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Total domination of graphs and small transversals of

hypergraphs.

Stéphan Thomassé∗

and
Anders Yeo†

Abstract

The main result of this paper is that every 4-uniform hypergraph on n vertices and m edges has
a transversal with no more than (5n+4m)/21 vertices. In the particular case n = m, the transversal
has at most 3n/7 vertices, and this bound is sharp in the complement of the Fano plane. Chvátal and
McDiarmid [5] proved that every 3-uniform hypergraph with n vertices and edges has a transversal
of size n/2. Two direct corollaries of these results are that every graph with minimal degree at least
3 has total domination number at most n/2 and every graph with minimal degree at least 4 has total
domination number at most 3n/7. These two bounds are sharp.

1 Introduction.

Given a graph G = (V,E), a total dominating set is a subset S of the vertices of G such that every vertex
of G has a neighbour in S. The minimum size of a total dominating set is the total domination number
of G. It was proved by Favaron et al. [6] that a graph with n vertices and minimum degree at least 3
has total domination number at most 7n/13. This result has been recently extended to n/2 [4], [2], and
a fractional approach can be found in [7]. A transversal in a hypergraph is a subset of vertices which
intersects every edge. We are mainly concerned here with transversals of k-uniform hypergraphs with the
same number of edges and vertices. Precisely, we raise the problem to find the minimum ck for which
every k-uniform hypergraph with n vertices and n edges has a transversal of size ckn. It directly follows
that every graph G with minimum degree k and n vertices has a total dominating set with ckn vertices,
since in the hypergraph whose edges are the neighbourhoods of the vertices of G, a transversal is a total
dominating set. The main advantage of considering hypergraphs instead of graphs is that the structure
is easier to handle - for instance we can limit ourselves to k-uniform structures. When H is a hypergraph
on the vertex set V and X ⊆ V , we denote by H \X the induced subhypergraph on V \X - that is, we
delete all the vertices of X, and all the edges having a vertex in X.

To fix the ideas, and a bound, let us calculate c2:

Lemma 1 Every 2-uniform hypergraph H has a transversal T such that 3|T | ≤ n + m

Proof. By induction on the number of vertices. If some vertex x has degree at least 2, we put it in the
transversal, and apply the induction hypothesis to H \ x. Otherwise no vertex has degree 2 and then the
edges form a matching, and the formula holds. �
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Corollary 1 c2 = 2/3

When n = 3k, the extremal graph for c2 is certainly a disjoint union of triangles, and this is the
sole example by the unicity of the extremal Turán graphs. This kind of example generalizes for all k: If
one considers a disjoint union of complete k-uniform hypergraphs on k + 1 vertices, this clearly forms a
k-uniform hypergraph with n edges and n vertices and the minimum transversal has exactly 2n/(k + 1)
vertices. By this, we directly have that ck ≥ 2/(k + 1). The interesting fact is that equality holds also
for k = 3, that is c3 = 1/2, but many extremal examples arise: consider for instance the hypergraph
on vertex set {1, . . . , n, 1′, . . . , n′} and edges {i, i′, i + 1} and {i, i′, (i + 1)′} where i + 1 is understood
modulo n. However, it turns out that c4 is not equal to 2/5, as we will observe. But let us now prove that
c3 = 1/2. The following result can be found in [5], but we will give an alternative proof as an introduction
to the proof of our main result.

Theorem 1 Let H = (V,E) be a 3-uniform hypergraph. There exists a transversal T of H such that
4|T | ≤ |V |+ |E|.

Proof. Induction on the number of vertices. If some vertex v has degree at least 3, we find, by the
induction hypothesis, a transversal T ′ of H \ v. In turn, T ′ ∪ {v} satisfies our condition. We can now
suppose that every vertex has degree at most 2. If some edge abc satisfies that the degree of a is 2 and
the degree of b is 1, we apply the induction hypothesis to H \ {a, b} in order to find a transversal T ′:
the transversal T := T ′ ∪ {a} still satisfies the hypothesis. If one edge abc has no vertex of degree 2, we
simply apply the induction hypothesis to H \{a, b, c}. Now the hypergraph is 2-regular. If the same edge
abc appears twice in H, we simply apply the induction hypothesis to H \ {a, b, c}. If not, we can find the
following subset of edges

