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Aggressive scaling of transistors is often accompanied by an increase in variability of its intrinsic parameters. In this paper, we point out the importance of considering sensitivity performances due to process variations during SRAM design. We propose a novel dummy bitline driver, an essential component in a self timed memory, which is less sensitive to process variations. A statistical sizing method of this dummy bitline driver is introduced so as to improve the read timing margin, while ensuring a high timing yield. The memory considered is a 256kb SRAM design in 90nm technology node.

Introduction

Technology fabrications have led to the realization of system on chip whereby functional blocks coexist, like embedded memories which can occupy up to 80% of the chip's area. Hence, the overall performances and the fabrication yield of the chips rely heavily on memory's yield. Simultaneously with the rapid increase of memory blocks within the chips, technology evolution is accompanied by an increase of variability effects owing to process variations, which appear during the manufacturing steps.

Generally, process variability can be classified into 2 distinct groups of manufacturing processes namely: global and local variations. Global variations originate from numerous factors: non uniform chemical mechanical polishing [START_REF] Unsal | Impact of Parameter Variations on Circuits and Microarchitecture[END_REF], lens aberrations [START_REF] Orshansky | Characterization of Spatial Intrafield gate CD variability, its impact on Circuit performance, and Spatial Mask-level Correction[END_REF] and non-uniformity of temperature [START_REF] Unsal | Impact of Parameter Variations on Circuits and Microarchitecture[END_REF], whereas local variations stem from a variety of factors like random dopant fluctuations [START_REF] Mukhopadhyay | Modeling of Failure Probability and Statistical Design of SRAM Array for Yield Enhancement in Nanoscaled CMOS[END_REF] and line edge roughness [START_REF] Croon | Line Edge Roughness: Characterization, Modeling and Impact on Device Behavior[END_REF]. In fact transistor scaling has exacerbated the impact of local and global variations, affecting performances of integrated circuits like maximum operation frequency and static power consumption.

To handle the impact of process variations in circuit design, corner based methodology is performed by characterizing the circuit across process corners. However, the increase of variability in manufacturing process results in an underestimation of performances in the operating frequency of an integrated circuit. This can therefore impact on the convergence of the design flow. In this paper, we highlight the importance of considering process variations in the design of an SRAM. We propose a novel dummy bitline driver which tracks the discharge time of the bitline in a read operation and triggers the sense amplifier at the right time. This structure is less sensitive to process variation. A statistical sizing method of the driver is also introduced to improve the read timing margin while guaranteeing a high timing yield.

The paper is organized as follows. Section 2 introduces a simple way of computing the required read timing margin without being too pessimistic and of calculating the probability of fulfilling this constraint. Section 3 presents a new structure, dubbed Dummy Bitline Driver (DBD), having its timing performances less sensitive to manufacturing processes compared to a more classic DBD [START_REF] Amrutur | A Replica Technique for Wordline and Sense Control in Low Power SRAMs[END_REF]. In section 4, we will introduce a statistical sizing method of the DBD which is independent of the process corner. Section 5 compares the results obtained between the proposed and the classic structures.

Modelling Approach

Conventionally, the characterization of a circuit involves performing several simulations across best and worst case corners to verify whether its performances and timing constraints are met under all conditions. For example, the worst case delay is defined by considering that principal parameters p i of transistors have their values at ±m i ⋅σ pi (m i ∈Ν) around their mean values µ pi (σ pi represents the standard deviation of the statistical distribution of parameter p i ). The set up of such a simple approach, through a proper choice of m i values, allows the worst case to be defined at n⋅σ D , with σ D being the standard deviation of the delay distribution.

