89, pp. 649-654, June 1989.

Acknowledgements
Fernando Moraes gratefully acknowledges the support of the
CNPq through grant no. 522939/96-1.

View publication statsView publication stats

https://www.researchgate.net/publication/2379603

	Introduction
	Library free technology mapping
	Design Flow

	Virtual library approach in the Synopsys environment
	P
	Physical Synthesis
	Electrical Optimization

	Discussion