x1y1x2, x2y2x3, x3y3x4, . . . , xkykx1

where all the vertices x1, . . . , xk, y1, . . . , yk are distinct, because of the following: If two edges intersect
on two vertices, then these two edges are of the form x1y1x2, x2y2x1. If no two edges intersect on
two points, the above sequence is simply obtained by considering a minimum cyclic sequence of edges
where only adjacent edges intersect. Now, two cases can happen: If k = 2l, choose a transversal T ′ of
H ′ := H \{xi : i = 1..k} which satisfies the induction hypothesis: the transversal T := T ′∪{x2i : i = 1..l}
satisfies the hypothesis for H since we deleted 2l vertices and 2l edges to get H ′ from H. If k = 2l + 1,
choose a transversal T ′ of H ′ := H \ ({yk} ∪ {xi : i = 1..k}) which satisfies the induction hypothesis: the
transversal T := T ′ ∪ {x2i : i = 1..l} ∪ {yk} satisfies the hypothesis for H since we deleted 2l + 2 vertices
and 2l + 2 edges to get H ′ from H. �

Corollary 2 Every 3-uniform hypergraph H = (V,E) with |V | = |E| = n has a transversal with at most
n/2 vertices. In other words, c3 = 1/2.

Finally we would like to mention a result of Seymour [9]: every minimal non bipartite hypergraph
has at least as many edges as vertices. From this result follows a short proof of the existence of a n/2
transversal in a connected 3-uniform 3-regular hypergraph H with 2l vertices: remove an edge e of H
for which H − e is connected (e exists since there exists a connected spanning subhypergraph with at
most n − 2 edges). Now every proper induced subhypergraph of H − e has less edges than vertices, in
particular, by Seymour’s result, H − e is two colourable. If e belongs to both colours, we are done. If the
color class of e has at most n/2 vertices, it is our transversal. Finally, if it has more than l + 1 vertices,
take the other color class and a vertex of e as a transversal.
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2 The 4-uniform hypergraphs.

The case of 4-uniform hypergraphs is much more complicated since what seems to be the extremal case
is not the complete 4-uniform hypergraph on 5 vertices but the complement of the Fano plane. Precisely,
we consider the hypergraph F on the vertex set {1, 2, 3, 4, 5, 6, 7} and edge set {Q + i : i := 1..7}, where
+ is understood modulo 7 and Q := {0, 1, 2, 4} is the set of quadratic residues. In this case we have
7 vertices and we need 3 vertices to hit all the edges. This example provides a graph with 14 vertices,
minimum degree 4 and total domination number 6, simply by considering the incidence bipartite graph
of F . The main result of this section is to prove that these two examples are extremal, in other words
we have the following result:

Theorem 2 c4 = 3/7

We prove a more general formula for 4-uniform hypergraphs which directly implies the value of c4.
An analog formula was proved in [3], where they established that every 4-uniform hypergraph has a
transversal with no more than (2n + 2m− d)/9 vertices, where d is the number of edges which contain a
vertex of degree one. This gives the upper bound c4 ≤ 4/9.

An edge of a hypergraph is overlapping if it intersects another edge on at least 2 vertices. An edge is
special if it is overlapping and has exactly one vertex of degree 1. For k > 0, an edge is k-degenerated if it
is not special and has exactly k vertices of degree 1. An edge which is not special and not k-degenerated
is plain.

Theorem 3 Let H be a 4-uniform hypergraph with n vertices, p plain edges, s special edges and d
degenerated edges. There exists a transversal T such that 21|T | ≤ 5n + 4p + 3s/2 + d.

Proof. Let us consider a counterexample H, minimum with respect to its degree sequence, ordered
lexicographically (that is, for each hypergraph we order its degree sequence in the decreasing order and
we compare two hypergraphs using the lexicographical order on their respective sequences.)

Claim 1 The maximum degree in H is at most three.