Failing to account for local variations across process corners is not a serious problem as far as simple data paths are considered. However, this issue is far more complex for data path with racing conditions. This approach incurs optimistic and pessimistic estimations of worst and best case methods. In this section, we will introduce a way of computing the required read timing margin without being too pessimistic or optimistic. Consider the signal races during a read operation between signals A and B issued from the same control block. Signal A activates a selected memory cell (denoted by CC in Fig. 1) which discharges bitline BL, whereas signal B triggers the sense amplifier during the discharge process of BL (Fig. 1). Let us also assume that the signal A should arrive at most 0 ps after signal B for a proper read operation of a selected SRAM cell. Let Let us now evaluate the probability of meeting a timing constraint. Assuming that all distributions are normal, the mean value and the standard deviation of distribution D are given by:
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Using the Galton approximation, with the hypothesis that µ D >0, the probability P V of satisfying the timing constraint for all values of ρ is computed as follows:
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As the sensitivities of delays to process variations V A =σ A /µ A and V B =σ B /µ B are known and found to be relatively constant over a wide range of µ A and µ B values (±20%), the value µ B and subsequently that of the read timing margin µ D Yield (Appendix A.1) can be computed as follows to guarantee a proper read operation defined at n⋅σ:
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Dummy Bitline Driver with Reduced Variance

In a more specific context, involved in the design of advanced technologies, the corner method seems no longer enough to satisfy the timing constraints without the use of an increasing timing margins caused by an increase of local variations. This fact brings up a question: Is it possible to maintain, or even reduce the design timing margins through design?

To do so, we have defined a Dummy Bitline Driver (DBD) structure (Fig. 3a) which is less sensitive to process variations compared to a more classic structure (Fig. 3b). Indeed, the DBD is an essential component of a self-timed SRAM. In the absence of an internal clock signal, the DBD coupled with the dummy bit line acts as a metronome to fire the sense amplifier at the appropriate time during a read operation. It guarantees, as shown in Fig. 1, the proper triggering of the appropriate sense amplifier when the potential difference of the input signals between BL and BLB of the sense amplifier has reached the required level (10% of VDD).

The topology of the proposed DBD has been realized such that the discharge characteristics of dummy bitline (Fig. 1) being discharged by the DBD match those of bitline being discharged by an SRAM cell represented in Fig. 3c. As shown in Fig. 3a, transistors PD and PGi (i=1 to 4) of the proposed DBD are akin to transistors PDcci (i=1, 2) and PGcci (i=1, 2) of the SRAM cell. Moreover, logic gates g1 and g2 will mimic the signal WEN which controls pass gate PGcci. The transistor Pr is used for precharging dummy bitline, connected to pin 'out', at Vdd before any read operation. Transistor N1 sets node Z to 0 V at the beginning of a read cycle operation. When the internal signal WLSDUM is at '1' during a read mode, inputs pins Iadji (i=1 to 4) are activated by hardcoding them individually at Vdd. Hence, they can be used to adjust the discharge current of the DBD with respect to the actual supplied voltage of the memory. In doing so, the read timing margin can be adapted to the supply voltage applied.

It should be noted that the reference DBD has also the same functionalities as the proposed DBD. The main difference lies in the use of stacked transistors for representing pass gate and pull down transistors of the SRAM cell. This condition causes the sensitivity of the read current flowing through PGi and PDi (i=1..4) to be less representative of the read current flowing through PGcc1 and PDcc1 in the 6T SRAM cell.

timing margin ∆µ D /µ Dref lying between 14.5% to 25.2%. 

Conclusion

Due to the pessimism of corner analysis method, we have proposed a simple way of computing the required read timing margin and of calculating the probability of meeting this constraint. A statistical optimization method has also been developed to ensure a predefined timing yield. The developed design approach has been particularly introduced to optimize the critical path of the SRAM memory, in which the dummy bitline driver has been replaced by a more robust structure to manufacturing process variations. Results have demonstrated that the use of the optimization method and the proposed dummy bitline driver improves significantly the reduction in the design timing margins, while ensuring a given timing yield.
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 1 Figure 1: Signal race between paths A and B in an SRAM

  µ A , µ B and σ A, σ B be the mean values and the standard deviations of the propagation delay distributions of signals A and B. Let µ D and σ D represent the mean and the standard deviation values of the path delay difference D (read timing margin) between A and B.