Proof. Assume not and remove a vertex v of degree at least 4. If all its incident edges are plain, the
removal of these edges gives at least -16 and the removal of v gives -5. In all, we get at least -21, and
adding v in the transversal T ′ of H \ v, the total count is +21-21, so this contradicts the minimality of
H. Now, if some edges incident with v contain degree one vertices, we delete these vertices as well, in
this case, the count for removing one edge is at least -6 (that is at least -1 for the removed edge and -5
for the isolated vertex). Again removing all the edges incident with v (plus possibly the now isolated
vertices) gives again at least -16, so we conclude as previously. �

In the following of the proof, we will indicate the counting argument we did in the proof of Claim 1 as
a sum +x− y− z− t where x is the value of the vertices in the transversal, y is the value of the removed
edges, z is the value of the removed vertices, and t is the value change of the edges (since some of the
remaining edges can become special or degenerated.)

Claim 2 Every degree two vertex x of H is in a non plain edge.

Proof. If x is in two plain edges e1, e2, we split the vertex x into two vertices x1, x2, letting x1 ∈ e1 and
x2 ∈ e2. There is a +5 for the new vertex, but at least 2.(-2,5) since e1, e2 become at least special. Observe
that every transversal of this new hypergraph is also a transversal of H, contradicting the minimality of
the degree sequence of H. �

Claim 3 Every vertex x of degree three is incident to at least two plain edges.
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Proof. If not, removing x gives at least +21-6-15.

Claim 4 There is no 4-degenerated edge. Sum +21-1-20.

Claim 5 There is no 3-degenerated edge. Sum +21-5-20, in all -4.

Claim 6 Two edges of H do not intersect on 3 vertices.

Proof. Let e and f be two edges intersecting on x, y, z. If e is not plain (its degree one vertex being
t), we simply remove the edge f and find a transversal T ′. If T ′ does not contain t, it is a transversal of
H. If it contains t, we replace t by any of x, y, z. So both are plain. We add then a new vertex ω to H,
remove the edges e, f and add the edge xyzω. Observe that this new graph is lexicographically smaller
than H, and that the count is -6,5+5 in the worst case. Let T ′ be a transversal of this new graph. If
T ′ does not contain ω, it is a transversal of H. If it contains ω, we replace ω by any of x, y, z to get a
transversal of H. �

Claim 7 There is no 2-degenerated edge. Sum -2.

Proof. Let e be a 2-degenerated edge. If some vertex of e has degree three, removing it gives at least
+21-9-15, that is -3. So there are exactly two vertices x, y of degree two, incident with two edges ex, ey,
and two vertices of degree one. If ex = ey, removing x gives at least +21-5-20, so -4. By Claim 6, ex and
ey do not intersect on three vertices. If ex and ey intersect on two vertices, we remove all the vertices of
e, we delete ex and ey, and add the new edge (ex ∪ ey) \ {x, y}. This new graph has a lexicographically
smaller degree sequence than H, and any transversal T ′ can be extended by either x or y to form a
transversal of H. This gives us 21-5-20 if ex and ey are plain. If one is special and the other plain, the
sum is 21-5-20. If both ex and ey are special, 21-3-20. Observe that this exhausts all possibilities. Now
ex and ey intersect on at most one vertex. If ex and ey are both plain, we remove all the vertices of e, we
delete ex and ey, and add a new edge containing any four vertices of (ex∪ ey)\{x, y}. As previously, this
gives 21-5-20. If they are not both plain, one vertex z of, say, ex has degree 1. In this case, we remove
all the vertices of e, we delete z, we delete ex and ey, and add a new edge containing any four vertices of
(ex ∪ ey) \ {x, y, z}. This gives 21+1-25. �

We will widely use Claim 7 in our proofs. As soon as removing a vertex yields a 2-degenerated edge,
we will substract 2 to our sum.

We define the intersection graph of H as the multigraph G on vertex set V and edge set E in the
following way: for all pairs e, f of edges of H such that e ∩ f = {x, y}, we add the edge xy to G.

Claim 8 The graph G does not have 2-cycles.

Proof. If there are three edges e, f, g pairwise intersecting on x, y, removing x gives at least +21-12-10.
This calculation holds when all the edges are plain. If they are not, we get a better bound. �

Claim 9 The graph G has maximum degree 2.

Proof. Suppose we have three edges e, f, g such that e ∩ f = {y, x}, f ∩ g = {y, z} and e ∩ g = {y, t}.
If one of x, z, t has degree two, removing y gives at least 21-12-10. Thus, x, z, t have degree 3, and we
let ex, ez, et their incident other edges. If e is special, by Claim 3, ex is plain, and removing y gives
21-9,5-10-2,5. So e, f, g are plain. If ez is non plain, deleting z gives 21-9-10-2,5. Thus all are plain, and
we delete y: If ex = ey = ez, we have 21-12-5 and an additional -4, since ex becomes 3-degenerated. If
ex 6= ey, we have 21-12-5 and -5, since ex and ey become at least special. �
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Claim 10 The graph G has maximum degree 1.

Proof. Suppose we have three edges e, f, g such that e ∩ f = {x, y} and f ∩ g = {y, z}. By Claim 9, we
have e ∩ g = {y}. Clearly x and z have degree 3, otherwise we obtain 21-12-10. We denote respectively
by ex and ez the other edges incident to x and z. If g is not plain, ez is plain, and thus we can remove
y, the sum is 21-9-10-2,5. Thus e, f, g are plain. If ez is not plain, we remove z to get 21-9-10-2,5. Thus
all edges are plain. If ez 6= ex we remove y to get 21-12-5-5. If ez = ex, removing y makes ex at least
2-degenerated. If it is not 4-degenerated, we get 21-12-5-3, and at least an additional -2 by Claim 7
or Claim 5. So the only case left is when removing y makes ex 4-degenerated. Observe that removing
z makes e at least 2-degenerated, and again by counting we achieve our contradiction if it is less than
4-degenerated. But this would mean that ex intersects e on at least three vertices, against Claim 6. �

Claim 11 If xy is an edge of G, both x and y have degree 3 and are contained in plain edges.

Proof. We consider two edges e, f intersecting on x, y. If x has degree two and y has degree three,
removing y gives -1. If they both have degree two, by Claim 2, e or f is non plain. We assume that e is
non plain and thus special. Observe that f must be plain, otherwise we remove x which gives 21-3-20.
Let z be the vertex of e\f with degree at least 2. If z has degree 3, removing z gives at least 21-9,5-10-3,
since f becomes at least 2-degenerated. So z has degree two. If the other edge ez of z is plain or special,
we are done by removing x: the sum is 21-5,5-15-0,5. So ez is 1-degenerated. In particular removing
z makes f at least 2-degenerated, but not 4-degenerated (since |ez ∩ f | < 2), and in this case the sum
is 21-2,5-15-3 and an additional -2 by Claim 7. So both x and y have degree three, with additional
(distinct) edges ex and ey. If e is special, by Claim 3, f , ex and ey are plain, and we remove x to obtain
21-9,5-10-2,5. So both e and f are plain. If ex is plain and not ey, removing y gives 21-9-10-2,5. Suppose
that ex and ey are special, removing x gives 21-9,5-10-0,5 and ey is now at least 2-degenerated. The
only case to check is when it becomes 4-degenerated. This means that ex and ey intersect on two outside
vertices uv with degree 2, which is impossible since uv would be an edge of G, and thus u, v have degree
3. If ex is special and ey is 1-degenerated, removing y gives 21-9-10-0,5, and ex is now 2-degenerated,
in all -0,5. So both ex and ey are 1-degenerated, removing x makes ey 2-degenerated, so we have sum
21-9-10 and an additional -2 by Claim 7. �

In particular, we suppose from now on that there are no special edges. When e, f intersect on two
vertices x, y, and ex is the other edge incident to x, we say that ex is an external edge of {e, f}.

Claim 12 If g is an external edge of {e, f} and g is an external edge of {e′, f ′}, we have {e, f} = {e′, f ′}.