Figure 3 :

 3 Figure 3: (a) Proposed DBD (b) Reference DBD (c) 6T SRAM cell

Table 1 :

 1 Variability reduction

	Iadji Iadji	Vdd (v) Vdd (v)	T (˚c) T (˚c)	µ A (ps) µ A (ps)	V A (%) V A (%)	µ B ref (ps) µ B ref (ps)	V B ref (%) V B ref (%)	µ B prop (ps) µ B prop (ps)	V B prop (%) V B prop (%)	∆V B / V B ref (%) ∆V B / V B ref (%)
	1 1	1.00 1.00	-40 -40	1919 1919	9.0 9.0	2412 2412	10.8 10.8	2303 2303	9.8 9.8	9.3 9.3
			125 125	2209 2209	7.7 7.7	2497 2497	9.1 9.1	2453 2453	6.8 6.8	24.7 24.7
	1, 2 1, 2	1.08 1.08	-40 -40	1534 1534	7.5 7.5	1793 1793	8.5 8.5	1734 1734	7.5 7.5	11.7 11.7
			125 125	1827 1827	6.7 6.7	2029 2029	7.7 7.7	1998 1998	6.0 6.0	22.6 22.6
	1, 2, 3 1, 2, 3	1.20 1.20	-40 -40	1181 1181	6.0 6.0	1306 1306	6.9 6.9	1277 1277	5.9 5.9	13.7 13.7
			125 125	1448 1448	5.7 5.7	1585 1585	6.5 6.5	1565 1565	5.2 5.2	19.8 19.8
	1, 2, 3, 4 1, 2, 3, 4	1.32 1.32	-40 -40	963 963	5.2 5.2	1043 1043	5.4 5.4	1023 1023	5.1 5.1	5.8 5.8
			125 125	1200 1200	5.0 5.0	1315 1315	5.5 5.5	1289 1289	4.8 4.8	13.3 13.3

Table 2 :

 2 Reduction of read timing margin

	Iadji Iadji	Vdd (v) Vdd (v)	T (˚c) T (˚c)	µ A (ps) µ A (ps)	µ d ref (ps) µ d ref (ps)	P V P V	ref (%) ref (%)	µ d prop (ps) µ d prop (ps)	P V P V	prop (%) prop (%)	∆µ d / µ d ref (%) ∆µ d / µ d ref (%)
	1 1	1.00 1.00	-40 -40	1919 1919	493 493		99.99 99.99	384 384		100.00 100.00	22.2 22.2
			125 125	2209 2209	288 288		99.81 99.81	244 244		99.97 99.97	15.4 15.4
	1, 2 1, 2	1.08 1.08	-40 -40	1534 1534	259 259		99.99 99.99	201 201		99.99 99.99	22.5 22.5
			125 125	1827 1827	201 201		99.86 99.86	170 170		99.95 99.95	15.5 15.5
	1, 2, 3 1, 2, 3	1.20 1.20	-40 -40	1181 1181	125 125		99.94 99.94	96 96		99.88 99.88	23.2 23.2
			125 125	1448 1448	137 137		99.91 99.91	117 117		99.96 99.96	14.5 14.5
	1, 2, 3, 4 1, 2, 3, 4	1.32 1.32	-40 -40	963 963	80 80		99.97 99.97	60 60		99.67 99.67	25.2 25.2
			125 125	1200 1200	115 115		99.99 99.99	89 89		99.97 99.97	22.7 22.7

Statistical Sizing Method

In order to perform comparisons between the reference and proposed DBDs under constant timing yield, we have developed a sizing methodology.

Step 1 (identification of most critical condition): Starting from an initial solution, the first step involves identifying the voltage and temperature (V, T) Crit conditions having the poorest timing yield. To identify the critical condition, transient simulations of the timing performances of critical paths A and B in the memory are done under different temperature and voltage conditions covering this whole range to obtain µ A and µ B . The critical condition corresponds to the highest numerical value of the following expression:

Step 2 (variability estimation): The second step requires the estimation of the variability of paths A and B involved in the signal races. To do so, Monte Carlo simulations of the critical path are performed at the critical conditions (V, T) Crit found in step 1. Once these statistical simulations are performed and the values of µ A , µ B , σ A , σ B and ρ are obtained, the value of the required timing margin µ D Yield corresponding to a timing yield is computed using (3).