Proof. Suppose that e, f intersect on two vertices x, y, with external edges ex, ey and e′, f ′ intersect on
two vertices x′, y′, with external edges e′x, e′y, with the additional condition that e′x = ex. Here ex plays
the role of g. Let us prove first that all these edges are distinct. If e = e′, we must have x = x′, and thus
f = f ′, and we have our conclusion. If e′y = e, we remove x′, y and obtain 42-24-20. If ey = e′y, we also
remove x′, y with the same result. So all these edges are distinct. If ey is not overlapping, removing x, y′

gives 42-24-15-3. So both ey, e′y are overlapping. So ey intersects some edge h on two vertices u, v with
external edges eu, ev. If all the edges defined so far are distinct, we remove u, x, y′ to get 63-36-25-2,5.
If the edge eu was already defined, this was ex, e′, f ′ or e′y, thus removing v, x, y′ and deleting all the
edges leave x′, y, u isolated, which gives 63-36-30, unless another edge was already defined. If this was
h, removing x, y′ would leave ey at least 2-degenerated, with a sum of 42-24-15-3. So ev was already
defined. If eu = e′y, we remove x′, y, and thus h, eu become non plain (since ev is deleted), so 42-24-15-5.
So, e′y is distinct from eu, ev. Removing x′, y gives 42-24-15-5, since h, e′y become non plain. So, only
the edge h was already defined, and this was e′y otherwise we remove x′, y to get 42-24-15-5. But in this
case, we remove y, y′, in order to get 42-24-10-8 (since eu, ev become at least special, and ex at least
2-degenerated.) �
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Claim 13 There is no vertex of degree two.

Proof. Let x be a vertex of degree 2. It is contained in a non plain, and thus 1-degenerated, edge e and
in another edge ex. If e contains one vertex y with degree three (incident to two other plain edges, by
Claim 3), the edge ex is not plain, otherwise we remove y to obtain 21-9-10-2,5. Thus ex is 1-degenerated.
If removing y leaves ex 2 or 3-degenerated, we are done. So ex becomes 4-degenerated. Since ex is not
special, this means that every edge incident to y intersect ex on one vertex - but in this case we remove x,
and the two other edges of y become 1-degenerated, in all 21-2-15-6. Thus e contains a vertex of degree
1 and three vertices of degree 2.

- If there are plain and degenerated edges intersecting e, we pick a vertex z of e which is in two
1-degenerated edges. Removing z creates a degenerated edge, and either creates another 1-degenerated
or special edge, or creates a 2-degenerated edge. The sum is at least 21-2-15-2,5, with an additional -2
or -2,5 depending if the third edge incident with e is plain or 1-degenerated.

- If all the edges intersecting e are 1-degenerated edges, observe that this property spread over all
the vertices of the connected component C of x in the hypergraph H. That is, every edge of C is 1-
degenerated and the degree of every vertex of C is at most two. Suppose now that there are a vertices of
degree 2, then C contains 2a/3 edges, and thus 2a/3 vertices of degree 1. Only considering the vertices
of degree 2 (and shrinking the edges), we obtain a 3-uniform hypergraph with a vertices and 2a/3 edges.
Thus, by Theorem 1, there exists a transversal T with 5a/12 vertices. The gain is 105a/12−25a/3−2a/3,
in all −a/4.

- If all the vertices of e have degree 2, and all the edges intersecting e are plain. Let x, y, z be the
vertices of e with degree 2, and ex, ey, ez their other (distinct) incident plain edges. If ex and ey do not
intersect another edge on two vertices, removing z gives 21-5-10-6. If ex intersects another edge f on
two vertices u, v. By Claim 8, u, v cannot be in all the edges ex, ey, ez, so we assume that u /∈ ey. By
Claim 11, removing u gives 21-12-5-2,5 and makes e at least 2-degenerated, but not 4-degenerated since
u /∈ ey, so -0,5. �

Claim 14 An edge is not both external and overlapping.

Proof. We suppose that all the degrees are 3 or 1, and two edges e and f intersect on two vertices x, y
incident with other edges ex, ey. Moreover, ex intersect an edge g on two vertices u, v. with additional
edges eu and ev. Let us prove first that all the edges defined so far are distinct. Clearly e, f, g are distinct.
By Claim 12, the only case when two edges could be the same is g = ey. Let us call z the vertex of g
distinct from y, u, v. Removing z, x gives 42-24-15-5 since it leaves eu and ev degenerated.

All these edges are now distinct, and consequently, if ev does not intersect an edge on two vertices,
we conclude by removing u, y with a sum of 42-24-15-3. So ev intersects another edge h on two vertices
a, b, each of them with external edges ea, eb.