Step 3 (sizing for a given timing yield): The third step consists in sizing the DBD at a typical process and under (V, T) Crit to obtain the computed µ D Yield .

Step 4 (first verification step of the timing yield):

Once the above sizing procedure is over, the first verification step consists in performing Monte Carlo simulations on the critical path at (V,T) Crit to obtain µ A , µ B , σ A , σ B and ρ values. The constraint of the timing yield is then evaluated using (2). If the computed value fulfills the predefined constraint, we proceed with the second verification step. Otherwise, we reiterate step 3 with the new values of µ A , µ B , σ A , σ B and ρ.

Step 5 (second verification step of the timing yield): It implies verifying that the constraint of the timing yield satisfies all temperature and supply voltage conditions. This is done through Monte Carlo simulations in order to estimate the values of µ A , µ B , σ A , σ B and ρ for different values of V and T. Once the statistical simulation has been done, the timing yield is processed. If the values obtained for the various (V, T) couples are greater than the predefined constraint at (V, T) Crit , the verification step is over. However, if the constraint is not satisfied, step 1 should be repeated with the new sizing obtained.

Performance Comparisons

To perform performance comparisons, both reference and proposed DBDs have been placed in the critical path of a 256kb SRAM memory. The model card, used in Hspice simulations, is the bsim4.3.0 which takes into account local and global variations. The sizing methodology developed in section four has been applied to pass gate transistors PG1 to PG4 and pull down transistors PD, PD1 to PD4 (Fig. 3a and 3b) at four operating voltages considered i.e. 1.0V, 1.08V, 1.2V and 1.32V. The timing yield had been set at 99.87% i.e. n=3 and the correlation value ρ considered was equal to 0.9. At each operating voltage, the appropriate adjustments of pins Iadji were performed.

Once the statistical sizing method has been done, we performed 2000 Monte Carlo runs in order to obtain the mean values (µ A and µ B ) and standard deviation values (σ A and σ B ) of the characteristic delays of the signal races of paths A and B over the whole voltage and temperature ranges considered. The results obtained were used to compute in table 1 the reduction in the delay variance (∆V B ) of path B between proposed (prop) and reference (ref) DBDs and in table 2, the probability P V (2) of meeting the timing constraint, the read timing margin (1) of the reference µ dref and proposed µ dprop DBDs and subsequently the reduction in read timing margin ∆µ D between proposed and reference DBDs.

Table 1 shows the reduction in variability obtained.

The first column Iadji corresponds to the respective branches of transistors selected with respect to supply voltage. For instance Iadji=1, 2 means that branches Iadj1 and Iadj2 are selected at Vdd= 1.08V. The reduction in variability (∆VB/V Bref ) is quite important, lying between 5.8% and 24.7%. This reduction has been achieved by using pass gate transistors PGi in the proposed DBD which is 2 to 3 times the size of the PGi used in the reference DBD.

In table 2, we can see that the values of the probability P V of fulfilling the read timing constraint have been computed. As expected, the values of P V are very close to the required 99.87% (3σ) for both the reference and proposed structures. Simultaneously, we observe a reduction in the read

Appendix

A.1) Estimation of design margin µ D at n.σ D Suppose that we want to have a read margin µ D at n.σ D , such that:

. n (A.1) As we have seen previously in section 2, µ D and D can be defined using [START_REF] Unsal | Impact of Parameter Variations on Circuits and Microarchitecture[END_REF]. Expression (A.1) can therefore be represented by the following equation: As the delay of signal B should be greater than that of signal A, delay µ B in (A.2) becomes:

Once the delay of µ B is computed, the required design margin µ D Yield in (1) is given by:

The probability P V of fulfilling a timing constraint is given by (2). In fact, since (V, T) crit represents the condition showing the highest probability of the occurrence of a timing constraint violation P V should be minimum at this condition. Thus, P V is minimum if