Observe that if all these edges are distinct, removing a, u, y will give 63-36-25-2,5.
So, some of these edges are the same. If h was already defined, removing v, y gives 42-24-15-5 since

ea and eb become degenerated, or, if ea or eb were defined, a or b becomes isolated. The only case left, by
Claim 12, could be ea = e. But, we remove y, v to obtain 42-24-15-5 since h, eu become degenerated. �

Claim 15 There are no overlapping edges.

Proof. Let two edges e and f intersecting on two vertices x, y incident with other edges ex, ey. Let z be
a vertex of ex which is not a vertex of e, f, ey. If none of the three edges incident to z is overlapping, we
split z into three vertices of degree 1, which gives +10-9, and remove x, which is 21-9-10-3. So let ez, fz

be the other edges incident to z. Note that ez ∩ fz = {z} by Claim 12. Suppose that ez intersect an edge
g on two vertices u, v incident with other edges eu, ev. If all these edges are distinct, we remove u, x, with
-24 (edges) -10 (vertices) and -8,5 (ey, ev become 1-degenerated and fz becomes at least special). Thus,
some of these edges must be the same. By Claim 12 and Claim 14, the only case is g = e, and we can
conclude by removing z, y since we get 42-24-15-6. �
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Claim 16 All the edges are plain.

Proof. Let e be a non plain, and thus 1-degenerated edge. The other vertices have degree 3 and must be
incident to other plain edges. Let x, y, z be the vertices of e with degree 3, and ex, fx, ey, fy, ez, fz, be the
edges incident to x, y, z different from e. They are all distinct since e is not special. Since ex, fx, ey, fy

do not intersect another edge on two vertices, we split x and y (+8) and remove z which gives 21-9-20. �

Finally, H is a 3-uniform and 3-regular hypergraph with no overlapping edges. We now obtain a
contradiction as follows. Let x ∈ V (H) be arbitrary. Let Hx be a hypergraph with vertex set N(x) (i.e.
all vertices which lie in an edge containing x, but x 6∈ N(x)), and edge set {V (e)∩N(x) : |V (e)∩N(x)| ≥ 2}
(i.e. all edges which contain at least 2 vertices from N(x), are restricted to N(x)).

All edges in Hx have size 2, because of the following. Clearly every edge has size at least 2, so assume,
for the sake of contradiction, that e is an edge in Hx of size at least 3. By Claim 15, we see that |V (e)| = 3
in Hx. Let e′ be the edge in H, with the property that V (e) ⊂ V (e′), and let w be the unique vertex
in V (e′)−N(x). Now we delete x, w, which gives 42-24-10-9, since the remaining vertices of e now have
degree one and thus their incident edges become degenerated.

So we can think of Hx as a graph. Now Hx is a graph with 9 vertices and 3 vertex disjoint cycles of
length 3, because of the following. By Claim 15, we get that V (Hx) = 9. If there was an independent
set X in Hx of size at least 4, we would delete x, which gives 21-12-5 and split the vertices of X, each
one for a -1. So Hx is a graph on 9 vertices with stability at most 3 and maximum degree 2, only three
disjoint 3-circuits can achieve this.

Now let e ∈ E(H) be an edge such that |V (e) ∩N(x)| = 2 and let y ∈ V (e)−N(x) be arbitrary. Let
w1 ∈ V (H) belong to a 3-cycle in Hx, which does not contain the edge (V (e)∩N(x)), and let w2 ∈ V (H)
belong to a 3-cycle in Hx, which does not contain the edge (V (e)∩N(x)) or the vertex w1. Now, we delete
x, y, for a sum of 42-24-10-6, since the vertices in V (e) ∩ N(x) now have degree one, and in particular
their incident edges become degenerated. To achieve the bound, split the vertices w1 and w2, each for a
-1. �

Another way of proving the 21|T | ≤ 5n + 4m formula is to allow edges of size 3 and 2. Let H1 be the
hypergraph, with vertices {x1, x2, x3, x4, x5} and edges {{x1, x2, x3}, {x1, x4, x5}, {x2, x3, x4, x5}}, and
let H2 be the hypergraph with vertices {x1, x2} and one edge {x1, x2}. For a hypergraph, H, where all
edges have size at least 2 and at most 4, let ei(H) denote the number of edges in H of size i (i = 2, 3, 4).
Let h1(H) be the number of components of H, which are isomorphic to H1, and let h2(H) be the number
of components of H, which are isomorphic to H2.

Theorem 4 There exists a transversal, T of H such that

21|T | ≤ 5|V (H)|+ 10e2(H) + 6e3(H) + 4e4(H) + h1(H) + h2(H)

The proof of the above theorem is however quite technical and of equal length to the proof Theorem 3,
so we omit it from this paper.

3 Asymptotics

Our goal in this section is to bound the value of ck. The next upper bound can also be derived from
a result of Johnson and Lovász: τ(H) ≤ (1 + ln(d))τ∗(H) where H is a hypergraph, τ(H), τ∗(H) are
respectively the transversality and the fractional transversality of H and d is the maximum degree of H,
see [8].

Theorem 5 ck ≤ 1+ln(k)
k
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Proof. Let H be a k-uniform hypergraph, with n edges and n vertices. Define S(G) =
∑

x∈V (G) d(x), for
all hypergraphs G, and note that S(H) = kn. Let H ′ be a k-uniform hypergraph with S(H ′) ≤ in, where
i is an integer. We will now show that there exists a set X, such that |X| ≤ n

ik and S(H ′ \X) ≤ (i− 1)n.
If S(H ′) > (i− 1)n, then there exists a vertex x in H ′, such that d(x) ≥ i. Now deleting this vertex (and
edges incident with it) makes the sum S drop by d(x)k ≥ ik. So by keep deleting such vertices until the
sum is at most (i− 1)n, we delete at most n

ik vertices.
By the above we note that there exists a transversal of size at most the following.∑k

i=1
n
ki = n

k

∑k
i=1

1
i

≤ n
k (1 + ln(k))

= n 1+ln(k)
k

This completes the proof. �

Theorem 6 For any ε > 0, ck > (1−ε)ln(k)
k for sufficiently large k.

Proof. Let 1 > ε > 0 be arbitrary. We will now show that ck > (1−ε)ln(k)
k , for all sufficiently large k. If e is

the base of the natural logarithm, then given ε, there exists a constant Aε, such that (1−α−1)α > (1−ε)/e,
when α ≥ Aε. Furthermore (1− α−1)α < 1/e is true for all α ≥ 1. We will often use the above, without
explicitly stating it.

By the above we let a be some number such that the following holds.

e−1e−(ε/2)/(1−ε) < (1− a−1)a

⇓
(ε/2)−1

1−ε < aln
(

a−1
a

)
⇓

(ε/2− 1)ln(k) < (1− ε)ln(k)aln
(

a−1
a

)
⇓

1− k−(1−ε/2) > 1− e[(1−ε)ln(k)aln( a−1
a )] (A)

Given a we let k be large enough such that the following holds.

(1− ε)(ln(k))(ln(ak))− kε/2 < 0 (B)

This can clearly be done as kε/2 grows faster than any poly-log function. We will now show that a
random hypergraph on n = ak vertices and with n edges, all of size k, has probability strictly less than
1, of having a transversal of size z = n (1−ε)ln(k)

k . So there must exist k-uniform hypergraphs on n = ak
vertices and with n edges, which do not have any transversal of size z. This would prove the theorem.

Let H be a hypergraph, with n = ak vertices and with n edges, all chosen at random (an edge may
be chosen several times). Let H1,H2, . . . ,Hn denote the edges. Let Z be z vertices chosen at random
(a vertex may be picked several times). There are nz possible ways of choosing Z. The probability that
Z ∩Hi = ∅ is clearly [(n−k)/n]z, as each vertex in Z has probability (n−k)/n of not lying in Hi. So the
probability that Z∩Hi 6= ∅ for all i = 1, 2, . . . , n, is the following. Since the Hi are chosen independently,
we have:

P (Z ∩Hi 6= ∅, i = 1, 2, . . . , n) =
(

1−
(

n− k

n

)z)n

Let Z contain all possible Z’s (i.e. |Z| = nz, and Z ∈ Z if and only if Z contains exactly z elements,
some of which may be identical). As Z ∈ Z was chosen with equal probability, namely 1/nz, we get the
following.
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1
nz

∑
Z∈Z P (Z ∩Hi 6= ∅, i = 1, 2, . . . , n) =

(
1−

(
n−k

n

)z
)n

⇓ ∑
Z∈Z P (Z ∩Hi 6= ∅, i = 1, 2, . . . , n) = (ak)z

(
1−

(
a−1

a

)z)ak

⇓
P (H has a transversal of size at most z) ≤ (ak)z

(
1−

(
a−1

a

)z)ak

Let γ = (ak)z
(
1−

(
a−1

a

)z)ak
, and recall that z = a(1− ε)ln(k), which implies the following (by (A)

and (B)):

ln(γ) = a(1− ε)ln(k)ln(ak) + akln(1−
(

a−1
a

)a(1−ε)ln(k))
= a(1− ε)ln(k)ln(ak) + akln

(
1− ea(1−ε)ln(k)ln( a−1

a )
)

< a(1− ε)ln(k)ln(ak) + akln
(
1− k−(1−ε/2)

)
= a(1− ε)ln(k)ln(ak) + ak

k(1−ε/2) ln

((
1− k−(1−ε/2)

)k(1−ε/2)
)

< a(1− ε)ln(k)ln(ak) + ak1−1+ε/2ln(e−1)
= a(1− ε)ln(k)ln(ak)− akε/2

< 0

Therefore the probability that H contains a transversal is strictly less than 1, and the proof is com-
plete. �

Note that in the above proof if ε = 0.6, then ck ≥ 0.4×ln(k)
k , when a = 2.8 and k ≥ 4800000 (simply

insert these values in the proof). It is not difficult to check that γ < 1 for all smaller values of k in the
proof as well (using a computer). Therefore the following is true.

Corollary 3 ck > 0.4×ln(k)
k , for all k ≥ 2.

Furthermore the previous results imply the following.

Corollary 4 lim
k→∞

ck

ln(k)/k = 1.

4 A general formula?

Let k > 1 be a fixed integer. The set Ak of pairs a, b such that every k-uniform hypergraphs with
n vertices and m edges has a transversal with at most an + bm vertices has been studied by Chvátal
and McDiarmid in [5]. This closed convex set has infinitely many extreme points. They described the
two last (with largest b) extreme points of Ak, for all k. They also prove that the three last points
(a, b) of A3 are (0, 1), (1/4, 1/4), (1/3, 1/6). Our proof gives in fact that the three last points of A4

are (0, 1), (1/6, 1/3), (5/21, 4/21). The two first points are from [5]. The last one belongs to A4 as we
have seen. We just have to check that it is extreme. To see that, observe that the hypergraph on
{1, 2, 3, 4, 5, 6}, with edge set {1234, 3456, 5612} is sharp for (1/6, 1/3) and (5/21, 4/21). Moreover, the
complement of the Fano plane is not sharp for (1/6, 1/3) and sharp for (5/21, 4/21). Thus, (5/21, 4/21)
is an extreme point of A4. In [3] was proved that (2/9, 2/9) ∈ A4. This can be easily derived from our
bound since (2/9, 2/9) = 2/9(1/6, 1/3) + 7/9(5/21, 4/21). The full description of Ak, for k ≥ 3, seems a
very hard problem. However, Chvátal and McDiarmid conjecture that for every ε > 0, Ak has finitely
many elements for which a > ε.

We would like to concentrate on the following question: Is there an element (or more) of Ak which
gives the constant ck? Precisely, is it always possible to find (a, b) ∈ Ak for which a+ b = ck? As we have
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calculated so far, there is such a pair in A2, A3 and A4. But we do not see any reason why this should
be the case for larger values of k.

Finally, we will make a guess concerning the value of c5. Consider the non zero quadratic residues
modulo 11, that is Q = {1, 3, 4, 5, 9}. And form the hypergraph on {0, . . . , 10} which edges are the sets
Q + i, where i = 0..10. It is not hard to check, by enumeration, that every subset on three vertices
avoid one edge, and consequently, that the minimum transversal of this hypergraph has 4 vertices. Thus
4/11 ≤ c5, and we conjecture that equality holds.

Acknowledgement. We thank Odile Favaron for introducing us the problem. This collaboration started
during the graph conference held in Odense, organised by Joergen Bang-Jensen and Bjarne Toft.
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